Advertisement

Cell Biology of Coral Bleaching

  • C. A. Oakley
  • S. K. Davy
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 233)

Abstract

Corals depend on a mutualistic symbiosis with intracellular dinoflagellates of the genus Symbiodinium for their energetic needs. The high productivity of corals in a challenging environment and the necessity of coordinating the metabolism and growth of each partner mean that severe stresses, such as sustained high temperatures, may destabilize the symbiosis. Coral bleaching is linked to oxidative stress of the coral holobiont, and high temperatures may operate on either partner independently or synergistically to elevate oxidative stress. The photosynthetic performance of Symbiodinium is impaired by photosystem degradation and photoinhibition, overexcitation of the photosynthetic apparatus, or sink limitation, factors exacerbated by high temperatures and irradiance. These effects may cause the generation and release of reactive oxygen species or sensitizing compounds into the host cells, initiating the host’s bleaching response. The host may also be independently damaged, particularly the mitochondrial and endoplasmic reticulum functions, by thermally-induced oxidative stress. Regardless of the source, oxidative stress sensed by the host initiates a series of events that culminate in symbiont loss by several mechanisms, principally host cell apoptosis. Coral bleaching is a cellular process that unfolds at the ecosystem scale, and understanding the mechanisms of the breakdown of the symbiosis, aided by new technologies and model systems, is essential to predicting the effects of anthropogenic climate change on coral reefs.

References

  1. Abrego D, Ulstrup KE, Willis BL, van Oppen MJH (2008) Species-specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress. Proc R Soc B 275:2273–2282.  https://doi.org/10.1098/rspb.2008.0180 CrossRefPubMedGoogle Scholar
  2. Ainsworth TD, Hoegh-Guldberg O (2008) Cellular processes of bleaching in the Mediterranean coral Oculina patagonica. Coral Reefs 27:593–597.  https://doi.org/10.1007/s00338-008-0355-x CrossRefGoogle Scholar
  3. Ainsworth TD, Hoegh-Guldberg O, Heron SF, Skirving WJ, Leggat B (2008) Early cellular changes are indicators of pre-bleaching thermal stress in the coral host. J Exp Mar Biol Ecol 364:63–71.  https://doi.org/10.1016/j.jembe.2008.06.032 CrossRefGoogle Scholar
  4. Aranda M, Li Y, Liew YJ, Baumgarten S, Simakov WMC et al (2016) Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Sci Rep 6:39734.  https://doi.org/10.1038/srep39734 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Badger MR, Andrews TJ, Whitney SM, Ludwig M, Yellowlees DC, Leggat W et al (1998) The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Can J Bot 76:1052–1071.  https://doi.org/10.1139/b98-074 CrossRefGoogle Scholar
  6. Baghdasarian G, Muscatine L (2000) Preferential expulsion of dividing algal cells as a mechanism for regulating algal-cnidarian symbiosis. Biol Bull 199:278–286.  https://doi.org/10.2307/1543184 CrossRefPubMedGoogle Scholar
  7. Baird AH, Bhagooli R, Ralph PJ, Takahashi S (2009) Coral bleaching: the role of the host. Trends Ecol Evol 24:16–20.  https://doi.org/10.1016/j.tree.2008.09.005 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Baumgarten S, Simakov O, Esherick LY, Liew YJ, Lehnert EM, Mitchell CT et al (2015) The genome of Aiptasia, a sea anemone model for coral biology. Proc Natl Acad Sci U S A 112:11893–11898.  https://doi.org/10.1073/pnas.1513318112 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bay LK, Cumbo VR, Abrego D, Kool JT, Ainsworth TD, Willis BL (2011) Infection dynamics vary between Symbiodinium types and cell surface treatments during establishment of endosymbiosis with coral larvae. Diversity 3:356–374.  https://doi.org/10.3390/d3030356 CrossRefGoogle Scholar
  10. Bellantuono AJ, Granados-Cifuentes C, Miller DJ, Hoegh-Guldberg O, Rodriguez-Lanetty M (2012) Coral thermal tolerance: tuning gene expression to resist thermal stress. PLoS One 7.  https://doi.org/10.1371/journal.pone.0050685
  11. Bhattacharya D, Agrawal S, Aranda M, Baumgarten S, Belcaid M, Drake JL et al (2016) Comparative genomics explains the evolutionary success of reef-forming corals. eLife 5.  https://doi.org/10.7554/eLife.13288
