Advertisement

How Does the Coral Microbiome Cause, Respond to, or Modulate the Bleaching Process?

  • K. M. Morrow
  • E. Muller
  • M. P. Lesser
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 233)

Abstract

Corals holobionts are formed by a dynamic multipartite symbiosis with intracellular photoautotrophs in the genus Symbiodinium and a consortium of other microbes that include bacteria, archaea, viruses, fungi, and protists. Coral bleaching, or the loss of Symbiodinium and their pigments, has caused significant global declines in reef-building corals, particularly in the past several decades as global sea surface temperatures continue to rise. The majority of the bleaching literature has primarily focused on Symbiodinium populations, with increasing interest in the role of the coral host in the bleaching process. However, much less attention has been paid to the coral-associated prokaryotes and viruses and their role in coral bleaching and the bleaching response. Microbes (e.g., Symbiodinium, prokaryotes, and viruses) exhibit extensive diversity and abilities to respond to and withstand environmental pressures and, as with other multipartite mutualisms, have the ability to recruit colonizers with distinct environmental tolerances that may provide the ability to adapt or acclimatize to environmental change. Here, we provide some context for the importance of the coral microbiome to holobiont function from the perspective of the bleaching response. We survey what is currently known about the relationship among Symbiodinium, temperature stress, and the associated prokaryotes and viruses. We also examine the impact of the coral bleaching response and environmental stressors conducive to bleaching (e.g., temperature, irradiance) on coral-associated microorganisms with particular emphasis on diazotrophic (nitrogen-fixing) bacteria. In conclusion, we summarize how a shifting and potentially dysbiotic microbiome may impact the coral host in the context of bleaching.

References

  1. Ainsworth TD, Kramasky-Winter E, Loya Y, Hoegh-Guldberg O, Fine M (2007) Coral disease diagnostics: What’s between a plague and a band? Appl Environ Microbiol 73:981–992.  https://doi.org/10.1128/AEM.02172-06 CrossRefPubMedGoogle Scholar
  2. Ainsworth TD, Fine M, Roff G, Hoegh-Guldberg O (2008) Bacteria are not the primary cause of bleaching in the Mediterranean coral Oculina patagonica. ISME J 2:67–73.  https://doi.org/10.1038/ismej.2007.88 CrossRefPubMedGoogle Scholar
  3. Ainsworth TD, Krause L, Bridge T, Torda G, Raina J-P, Zakrzewski M et al (2015) The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISME J 9:2261–2274.  https://doi.org/10.1038/ismej.2015.39 CrossRefGoogle Scholar
  4. Alker AP, Smith GW, Kim K (2001) Characterization of Aspergillus sydowii (Thom et Church), a fungal pathogen of Caribbean sea fan corals. Hydrobiologia 460:105–111.  https://doi.org/10.1023/A:1013145524136 CrossRefGoogle Scholar
  5. Alonso-Sáez L, Gasol JM, Lefort T, Hofer J, Sommaruga R (2006) Effect of natural sunlight on bacterial activity and differential sensitivity of natural bacterioplankton groups in Northwestern Mediterranean coastal waters. Appl Environ Microbiol 72:5806–5813.  https://doi.org/10.1128/AEM.00597-06 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Apprill A, Marlow HQ, Martindale MQ, Rappé MS (2009) The onset of microbial associations in the coral Pocillopora meandrina. ISME J 3:685–699.  https://doi.org/10.1038/ismej.2009.3 CrossRefPubMedGoogle Scholar
