Advertisement

An Ontology for Wearables Data Interoperability and Ambient Assisted Living Application Development

  • Natalia Díaz-RodríguezEmail author
  • Stefan Grönroos
  • Frank Wickström
  • Johan Lilius
  • Henk Eertink
  • Andreas Braun
  • Paul Dillen
  • James Crowley
  • Jan Alexandersson
Chapter
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 361)

Abstract

Over the last decade a number of technologies have been developed that support individuals in keeping themselves active. This can be done via e-coaching mechanisms and by installing more advanced technologies in their homes. The objective of the Active Healthy Ageing (AHA) Platform is to integrate existing tools, hardware, and software that assist individuals in improving and/or maintaining a healthy lifestyle. This architecture is realized by integrating several hardware/software components that generate various types of data. Some examples include heart-rate data, coaching information, in-home activity patterns, mobility patterns, and so on. Various subsystems in the AHA platform can share their data in a semantic and interoperable way, through the use of a AHA data-store and a wearable devices ontology. This paper presents such an ontology for wearable data interoperability in Ambient Assisted Living environments. The ontology includes concepts such as height, weight, locations, activities, activity levels, activity energy expenditure, heart rate, or stress levels, among others. The purpose is serving application development in Ambient Intelligence scenarios ranging from activity monitoring and smart homes to active healthy ageing or lifestyle profiling.

Notes

Acknowledgements

We acknowledge the support of EU EIT Digital project no. HWB13070 on Active Healthy Ageing within the Health and Well-being action line and the ICT COST Action IC1303 (European Cooperation in Science and Technology), Algorithms, Architectures and Platforms for Enhanced Living Environments (AAPELE) http://www.aapele.eu. We thank our project partners Marion Karppi (Turku University of Applied Sciences), Antonio De Nigro and Francesco Torelli (R&D Lab—Engineering Ingegneria Informatica), Iman Khaghani Far (University of Trento), Josef Hallberg (Luleå University), Syed Naseh (We-Care), Rafal Kocielnik (TUE) and Marcos Baez (University of Trento).