  12. Bieri T, Onishi M, Xiang T, Grossman AR, Pringle JR (2016) Relative contributions of various cellular mechanisms to loss of algae during cnidarian bleaching. PLoS One 11:e0152693.  https://doi.org/10.1371/journal.pone.0152693 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Brown BE, Le Tissier MDA, Bythell JC (1995) Mechanisms of bleaching deduced from histological studies of reef corals sampled during a natural bleaching event. Mar Biol 122:655–663.  https://doi.org/10.1007/BF00350687 CrossRefGoogle Scholar
  14. Brown BE, Ambarsari I, Warner ME, Fitt WK, Dunne RP, Gibb SW et al (1999) Diurnal changes in photochemical efficiency and xanthophyll concentrations in shallow water reef corals: evidence for photoinhibition and photoprotection. Coral Reefs 18:99–105.  https://doi.org/10.1007/s003380050163 CrossRefGoogle Scholar
  15. Burriesci MS, Raab TK, Pringle JR (2012) Evidence that glucose is the major transferred metabolite in dinoflagellate-cnidarian symbiosis. J Exp Biol 215:3467–3477.  https://doi.org/10.1242/jeb.070946 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Buxton L, Takahashi S, Hill R, Ralph PJ (2012) Variability in the primary site of photosynthetic damage in Symbiodinium sp. (Dinophyceae) exposed to thermal stress. J Phycol 48:117–126.  https://doi.org/10.1111/j.1529-8817.2011.01099.x CrossRefPubMedGoogle Scholar
  17. Chaudhari N, Talwar P, Parimisetty A, d’Hellencourt C, Ravana P (2014) A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress. Front Cell Neurosci 8:213.  https://doi.org/10.3389/fncel.2014.00213 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Chen MC, Hong MC, Huang YS, Liu MC, Cheng YM, Fang LS (2005) ApRab11, a cnidarian homologue of the recycling regulatory protein Rab11, is involved in the establishment and maintenance of the Aiptasia-Symbiodinium endosymbiosis. Biochem Biophys Res Commun 338:1607–1616.  https://doi.org/10.1016/j.bbrc.2005.10.133 CrossRefPubMedGoogle Scholar
  19. Crawley A, Kline DI, Dunn S, Anthony K, Dove S (2010) The effect of ocean acidification on symbiont photorespiration and productivity in Acropora formosa. Glob Chang Biol 16:851–863.  https://doi.org/10.1111/j.1365-2486.2009.01943.x CrossRefGoogle Scholar
  20. Davy SK, Allemand D, Weis VM (2012) Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol Mol Biol Rev 76:229–261.  https://doi.org/10.1128/MMBR.05014-11 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Desalvo MK, Voolstra CR, Sunagawa S, Schwarz JA, Stillman JH, Coffroth MA et al (2008) Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata. Mol Ecol 17:3952–3971.  https://doi.org/10.1111/j.1365-294X.2008.03879.x CrossRefPubMedGoogle Scholar
  22. Downs CA, Kramarsky-Winter E, Martinez J, Kushmaro A, Woodley CM, Loya Y et al (2009) Symbiophagy as a cellular mechanism for coral bleaching. Autophagy 5:211–216.  https://doi.org/10.1016/j.ecolind.2015.07.022 CrossRefPubMedGoogle Scholar
  23. Downs CA, McDougall KE, Woodley CM, Fauth JE, Richmond RH, Kushmaro A et al (2013) Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching. PLoS One 8.  https://doi.org/10.1371/journal.pone.0077173 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Dunn SR, Thomason JC, Le Tissier MDA, Bythell JC (2004) Heat stress induces different forms of cell death in sea anemones and their endosymbiotic algae depending on temperature and duration. Cell Death Differ 11:1213–1222.  https://doi.org/10.1038/sj.cdd.4401484 CrossRefPubMedGoogle Scholar
  25. Dunn SR, Schnitzler CE, Weis VM (2007) Apoptosis and autophagy as mechanisms of dinoflagellate symbiont release during cnidarian bleaching: every which way you lose. Proc R Soc B 274:3079–3085.  https://doi.org/10.1098/rspb.2007.0711 CrossRefPubMedGoogle Scholar
  26. Dunn SR, Pernice M, Green K, Hoegh-Guldberg O, Dove SG (2012) Thermal stress promotes host mitochondrial degradation in symbiotic cnidarians: are the batteries of the reef going to run out? PLoS One 7:e39024.  https://doi.org/10.1371/journal.pone.0039024 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ezzat L, Maguer J-F, Grover R, Ferrier-Pagès C (2016) Limited phosphorus availability is the Achilles heel of tropical reef corals in a warming ocean. Sci Rep 6:31768.  https://doi.org/10.1038/srep31768 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Fang LS, Huang SP, Lin KL (1997) High temperature induces the synthesis of heat-shock proteins and the elevation of intracellular calcium in the coral Acropora grandis. Coral Reefs 16:127–131.  https://doi.org/10.1007/s003380050066 CrossRefGoogle Scholar