  7. Apprill A, Hughen K, Mincer T (2013) Major similarities in the bacterial communities associated with lesioned and healthy Fungiidae corals. Environ Microbiol 15:2063–2072.  https://doi.org/10.1111/1462-2920.12107 CrossRefPubMedGoogle Scholar
  8. Apprill A, Weber LG, Santoro AE (2016) Distinguishing between microbial habitats unravels ecological complexity in coral microbiomes. mSystems 1.  https://doi.org/10.1128/mSystems.00143-16
  9. Banaszak AT, Lesser MP (2009) Effects of solar ultraviolet radiation on coral reef organisms. Photochem Photobiol Sci 8:1276–1294.  https://doi.org/10.1039/b902763g CrossRefPubMedGoogle Scholar
  10. Banaszak AT, Barba Santos MG, LaJeunesse TC, Lesser MP (2006) The distribution of mycosporine-like amino acids (MAAs) and the phylogenetic identity of symbiotic dinoflagellates in cnidarian hosts from the Mexican Caribbean. J Exp Mar Biol Ecol 337:131–146.  https://doi.org/10.1016/j.jembe.2006.06.014 CrossRefGoogle Scholar
  11. Banin E, Israely T, Kushmaro A, Loya Y, Orr E, Rosenberg E (2000) Penetration of the coral-bleaching bacterium Vibrio Shiloi into Oculina patagonica. Appl Environ Microbiol 66:3031–3036.  https://doi.org/10.1128/AEM.66.7.3031-3036.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Banin E, Israely T, Fine M, Loya Y, Rosenberg E (2001) Role of endosymbiotic zooxanthellae and coral mucus in the adhesion of the coral-bleaching pathogen Vibrio shiloi to its host. FEMS Microbiol Lett 199:33–37.  https://doi.org/10.1016/S0378-1097(01)00162-8 CrossRefPubMedGoogle Scholar
  13. Banin E, Vassilakos D, Orr E, Martinez RJ, Rosenberg E (2003) Superoxide dismutase is a virulence factor produced by the coral bleaching pathogen Vibrio shiloi. Curr Microbiol 46:418–422.  https://doi.org/10.1007/s00284-002-3912-5 CrossRefPubMedGoogle Scholar
  14. Barr JJ, Auro R, Furlan M, Whiteson KL, Erb ML, Pogliano J et al (2013a) Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc Natl Acad Sci U S A 110:10771–10776.  https://doi.org/10.1073/pnas.1305923110 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Barr JJ, Youle M, Rohwer F (2013b) Innate and acquired bacteriophage-mediated immunity. Bacteriophage 3:e25857.  https://doi.org/10.4161/bact.25857 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Barshis DJ, Stillman JH, Gates RD, Toonen RJ, Smith LW, Birkeland C (2010) Protein expression and genetic structure of the coral Porites lobata in an environmentally extreme Samoan back reef: Does host genotype limit phenotypic plasticity? Mol Ecol 19:1705–1720.  https://doi.org/10.1111/j.1365-294X.2010.04574.x CrossRefPubMedGoogle Scholar
  17. Barton NH, Charlesworth B (1984) Genetic revolutions, founder effects, and speciation. Annu Rev Ecol Syst 15:133–164.  https://doi.org/10.1146/annurev.es.15.110184.001025 CrossRefGoogle Scholar
  18. Bayer T, Neave MJ, Alsheikh-Hussain A, Aranda M, Yum LK, Mincer T et al (2013) The microbiome of the red sea coral Stylophora pistillata is dominated by tissue-associated Endozoicomonas bacteria. Appl Environ Microbiol 79:4759–4762.  https://doi.org/10.1128/AEM.00695-13 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Bellantuono AJ, Hoegh-Guldberg O, Rodriguez-Lanetty M (2011) Resistance to thermal stress in corals without changes in symbiont composition. Proc R Soc B 279:1100–1107.  https://doi.org/10.1098/rspb.2011.1780 CrossRefPubMedGoogle Scholar
  20. Ben-Haim Y, Rosenberg E (2002) A novel Vibrio sp. pathogen of the coral Pocillopora damicornis. Mar Biol 141:47–55.  https://doi.org/10.1007/s00227-002-0797-6 CrossRefGoogle Scholar