References

  1. 1.
    J. Alexandersson, i2home-towards a universal home environment for the elderly and disabled. Künstliche Intelligenz 8(3), 66–68 (2008)Google Scholar
  2. 2.
    N. Díaz Rodrígguez, Semantic and fuzzy modelling for human behaviour recognition in smart spaces: a case study on ambient assisted living, Ph.D. dissertation, Åbo Akademi University (Finland) and University of Granada (Spain) (2015)Google Scholar
  3. 3.
    P. Karvinen, N. Díaaz Rodrígguez, S. Grönroos, J. Lilius, How to choose a semantic RDF store? an scalability analysis for smart space (2016) (Submitted)Google Scholar
  4. 4.
    F. Wickström, Getting started with Smart-M3 using Python, Technical Report 1071 (2013)Google Scholar
  5. 5.
    A. Berg, P. Karvinen, S. Grönroos, F. Wickström, N. Díaz Rodríguez, S. Hosseinzadeh, J. Lilius, A scalable distributed M3 platform on a low-power cluster, in Open International M3 Semantic Interoperability Workshop. TUCS Proceedings, TUCS, ed. by J.-P.S. Soininen, S. Balandin, J. Lilius, P. Liuha, T.S. Cinotti, vol. 21 (2013), pp. 49–58Google Scholar
  6. 6.
    S. Hosseinzadeh, S. Virtanen, N. Díaz-Rodríguez, J. Lilius, A semantic security framework and context-aware role-based access control ontology for smart spaces (2016) (Submitted)Google Scholar
  7. 7.
    N. Díaz Rodríguez, R. Wikström, J. Lilius, M.P. Cuéllar, M. Delgado Calvo Flores, Understanding movement and interaction: an ontology for kinect-based 3D depth sensors, in Ubiquitous Computing and Ambient Intelligence. Context-Awareness and Context-Driven Interaction. Lecture Notes in Computer Science, ed. by G. Urzaiz, S. Ochoa, J. Bravo, L. Chen, J. Oliveira, vol. 8276 (Springer International Publishing, 2013), pp. 254–261.  https://doi.org/10.1007/978-3-319-03176-7_33CrossRefGoogle Scholar
  8. 8.
    M. d’Aquin, N.F. Noy, Where to publish and find ontologies? A survey of ontology libraries. Web Semant.: Sci. Serv. Agents World Wide Web 11, 96–111 (2012), http://www.sciencedirect.com/science/article/pii/S157082681100076XCrossRefGoogle Scholar
  9. 9.
    J. Gómez-Romero, M.A. Patricio, J. García, J.M. Molina, Ontology-based context representation and reasoning for object tracking and scene interpretation in video. Expert Syst. Appl. 38(6), 7494–7510 (2011).  https://doi.org/10.1016/j.eswa.2010.12.118CrossRefGoogle Scholar
  10. 10.
    N. Díaz Rodríguez, O.L. Cadahía, M.P. Cuéllar, J. Lilius, M.D. Calvo-Flores, Handling real-world context awareness, uncertainty and vagueness in real-time human activity tracking and recognition with a fuzzy ontology-based hybrid method. Sensors 14(10), 8 131–18 171 (2014), http://www.mdpi.com/1424-8220/14/10/18131
  11. 11.
    A. Braun, R. Wichert, A. Kuijper, D.W. Fellner, Capacitive proximity sensing in smart environments. J. Ambient Intell. Smart Environ. 7(4), 483–510 (2015)CrossRefGoogle Scholar
  12. 12.
    A. Hedman, J. Hallberg, Cognitive endurance for brain health: challenges of creating an intelligent warning system. KI-Künstliche Intelligenz 29(2), 123–129 (2015)CrossRefGoogle Scholar
  13. 13.
    M. Djakow, A. Braun, A. Marinc, Movibed-sleep analysis using capacitive sensors, in Universal Access in Human-Computer Interaction. Design for All and Accessibility Practice (Springer International Publishing, 2014), pp. 171–181CrossRefGoogle Scholar
  14. 14.
    R. Kocielnik, N. Sidorova, F.M. Maggi, M. Ouwerkerk, J.H. Westerink, Smart technologies for long-term stress monitoring at work, in 2013 IEEE 26th International Symposium on Computer-Based Medical Systems (CBMS) (IEEE, 2013), pp. 53–58Google Scholar
  15. 15.
    I.K. Far, M. Ferron, F. Ibarra, M. Baez, S. Tranquillini, F. Casati, N. Doppio, The interplay of physical and social wellbeing in older adults: investigating the relationship between physical training and social interactions with virtual social environments. PeerJ Comput. Sci. 1, e30 (2015)CrossRefGoogle Scholar
  16. 16.
    N. Díaz Rodríguez, S. Grönroos, F. Wickström, P. Karvinen, A. Berg, S. Hosseinzadeh, M. Karppi, J. Lilius, M3 interoperability for remote rehabilitation with kinect, in Open International M3 Semantic Interoperability Workshop. TUCS Lecture Notes, ed. by J.-P.S. Soininen, S. Balandin, J. Lilius, P. Liuha, T.S. Cinotti, vol. 21 (2013), pp. 153–163Google Scholar
  17. 17.
    I.K. Far, P. Silveira, F. Casati, M. Baez, Unifying platform for the physical, mental and social well-being of the elderly, in Embedded and Multimedia Computing Technology and Service. Lecture Notes in Electrical Engineering, ed. by J.J.J.H. Park, Y.-S. Jeong, S.O. Park, H.-C. Chen, vol. 181 (Springer Netherlands, 2012), pp. 385–392.  https://doi.org/10.1007/978-94-007-5076-0_46Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Natalia Díaz-Rodríguez
    • 1
    Email author
  • Stefan Grönroos
    • 1
  • Frank Wickström
    • 1
  • Johan Lilius
    • 1
  • Henk Eertink
    • 2
  • Andreas Braun
    • 3
  • Paul Dillen
    • 4
  • James Crowley
    • 5
  • Jan Alexandersson
    • 6
  1. 1.Åbo Akademi UniversityTurkuFinland
  2. 2.NovayEnschedeThe Netherlands
  3. 3.Fraunhofer IGDDarmstadtGermany
  4. 4.Philips ResearchEindhovenThe Netherlands
  5. 5.INRIA GrenobleMontbonnot-Saint-MartinFrance
  6. 6.DFKI GmbHSaarbrückenGermany

Personalised recommendations