  29. Fujise L, Yamashita H, Suzuki G, Koike K (2013) Expulsion of zooxanthellae (Symbiodinium) from several species of scleractinian corals: comparison under non-stress conditions and thermal stress conditions. Galaxea J Coral Reef Stud 15:29–36.  https://doi.org/10.3755/galaxea.15.29 CrossRefGoogle Scholar
  30. Ganot P, Moya A, Magnone V, Allemand D, Furla P, Sabourault C (2011) Adaptations to endosymbiosis in a cnidarian-dinoflagellate association: differential gene expression and specific gene duplications. PLoS Genet 7.  https://doi.org/10.1371/journal.pgen.1002187
  31. Gardner SG, Nielsen DA, Laczka O, Shimmon R, Beltran V, Ralph P et al (2016) Dimethylsulfoniopropionate, superoxide dismutase and glutathione as stress response indicators in three corals under short-term hyposalinity stress. Proc R Soc B 283:1–9.  https://doi.org/10.1098/rspb.2015.2418 CrossRefGoogle Scholar
  32. Gates RD, Baghdasarian G, Muscatine L (1992) Temperature stress causes host cell detachment in symbiotic cnidarians: implications for coral bleaching. Biol Bull 182:324–332.  https://doi.org/10.2307/1542252 CrossRefPubMedGoogle Scholar
  33. Gierz SL, Forêt S, Leggat W (2017) Transcriptomic analysis of thermally stressed Symbiodinium reveals differential expression of stress and metabolism genes. Front Plant Sci 8:1–20.  https://doi.org/10.3389/fpls.2017.00271 CrossRefGoogle Scholar
  34. Grajales A, Rodríguez E (2014) Morphological revision of the genus Aiptasia and the family Aiptasiidae (Cnidaria, Actiniaria, Etridioidea). Zootaxa 3826:55–100.  https://doi.org/10.11646/zootaxa.3826.1.2 CrossRefPubMedGoogle Scholar
  35. Gustafsson MSM, Baird ME, Ralph PJ (2014) Modeling photoinhibition-driven bleaching in Scleractinian coral as a function of light, temperature, and heterotrophy. Limnol Oceanogr 59:603–622.  https://doi.org/10.4319/lo.2014.59.2.0603 CrossRefGoogle Scholar
  36. Hanes SD, Kempf SC (2013) Host autophagic degradation and associated symbiont loss in response to heat stress in the symbiotic anemone, Aiptasia pallida. Invertebr Biol 132:95–107.  https://doi.org/10.1111/ivb.12018 CrossRefGoogle Scholar
  37. Hawkins TD, Davy SK (2012) Nitric oxide production and tolerance differ among Symbiodinium types exposed to heat stress. Plant Cell Physiol 53:1889–1898.  https://doi.org/10.1093/pcp/pcs127 CrossRefPubMedGoogle Scholar
  38. Hawkins TD, Davy SK (2013) Nitric oxide and coral bleaching: is peroxynitrite generation required for symbiosis collapse? J Exp Biol 216:3185–3185.  https://doi.org/10.1242/jeb.087510 CrossRefPubMedGoogle Scholar
  39. Hawkins TD, Bradley BJ, Davy SK (2013) Nitric oxide mediates coral bleaching through an apoptotic-like cell death pathway: evidence from a model sea anemone-dinoflagellate symbiosis. FASEB J 27:4790–4798.  https://doi.org/10.1096/fj.13-235051 CrossRefPubMedGoogle Scholar
  40. Hawkins TD, Krueger T, Becker S, Fisher PL, Davy SK (2014) Differential nitric oxide synthesis and host apoptotic events correlate with bleaching susceptibility in reef corals. Coral Reefs 33:141–153.  https://doi.org/10.1007/s00338-013-1103-4 CrossRefGoogle Scholar
  41. Hawkins TD, Hagemeyer JCG, Warner ME (2016) Temperature moderates the infectiousness of two conspecific Symbiodinium strains isolated from the same host population. Environ Microbiol 18:5204–5217.  https://doi.org/10.1111/1462-2920.13535 CrossRefPubMedGoogle Scholar
  42. Hennige SJ, Suggett DJ, Warner ME, McDougall KE, Smith DJ (2008) Photobiology of Symbiodinium revisited: bio-physical and bio-optical signatures. Coral Reefs 28:179–195.  https://doi.org/10.1007/s00338-008-0444-x CrossRefGoogle Scholar
  43. Hill R, Larkum AWD, Frankart C, Kühl M, Ralph PJ (2004) Loss of functional Photosystem II reaction centres in zooxanthellae of corals exposed to bleaching conditions: Using fluorescence rise kinetics. Photosynth Res 82:59–72.  https://doi.org/10.1023/B:PRES.0000040444.41179.09 CrossRefPubMedGoogle Scholar
  44. Hill R, Brown CM, DeZeeuw K, Campbell DA, Ralph PJ (2011) Increased rate of D1 repair in coral symbionts during bleaching is insufficient to counter accelerated photo-inactivation. Limnol Oceanogr 56:139–146.  https://doi.org/10.4319/lo.2011.56.1.0139 CrossRefGoogle Scholar
  45. Hillyer KE, Dias DA, Lutz A, Wilkinson SP, Roessner U, Davy SK (2017a) Metabolite profiling of symbiont and host during thermal stress and bleaching in the coral Acropora aspera. Coral Reefs 36:105–118.  https://doi.org/10.1007/s00338-016-1508-y CrossRefGoogle Scholar