  21. Ben-Haim Y, Zicherman-Keren M, Rosenberg E (2003) Temperature-regulated bleaching and lysis of the coral Pocillopora damicornis by the novel pathogen Vibrio coralliilyticus. Appl Environ Microbiol 69:4236–4242.  https://doi.org/10.1128/AEM.69.7.4236-4242.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Beraud E, Gevaert F, Rottier C, Ferrier-Pagès C (2013) The response of the scleractinian coral Turbinaria reniformis to thermal stress depends on the nitrogen status of the coral holobiont. J Exp Biol 216:2665–2674.  https://doi.org/10.1242/jeb.085183 CrossRefPubMedGoogle Scholar
  23. Bessell-Browne P, Negri AP, Fisher R, Clode PL, Duckworth A, Jones R (2017) Impacts of turbidity on corals: the relative importance of light limitation and suspended sediments. Mar Pollut Bull 117:161–170.  https://doi.org/10.1016/j.marpolbul.2017.01.050 CrossRefPubMedGoogle Scholar
  24. Bettarel Y, Thuy NT, Huy TQ, Hoang PK (2013) Observation of virus-like particles in thin sections of the bleaching scleractinian coral Acropora cytherea. J Mar Biol Assoc UK 93:909–912.  https://doi.org/10.1017/S0025315411002062 CrossRefGoogle Scholar
  25. Bolch CJS, Bejoy TA, Green DH (2017) Bacterial associates modify growth dynamics of the dinoflagellate Gymnodinium catenatum. Front Microbiol 8.  https://doi.org/10.3389/fmicb.2017.00670
  26. Böttjer D, Dore JE, Karl DM, Letelier RM, Mahaffey C, Wilson ST et al (2016) Temporal variability of nitrogen fixation and particulate nitrogen export at Station ALOHA. Limnol Oceanogr 62:200–216.  https://doi.org/10.1002/lno.10386 CrossRefGoogle Scholar
  27. Boulotte NM, Dalton SJ, Carroll AG, Harrison PL, Putnam HM, Peplow LM et al (2016) Exploring the Symbiodinium rare biosphere provides evidence for symbiont switching in reef-building corals. ISME J 10:2693–2701.  https://doi.org/10.1038/ismej.2016.54 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Bourne D, Iida Y, Uthicke S, Smith-Keune C (2008) Changes in coral-associated microbial communities during a bleaching event. ISME J 2112:350–363.  https://doi.org/10.1038/ismej.2007.112 CrossRefGoogle Scholar
  29. Bourne DG, Dennis PG, Uthicke S, Soo RM, Tyson GW, Webster N (2013) Coral reef invertebrate microbiomes correlate with the presence of photosymbionts. ISME J 7:1452–1458.  https://doi.org/10.1038/ismej.2012.172 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Bourne DG, Morrow KM, Webster NS (2016) Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Annu Rev Microbiol 70:317–340.  https://doi.org/10.1146/annurev-micro-102215-095440 CrossRefPubMedGoogle Scholar
  31. Brading P, Warner ME, Davey P, Smith DJ, Achterberg EP, Suggett DJ (2011) Differential effects of ocean acidification on growth and photosynthesis among phylotypes of Symbiodinium (Dinophyceae). Limnol Oceanogr 56:927–938.  https://doi.org/10.4319/lo.2011.56.3.0927 CrossRefGoogle Scholar
  32. Brandt ME, McManus JW (2009) Dynamics and impact of the coral disease white plague: insights from a simulation model. Dis Aquat Org 87:117–133.  https://doi.org/10.3354/dao02137 CrossRefPubMedGoogle Scholar
  33. Breitbart M, Felts B, Kelley S, Mahaffy JM, Nulton J, Salamon P et al (2004) Diversity and population structure of a near-shore marine-sediment viral community. Proc R Soc B 271:565–574.  https://doi.org/10.1098/rspb.2003.2628 CrossRefPubMedGoogle Scholar
  34. Brown BE, Bythell JC (2005) Perspectives on mucus secretion in reef corals. Mar Ecol Prog Ser 296:291–309.  https://doi.org/10.3354/meps296291 CrossRefGoogle Scholar
