Decomposition Structures for Soft Constraint Evaluation Problems: An Algebraic Approach

  • Ugo Montanari
  • Matteo SammartinoEmail author
  • Alain Tcheukam
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10800)


(Soft) Constraint Satisfaction Problems (SCSPs) are expressive and well-studied formalisms to represent and solve constraint-satisfaction and optimization problems. A variety of algorithms to tackle them have been studied in the last 45 years, many of them based on dynamic programming. A limit of SCSPs is its lack of compositionality and, consequently, it is not possible to represent problem decompositions in the formalism itself. In this paper we introduce Soft Constraint Evaluation Problems (SCEPs), an algebraic framework, generalizing SCSPs, which allows for the compositional specification and resolution of (soft) constraint-based problems. This enables the systematic derivation of efficient dynamic programming algorithms for any such problem.



We thank Nicklas Hoch and Giacoma Valentina Monreale for their collaboration in an earlier version of this work. We also thank an anonymous reviewer for suggesting the example where bucket elimination does not produce a canonical term.


  1. 1.
    Atserias, A., Bulatov, A., Dalmau, V.: On the power of k-consistency. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 279–290. Springer, Heidelberg (2007). CrossRefGoogle Scholar
  2. 2.
    Bellman, R.: The theory of dynamic programming. Bull. Am. Math. Soc. 60(6), 503–516 (1954)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bertelè, U., Brioschi, F.: On non-serial dynamic programming. J. Comb. Theory, Ser. A 14(2), 137–148 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and optimization. J. ACM 44(2), 201–236 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Blume, C., Sander Bruggink, H.J., Friedrich, M., König, B.: Treewidth, pathwidth and cospan decompositions with applications to graph-accepting tree automata. J. Vis. Lang. Comput. 24(3), 192–206 (2013)CrossRefGoogle Scholar
  6. 6.
    Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial optimization on graphs of bounded treewidth. Comput. J. 51(3), 255–269 (2008)CrossRefGoogle Scholar
  7. 7.
    Buscemi, M.G., Montanari, U.: CC-Pi: a constraint-based language for specifying service level agreements. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 18–32. Springer, Heidelberg (2007). CrossRefGoogle Scholar
  8. 8.
    Chiang, D., Andreas, J., Bauer, D., Hermann, K.M., Jones, B., Knight, K.: Parsing graphs with hyperedge replacement grammars. In: ACL, pp. 924–932 (2013)Google Scholar
  9. 9.
    Courcelle, B., Mosbah, M.: Monadic second-order evaluations on tree-decomposable graphs. Theor. Comput. Sci. 109(1–2), 49–82 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dalmau, V., Jonsson, P.: The complexity of counting homomorphisms seen from the other side. Theor. Comput. Sci. 329(1–3), 315–323 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dalmau, V., Kolaitis, P.G., Vardi, M.Y.: Constraint satisfaction, bounded treewidth, and finite-variable logics. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 310–326. Springer, Heidelberg (2002). CrossRefGoogle Scholar
  12. 12.
    Dechter, R.: Constraint Processing. Morgan Kaufmann Series. Elsevier, New York (2003)zbMATHGoogle Scholar
  13. 13.
    Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1: Equations und Initial Semantics. EATCS Monographs on Theoretical Computer Science, vol. 6. Springer, Heidelberg (1985). CrossRefzbMATHGoogle Scholar
  14. 14.
    Fiore, M., Mahmoud, O.: Second-order algebraic theories. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 368–380. Springer, Heidelberg (2010). CrossRefGoogle Scholar
  15. 15.
    Gadducci, F., Miculan, M., Montanari, U.: About permutation algebras, (pre)sheaves and named sets. High. Order Symbol. Comput. 19(2–3), 283–304 (2006)CrossRefzbMATHGoogle Scholar
  16. 16.
    Gogate, V., Dechter, R.: A complete anytime algorithm for treewidth. In: UAI, pp. 201–208 (2004)Google Scholar
  17. 17.
    Grohe, M.: The complexity of homomorphism and constraint satisfaction problems seen from the other side. J. ACM 54(1), 1:1–1:24 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hoch, N., Montanari, U., Sammartino, M.: Dynamic programming on nominal graphs. In: GaM 2015, pp. 80–96 (2015)Google Scholar
  19. 19.
    Kloks, T. (ed.): Treewidth: Computations and Approximations. LNCS, vol. 842. Springer, Heidelberg (1994). zbMATHGoogle Scholar
  20. 20.
    Montanari, U.: Networks of constraints: fundamental properties and applications to picture processing. Inf. Sci. 7, 95–132 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Pitts, A.M.: Nominal Sets: Names and Symmetry in Computer Science. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (2013)CrossRefzbMATHGoogle Scholar
  22. 22.
    Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Comb. Theory, Ser. B 36(1), 49–64 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming. Foundations of Artificial Intelligence, vol. 2. Elsevier, New York (2006)zbMATHGoogle Scholar
  24. 24.
    Rossi, F., van Beek, P., Walsh, T.: Constraint programming. In: Handbook of Knowledge Representation, pp. 181–211 (2008)Google Scholar
  25. 25.
    Schiendorfer, A., Knapp, A., Steghöfer, J.-P., Anders, G., Siefert, F., Reif, W.: Partial valuation structures for qualitative soft constraints. In: De Nicola, R., Hennicker, R. (eds.) Software, Services, and Systems. LNCS, vol. 8950, pp. 115–133. Springer, Cham (2015). CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ugo Montanari
    • 1
  • Matteo Sammartino
    • 2
    Email author
  • Alain Tcheukam
    • 3
  1. 1.University of PisaPisaItaly
  2. 2.University College LondonLondonUK
  3. 3.New York UniversityAbu DhabiUnited Arab Emirates

Personalised recommendations