  46. Hillyer KE, Dias DA, Lutz A, Roessner U, Davy SK (2017b) Mapping carbon fate during bleaching in a model cnidarian symbiosis: the application of 13C metabolomics. New Phytol 214:1551–1562.  https://doi.org/10.1111/nph.14515 CrossRefPubMedGoogle Scholar
  47. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfiled P, Gomez E et al (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742.  https://doi.org/10.1126/science.1152509 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Hopkins FE, Bell TG, Yang M, Suggett DJ, Steinke M (2016) Air exposure of coral is a significant source of dimethylsulfide (DMS) to the atmosphere. Sci Rep 6:36031.  https://doi.org/10.1038/srep36031 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH et al (2017) Global warming and recurrent mass bleaching of corals. Nature 543:373–377.  https://doi.org/10.1038/nature21707 CrossRefPubMedGoogle Scholar
  50. Imlay JA (2013) The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 11:443–454.  https://doi.org/10.1038/nrmicro3032 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Jin YK, Lundgren P, Lutz A, Raina J-B, Howells EJ, Paley AS (2016) Genetic markers for antioxidant capacity in a reef-building coral. Sci Adv 2:e1500842.  https://doi.org/10.1126/sciadv.1500842 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Jones RJ, Hoegh-Guldberg O, Larkum AWD, Schreiber U (1998) Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant Cell Environ 21:1219–1230.  https://doi.org/10.1046/j.1365-3040.1998.00345.x CrossRefGoogle Scholar
  53. Jones GB, Fischer E, Deschaseaux ESM, Harrison PL (2014) The effect of coral bleaching on the cellular concentration of dimethylsulphoniopropionate in reef corals. J Exp Mar Biol Ecol 460:19–31.  https://doi.org/10.1016/j.jembe.2014.06.003 CrossRefGoogle Scholar
  54. Kanazawa A, Blanchard GJ, Szabó M, Ralph PJ, Kramer DM (2014) The site of regulation of light capture in Symbiodinium: Does the peridinin–chlorophyll a–protein detach to regulate light capture? BBA-Bioenergetics 1837:1227–1234.  https://doi.org/10.1016/j.bbabio.2014.03.019 CrossRefPubMedGoogle Scholar
  55. Krueger T, Becker S, Pontasch S, Dove S, Hoegh-Guldberg O, Leggat W et al (2014) Antioxidant plasticity and thermal sensitivity in four types of Symbiodinium sp. J Phycol 50:1035–1047.  https://doi.org/10.1111/jpy.12232 CrossRefPubMedGoogle Scholar
  56. Krueger T, Hawkins TD, Becker S, Pontasch S, Dove S, Hoegh-Guldberg O et al (2015) Differential coral bleaching – contrasting the activity and response of enzymatic antioxidants in symbiotic partners under thermal stress. Comp Biochem Physiol A Mol Integr Physiol 190:15–25.  https://doi.org/10.1016/j.cbpa.2015.08.012 CrossRefPubMedGoogle Scholar
  57. Kuhl M, Cohen Y, Dalsgaard T, Jørgensen BB, Revsbech NP (1995) Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied pH and light with microsensors for O2, pH and light. Mar Ecol Prog Ser 117:159–172.  https://doi.org/10.3354/meps117159 CrossRefGoogle Scholar
  58. Kvitt H, Rosenfeld H, Zandbank K, Tchernov D (2011) Regulation of apoptotic pathways by Stylophora pistillata (Anthozoa, Pocilloporidae) to survive thermal stress and bleaching. PLoS One 6.  https://doi.org/10.1371/journal.pone.0028665
  59. Kvitt H, Rosenfeld H, Tchernov D (2016) The regulation of thermal stress induced apoptosis in corals reveals high similarities in gene expression and function to higher animals. Sci Rep 6:30359.  https://doi.org/10.1038/srep30359 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Leggat W, Badger MR, Yellowlees D (1999) Evidence for an inorganic carbon concentrating mechanism in the symbiotic dinoflagellate Symbiodinium sp. Plant Physiol 121:1247–1255.  https://doi.org/10.1104/pp.121.4.1247 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Lehnert EM, Burriesci MS, Pringle JR (2012) Developing the anemone Aiptasia as a tractable model for cnidarian-dinoflagellate symbiosis: the transcriptome of aposymbiotic A. pallida. BMC Genomics 13:271.  https://doi.org/10.1186/1471-2164-13-271 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Lehnert EM, Mouchka ME, Burriesci MS, Gallo N, Schwarz J, Pringle JR (2014) Extensive differences in gene expression between symbiotic and aposymbiotic cnidarians. Genes Genomes Genet 4:277–295.  https://doi.org/10.1534/g3.113.009084 CrossRefGoogle Scholar