  35. Brown BE, Downs CA, Dunne RP, Gibb SW (2002a) Exploring the basis of thermotolerance in the reef coral Goniastrea aspera. Mar Ecol Prog Ser 242:119–129.  https://doi.org/10.3354/meps242119 CrossRefGoogle Scholar
  36. Brown BE, Dunne RP, Goodson MS, Douglas A (2002b) Experience shapes the susceptibility of a reef coral to bleaching. Coral Reefs 21:119–126.  https://doi.org/10.1007/s00338-002-0215-z CrossRefGoogle Scholar
  37. Bruno JF, Selig ER, Casey KS, Page CA, Willis BL, Harvell CD et al (2007) Thermal stress and coral cover as drivers of coral disease outbreaks. PLoS Biol 5:1220–1227.  https://doi.org/10.1371/journal.pbio.0050124 CrossRefGoogle Scholar
  38. Burge CA, Eakin CM, Friedman CS, Froelich B, Hershberger PK, Hofmann EE et al (2014) Climate change influences on marine infectious diseases: implications for management and society. Annu Rev Mar Sci 6:249–277.  https://doi.org/10.1146/annurev-marine-010213-135029 CrossRefGoogle Scholar
  39. Buxton L, Takahashi S, Hill R, Ralph PJ (2012) Variability in the primary site of photosynthetic damage in Symbiodinium sp. (Dinophyceae) exposed to thermal stress. J Phycol 48:117–126.  https://doi.org/10.1111/j.1529-8817.2011.01099.x CrossRefPubMedGoogle Scholar
  40. Bythell JC, Wild C (2011) Biology and ecology of coral mucus release. J Exp Mar Biol Ecol 408:88–93.  https://doi.org/10.1016/j.jembe.2011.07.028 CrossRefGoogle Scholar
  41. Cardini U, Bednarz VN, Naumann MS, van Hoytema N, Rix L, Foster RA et al (2015) Functional significance of dinitrogen fixation in sustaining coral productivity under oligotrophic conditions. Proc R Soc B 282.  https://doi.org/10.1098/rspb.2015.2257 CrossRefGoogle Scholar
  42. Cardini U, van Hoytema N, Bednarz VN, Rix L, Foster RA, Al-Rshaidat MMD et al (2016) Microbial dinitrogen fixation in coral holobionts exposed to thermal stress and bleaching. Environ Microbiol 18:2620–2633.  https://doi.org/10.1111/1462-2920.13385 CrossRefPubMedGoogle Scholar
  43. Chapman RS, Cooper KD, De Faro EC (1995) Solar ultraviolet radiation and the risk of infectious disease: summary of a workshop. Photochem Photobiol 61:223–247.  https://doi.org/10.1111/j.1751-1097.1995.tb03966.x CrossRefPubMedGoogle Scholar
  44. Chen W-M, Moulin L, Bontemps C, Vandamme P, Bèna G, Boivon-Masson C (2003) Legume symbiotic nitrogen fixation by beta-proteobacteria is widespread in nature. J Bacteriol 185:7266–7272.  https://doi.org/10.1128/JB.185.24.7266 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Columpsi P, Sacchi P, Zuccaro V, Cima S, Sarda C, Mariani M et al (2016) Beyond the gut bacterial microbiota: the gut virome. J Med Virol 88:1467–1472.  https://doi.org/10.1002/jmv.24508 CrossRefPubMedGoogle Scholar
  46. Correa AMS, Ainsworth TD, Rosales SM, Thurber AR, Butler CR, Vega Thurber RL (2016) Viral outbreak in corals associated with an in situ bleaching event: atypical herpes-like viruses and a new megavirus infecting Symbiodinium. Front Microbiol.  https://doi.org/10.3389/fmicb.2016.00127
  47. Cróquer A, Weil E (2009) Changes in Caribbean coral disease prevalence after the 2005 bleaching event. Dis Aquat Org 87:33–43.  https://doi.org/10.3354/dao02164 CrossRefPubMedGoogle Scholar
  48. Cunning R, Ritson-Williams R, Gates RD (2016) Patterns of bleaching and recovery of Montipora capitata in Kane’ohe Bay, Hawai’i, USA. Mar Ecol Prog Ser 551:131–139.  https://doi.org/10.3354/meps11733 CrossRefGoogle Scholar