  63. Lesser MP (1996) Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates. Limnol Oceanogr 41:271–283.  https://doi.org/10.4319/lo.1996.41.2.0271 CrossRefGoogle Scholar
  64. Levin RA, Beltran VH, Hill R, Kjelleberg S, McDougald D, Steinberg PD et al (2016) Sex, scavengers, and chaperones: transcriptome secrets of divergent Symbiodinium thermal tolerances. Mol Biol Evol 33:2201–2215.  https://doi.org/10.1093/molbev/msw119 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Lilley RM, Ralph PJ, Larkum AWD (2010) The determination of activity of the enzyme Rubisco in cell extracts of the dinoflagellate alga Symbiodinium sp. by manganese chemiluminescence and its response to short-term thermal stress of the alga. Plant Cell Environ 33:995–1004.  https://doi.org/10.1111/j.1365-3040.2010.02121.x CrossRefPubMedGoogle Scholar
  66. Lin S, Cheng S, Song B, Zhong X, Lin X, Li W et al (2015) The Symbiodinium kawagutii genome illuminates dinoflagellate gene expression and coral symbiosis. Science 350:691–694.  https://doi.org/10.1126/science.aad0408 CrossRefPubMedGoogle Scholar
  67. Lutz A, Raina JB, Motti CA, Miller DJ, van Oppen MJH (2015) Host coenzyme Q redox state is an early biomarker of thermal stress in the coral Acropora millepora. PLoS One 10.  https://doi.org/10.1371/journal.pone.0139290
  68. Man SM, Kanneganti T-D (2016) Converging roles of caspases in inflammasome activation, cell death and innate immunity. Nat Rev Immunol 16:7–21.  https://doi.org/10.1038/nri.2015.7 CrossRefPubMedGoogle Scholar
  69. Matthews JL, Crowder CM, Oakley CA, Lutz A, Roessner U, Meyer E, Grossman AR, Weis VM, Davy SK (2017) Optimal nutrient exchange and immune responses operate in partner specificity in the cnidarian-dinoflagellate symbiosis. Proc Natl Acad Sci 114(50):13194–13199CrossRefGoogle Scholar
  70. McCabe Reynolds J, Bruns BU, Fitt WK, Schmidt GW (2008) Enhanced photoprotection pathways in symbiotic dinoflagellates of shallow-water corals and other cnidarians. Proc Natl Acad Sci U S A 105:13674–13678.  https://doi.org/10.1073/pnas.0805187105 CrossRefGoogle Scholar
  71. McGinley MP, Aschaffenburg MD, Pettay DT, Smith RT, LaJeunesse TC, Warner ME (2012) Transcriptional response of two core photosystem genes in Symbiodinium spp. exposed to thermal stress. PLoS One 7.  https://doi.org/10.1371/journal.pone.0050439
  72. Meyer E, Weis VM (2012) Study of cnidarian-algal symbiosis in the “omics” age. Biol Bull 223:44–65.  https://doi.org/10.1086/BBLv223n1p44 CrossRefPubMedGoogle Scholar
  73. Moné Y, Monnin D, Kremer N (2014) The oxidative environment: a mediator of interspecies communication that drives symbiosis evolution. Proc R Soc B 281:20133112.  https://doi.org/10.1098/rspb.2013.3112 CrossRefPubMedGoogle Scholar
  74. Moya A, Sakamaki K, Mason BM, Huisman L, Forêt S, Weiss Y et al (2016) Functional conservation of the apoptotic machinery from coral to man: the diverse and complex Bcl-2 and caspase repertoires of Acropora millepora. BMC Genomics 17:62.  https://doi.org/10.1186/s12864-015-2355-x CrossRefPubMedPubMedCentralGoogle Scholar
  75. Niedzwiedzki DM, Jiang J, Lo CS, Blankenship RE (2014) Spectroscopic properties of the chlorophyll a – chlorophyll c 2 – peridinin-protein-complex (acpPC) from the coral symbiotic dinoflagellate Symbiodinium. Photosynth Res 120:125–139.  https://doi.org/10.1007/s11120-013-9794-5 CrossRefPubMedGoogle Scholar
  76. Nii CM, Muscatine L (1997) Oxidative stress in the symbiotic sea anemone Aiptasia pulchella (Carlgren, 1943): contribution of the animal to superoxide ion production at elevated temperature. Biol Bull 192:444–456.  https://doi.org/10.2307/1542753 CrossRefPubMedGoogle Scholar
  77. Oakley CA, Schmidt GW, Hopkinson BM (2014a) Thermal responses of Symbiodinium photosynthetic carbon assimilation. Coral Reefs 33:501–512.  https://doi.org/10.1007/s00338-014-1130-9 CrossRefGoogle Scholar
  78. Oakley CA, Hopkinson BM, Schmidt GW (2014b) Mitochondrial terminal alternative oxidase and its enhancement by thermal stress in the coral symbiont Symbiodinium. Coral Reefs 33:543–552.  https://doi.org/10.1007/s00338-014-1147-0 CrossRefGoogle Scholar
  79. Oakley CA, Ameismeier MF, Peng L, Weis VM, Grossman AR, Davy SK (2016) Symbiosis induces widespread changes in the proteome of the model cnidarian Aiptasia. Cell Microbiol 18:1009–1023.  https://doi.org/10.1111/cmi.12564 CrossRefPubMedGoogle Scholar
  80. Oakley CA, Durand E, Wilkinson SP, Peng L, Weiss VM, Grossman AR et al (2017) Thermal shock induces host proteostasis disruption and endoplasmic reticulum stress in the model symbiotic cnidarian Aiptasia. J Proteome Res 16:2121–2134.  https://doi.org/10.1021/acs.jproteome.6b00797 CrossRefPubMedGoogle Scholar
  81. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565.  https://doi.org/10.1038/nrm1150 CrossRefPubMedGoogle Scholar
  82. Paxton CW, Davy SK, Weis VM (2013) Stress and death of cnidarian host cells play a role in cnidarian bleaching. J Exp Biol 216:2813–2820.  https://doi.org/10.1242/jeb.087858 CrossRefPubMedGoogle Scholar
  83. Perez S, Weis V (2006) Nitric oxide and cnidarian bleaching: an eviction notice mediates breakdown of a symbiosis. J Exp Biol 209:2804–2810.  https://doi.org/10.1242/jeb.02309 CrossRefPubMedGoogle Scholar
  84. Pernice M, Dunn SR, Miard T, Dufour S, Dove S, Hoegh-Guldberg O (2011) Regulation of apoptotic mediators reveals dynamic responses to thermal stress in the reef building coral Acropora millepora. PLoS One 6.  https://doi.org/10.1371/journal.pone.0016095
  85. Pernice M, Meibom A, Van Den Heuvel A, Kopp C, Domart-Coulon I, Hoegh-Guldberg O et al (2012) A single-cell view of ammonium assimilation in coral–dinoflagellate symbiosis. ISME J 6:1314–1324.  https://doi.org/10.1038/ismej.2011.196 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Pinzón JH, Kamel B, Burge CA, Harvell CD, Medina M, Weil E et al (2015) Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral. Roy Soc Open Sci 2:140214.  https://doi.org/10.1098/rsos.140214 CrossRefGoogle Scholar
  87. Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Voolstra CR, Wild C (2017) Sugar enrichment provides evidence for a role of nitrogen fixation in coral bleaching. Glob Chang Biol 23:3838–3848.  https://doi.org/10.1111/gcb.13695 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Rädecker N, Pogoreutz C, Voolstra CR, Weidenmann J, Wild C (2015) Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends Microbiol 23:490–497.  https://doi.org/10.1016/j.tim.2015.03.008 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Rainbolt TK, Saunders JM, Wiseman RL (2014) Stress-responsive regulation of mitochondria through the ER unfolded protein response. Trends Endocrinol Metab 25:528–537.  https://doi.org/10.1016/j.tem.2014.06.007 CrossRefPubMedGoogle Scholar
  90. Ralph PJ, Gademann R, Larkum AWD (2001) Zooxanthellae expelled from bleached corals at 33C are photosynthetically competent. Mar Ecol Prog Ser 220:163–168.  https://doi.org/10.3354/meps220163 CrossRefGoogle Scholar
  91. Rehman AU, Szabó M, Deak Z, Sass L, Larkum A, Ralph P et al (2016) Symbiodinium sp. cells produce light-induced intra- and extracellular singlet oxygen, which mediates photodamage of the photosynthetic apparatus and has the potential to interact with the animal host in coral symbiosis. New Phytol 212:472–484.  https://doi.org/10.1111/nph.14056 CrossRefPubMedGoogle Scholar
  92. Richier S, Furla P, Plantivaux A, Merle PL, Allemand D (2005) Symbiosis-induced adaptation to oxidative stress. J Exp Mar Biol 208:277–285.  https://doi.org/10.1242/jeb.01368 CrossRefGoogle Scholar
  93. Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40:253–266.  https://doi.org/10.1016/j.molcel.2010.10.006 CrossRefPubMedGoogle Scholar
  94. Roberty S, Bailleul B, Berne N, Franck F, Cardol P (2014) PSI Mehler reaction is the main alternative photosynthetic electron pathway in Symbiodinium sp., symbiotic dinoflagellates of cnidarians. New Phytol 204:81–91.  https://doi.org/10.1111/nph.12903 CrossRefPubMedGoogle Scholar
  95. Roberty S, Fransolet D, Cardol P, Plumier J-C, Franck F (2015) Imbalance between oxygen photoreduction and antioxidant capacities in Symbiodinium cells exposed to combined heat and high light stress. Coral Reefs 34:1063–1073.  https://doi.org/10.1007/s00338-015-1328-5 CrossRefGoogle Scholar
  96. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529.  https://doi.org/10.1038/nrm2199 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Rosset S, Wiedenmann J, Reed AJ, D’Angelo C (2017) Phosphate deficiency promotes coral bleaching and is reflected by the ultrastructure of symbiotic dinoflagellates. Mar Pollut Bull 118:180–187.  https://doi.org/10.1016/j.marpolbul.2017.02.044 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Ruiz-Jones LJ, Palumbi SR (2017) Tidal heat pulses on a reef trigger a fine-tuned transcriptional response in corals to maintain homeostasis. Sci Adv 3.  https://doi.org/10.1126/sciadv.1601298 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Sandeman IM (2006) Fragmentation of the gastrodermis and detachment of zooxanthellae in symbiotic cnidarians: a role for hydrogen peroxide and Ca2+ in coral bleaching and algal density control. Rev Biol Trop 54:79–96.  https://doi.org/10.15517/rbt.v54i3.26899 CrossRefGoogle Scholar
  100. Saragosti E, Tchernov D, Katsir A, Shaked Y (2010) Extracellular production and degradation of superoxide in the coral Stylophora pistillata and cultured Symbiodinium. PLoS One 5.  https://doi.org/10.1371/journal.pone.0012508 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Sawyer SJ, Muscatine L (2001) Cellular mechanisms underlying temperature-induced bleaching in the tropical sea anemone Aiptasia pulchella. J Exp Biol 204:3443–3456PubMedGoogle Scholar
  102. Shinzato C, Shoguchi E, Kawashima T, Hamada M, Hisata K, Tanaka M et al (2011) Using the Acropora digitifera genome to understand coral responses to environmental change. Nature 476:320–323.  https://doi.org/10.1038/nature10249 CrossRefPubMedGoogle Scholar
  103. Shoguchi E, Shinzato C, Kawashima T, Gyoja F, Munqpakdee S, Takeuchi T et al (2013) Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. Curr Biol 23:1399–1408.  https://doi.org/10.1016/j.cub.2013.05.062 CrossRefPubMedGoogle Scholar
  104. Slavov C, Schrameyer V, Reus M, Ralph PJ, Hill R, Büchel C et al (2016) “Super-quenching” state protects Symbiodinium from thermal stress – implications for coral bleaching. Biochim Biophys Acta (BBA) Bioenerg 1857:840–847.  https://doi.org/10.1016/j.bbabio.2016.02.002 CrossRefGoogle Scholar
  105. Smith DJ, Suggett DJ, Baker NR (2005) Is photoinhibition of zooxanthellae photosynthesis the primary cause of thermal bleaching in corals? Glob Chang Biol 11:1–11.  https://doi.org/10.1111/j.1365-2486.2004.00895.x CrossRefGoogle Scholar
  106. Snyder CM, Shroff EH, Liu J, Chandel NS (2009) Nitric oxide induces cell death by regulating anti-apoptotic BCL-2 family members. PLoS One 4.  https://doi.org/10.1371/journal.pone.0007059
  107. Starzak DE, Quinnell RG, Nitschke MR, Davy SK (2014) The influence of symbiont type on photosynthetic carbon flux in a model cnidarian – dinoflagellate symbiosis. Mar Biol 16:711–724.  https://doi.org/10.1007/s00227-013-2372-8 CrossRefGoogle Scholar
  108. Strychar KB, Coates M, Sammarco PW, Piva TJ (2004) Bleaching as a pathogenic response in scleractinian corals, evidenced by high concentrations of apoptotic and necrotic zooxanthellae. J Exp Mar Biol Ecol 304:99–121.  https://doi.org/10.1016/j.jembe.2003.11.023 CrossRefGoogle Scholar
  109. Susnow N, Zhang L, Margineantu D, Hockenbery DM (2009) Bcl-2 family proteins as regulators of oxidative stress. Semin Cancer Biol 19:42–49.  https://doi.org/10.1016/j.semcancer.2008.12.002 CrossRefPubMedGoogle Scholar
  110. Takahashi S, Nakamura T, Sakamizu M, van Woesik R, Yamasaki H (2004) Repair machinery of symbiotic photosynthesis as the primary target of heat stress for reef-building corals. Plant Cell Physiol 45:251–255.  https://doi.org/10.1093/pcp/pch208 CrossRefPubMedGoogle Scholar
  111. Tansik AL, Fitt WK, Hopkinson BM (2015) External carbonic anhydrase in three Caribbean corals: quantification of activity and role in CO2 uptake. Coral Reefs 34:703–713.  https://doi.org/10.1007/s00338-015-1289-8 CrossRefGoogle Scholar
  112. Tansik AL, Fitt WK, Hopkinson BM (2017) Inorganic carbon is scarce for symbionts in scleractinian corals. Limnol Oceanogr 62:2045–2055.  https://doi.org/10.1002/lno.10550 CrossRefGoogle Scholar
  113. Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9:231–241.  https://doi.org/10.1038/nrm2312 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Tcherkez G, Farquhar G, Andrews T (2006) Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proc Natl Acad Sci U S A 103:7246–7251.  https://doi.org/10.1073/pnas.0600605103 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Tchernov D, Gorbunov MY, de Vargas C, Yadav SN, Milligan AJ, Häggblom M et al (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci U S A 101:13531–13535.  https://doi.org/10.1073/pnas.0402907101 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Tchernov D, Kvitt H, Haramaty L, Bibby TS, Gorbunov MY, Rosenfeld H et al (2011) Apoptosis and the selective survival of host animals following thermal bleaching in zooxanthellate corals. Proc Natl Acad Sci U S A 108:9905–9909.  https://doi.org/10.1073/pnas.1106924108 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Tolleter D, Seneca O, DeNofrio JC, Krediet CJ, Palumbi SR, Pringle JR et al (2013) Coral bleaching independent of photosynthetic activity. Curr Biol 23:1782–1786.  https://doi.org/10.1016/j.cub.2013.07.041 CrossRefPubMedGoogle Scholar
  118. Trapido-Rosenthal H, Zielke S, Owen R, Buxton L, Boeing B, Bhagooli R et al (2005) Increased zooxanthellae nitric oxide synthase activity is associated with coral bleaching. Biol Bull 208:3–6.  https://doi.org/10.2307/3593094 CrossRefPubMedGoogle Scholar
  119. Tu BP, Weissman JS (2004) Oxidative protein folding in eukaryotes: mechanisms and consequences. J Cell Biol 164:341–346.  https://doi.org/10.1083/jcb.200311055 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344.  https://doi.org/10.1113/jphysiol.2003.049478 CrossRefPubMedPubMedCentralGoogle Scholar
  121. Wang X, Liew YJ, Li Y, Zoccola D, Tambutte S, Aranda M (2017) Draft genomes of the corallimorpharians Amplexidiscus fenestrafer and Discosoma sp. Mol Ecol Resour.  https://doi.org/10.1111/1755-0998.12680
  122. Warner ME, Suggett DJ (2016) The photobiology of Symbiodinium spp.: linking physiological diversity to the implications of stress. In: Goffredo S, Dubinsky Z (eds) The cnidaria, past, present and future: the world of Medusa and her sisters. Springer, pp 489–509CrossRefGoogle Scholar
  123. Warner ME, Fitt WK, Schmidt GW (1996) The effects of elevated temperature on the photosynthetic efficiency of zooxanthellae in hospite from four different species of reef coral: a novel approach. Plant Cell Environ 19:291–299.  https://doi.org/10.1111/j.1365-3040.1996.tb00251.x CrossRefGoogle Scholar
  124. Warner M, Fitt W, Schmidt G (1999) Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc Natl Acad Sci U S A 96:8007–8012.  https://doi.org/10.1073/pnas.96.14.8007 CrossRefPubMedPubMedCentralGoogle Scholar
  125. Warner ME, Chilcoat GC, Mcfarland FK, Fitt WK (2002) Seasonal fluctuations in the photosynthetic capacity of photosystem II in symbiotic dinoflagellates in the Caribbean reef-building coral Montastraea. Mar Biol 141:31–38.  https://doi.org/10.1007/s00227-002-0807-8 CrossRefGoogle Scholar
  126. Weis VM (2008) Cellular mechanisms of cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol 211:3059–3066.  https://doi.org/10.1242/jeb.009597 CrossRefPubMedGoogle Scholar
  127. Weis VM, Davy SK, Hoegh-Guldberg O, Rodriguez-Lanetty M, Pringle JR (2008) Cell biology in model systems as the key to understanding corals. Trends Ecol Evol 23:369–376.  https://doi.org/10.1016/j.tree.2008.03.004 CrossRefPubMedGoogle Scholar
  128. Weston AJ, Dunlap WC, Beltran VH, Starcevic A, Hranueli D, Ward M et al (2015) Proteomics links the redox state to calcium signaling during bleaching of the scleractinian coral Acropora microphthalma on exposure to high solar irradiance and thermal stress. Mol Cell Proteomics 14:585–595.  https://doi.org/10.1074/mcp.M114.043125 CrossRefPubMedPubMedCentralGoogle Scholar
  129. Wiedenmann J, D’Angelo C, Smith EG, Hunt AN, Legiret F-E, Postle AD et al (2013) Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat Clim Chang 3:160–164.  https://doi.org/10.1038/nclimate1661 CrossRefGoogle Scholar
  130. Wolfowicz I, Baumgarten S, Voss PA, Hambleton EA, Voolstra CR, Hatta M et al (2016) Aiptasia sp. larvae as a model to reveal mechanisms of symbiont selection in cnidarians. Sci Rep 6:32366.  https://doi.org/10.1038/srep32366 CrossRefPubMedPubMedCentralGoogle Scholar
  131. Wooldridge SA (2009) A new conceptual model for the warm-water breakdown of the coral–algae endosymbiosis. Mar Freshw Res 60:483–496.  https://doi.org/10.1071/MF08251 CrossRefGoogle Scholar
  132. Yellowlees D, Rees TAV, Leggat W (2008) Metabolic interactions between algal symbionts and invertebrate hosts. Plant Cell Environ 31:679–694.  https://doi.org/10.1111/j.1365-3040.2008.01802.x CrossRefPubMedGoogle Scholar
  133. Ziegler M, Seneca FO, Yum LK, Palumbi SR, Voolstra CR (2017) Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat Commun 8.  https://doi.org/10.1038/ncomms14213 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Biological Sciences, Victoria University of WellingtonWellingtonNew Zealand

Personalised recommendations