  49. Damjanovic K, Blackall LL, Webster NS, van Oppen MJH (2017) The contribution of microbial biotechnology to mitigating coral reef degradation. Microb Biotechnol 10:1236–1243.  https://doi.org/10.1111/1751-7915.12769 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Deschaseaux ESM, Jones GB, Deseo MA, Shepherd KM, Kiene RP, Swan HB et al (2014) Effects of environmental factors on dimethylated sulfur compounds and their potential role in the antioxidant system of the coral holobiont. Limnol Oceanogr 59:758–768.  https://doi.org/10.4319/lo.2014.59.3.0758 CrossRefGoogle Scholar
  51. Ding JY, Shiu JH, Chen WM, Chiang YR, Tang SL (2016) Genomic insight into the host-endosymbiont relationship of Endozoicomonas montiporae CL-33T with its coral host. Front Microbiol 7.  https://doi.org/10.3389/fmicb.2016.00251
  52. Dubinsky Z, Jokiel PL (1994) Ratio of energy and nutrient fluxes regulates symbiosis between zooxanthellae and corals. Pac Sci 48:313–324Google Scholar
  53. Ducklow HW, Mitchell R (1979) Bacterial populations and adaptations in the mucus layers on living corals. Limnol Oceanogr 24:715–725.  https://doi.org/10.4319/lo.1979.24.4.0715 CrossRefGoogle Scholar
  54. Earle KA, Billings G, Sigal M, Lichtman JS, Hansson GC, Elias JE et al (2015) Quantitative imaging of gut microbiota spatial organization. Cell Host Microbe 18:478–488.  https://doi.org/10.1016/j.chom.2015.09.002 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Falkowski PG, Dubinsky Z, Muscatine L, McCloskey L (1993) Population control in symbiotic corals. Bioscience 43:606–611.  https://doi.org/10.2307/1312147 CrossRefGoogle Scholar
  56. Ferrier-Pagès C, Rottier C, Beraud E, Levy O (2010) Experimental assessment of the feeding effort of three scleractinian coral species during a thermal stress: effect on the rates of photosynthesis. J Exp Mar Biol Ecol 390:118–124.  https://doi.org/10.1016/j.jembe.2010.05.007 CrossRefGoogle Scholar
  57. Fine M, Banin E, Israely T, Rosenberg E, Loya Y (2002) Ultraviolet radiation prevents bleaching in the mediterranean coral Oculina patagonica. Mar Ecol Prog Ser 226:249–254.  https://doi.org/10.3354/meps226249 CrossRefGoogle Scholar
  58. Fitt WK, Brown BE, Warner ME, Dunne RP (2001) Coral bleaching: Interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20:51–65.  https://doi.org/10.1007/s003380100146 CrossRefGoogle Scholar
  59. Fitt WK, Gates RD, Hoegh-Guldberg O, Bythell JC, Jatkar AA, Grottoli A et al (2009) Response of two species of Indo-Pacific corals, Porites cylindrica and Stylophora pistillata, to short-term thermal stress: the host does matter in determining the tolerance of corals to bleaching. J Exp Mar Biol Ecol 373:102–110.  https://doi.org/10.1016/j.jembe.2009.03.011 CrossRefGoogle Scholar
  60. Frydenborg BR, Krediet CJ, Teplitski M, Ritchie KB (2014) Temperature-dependent inhibition of opportunistic Vibrio pathogens by native coral commensal bacteria. Microb Ecol 67:392–401.  https://doi.org/10.1007/s00248-013-0334-9 CrossRefPubMedGoogle Scholar
  61. Fukami T, Nakajima M (2011) Community assembly: alternative stable states or alternative transient states? Ecol Lett 14:973–984.  https://doi.org/10.1111/j.1461-0248.2011.01663.x CrossRefPubMedPubMedCentralGoogle Scholar
  62. Gajigan AP, Diaz LA, Conaco C (2017) Resilience of the prokaryotic microbial community of Acropora digitifera to elevated temperature. MicrobiologyOpen 6.  https://doi.org/10.1002/mbo3.478
  63. Garren M (2016) Algae feed a shift on coral reefs. Nat Microbiol 1.  https://doi.org/10.1038/nmicrobiol.2016.61
  64. Garren M, Son K, Raina J-B, Menolascina F, Shapiro OH, Tout J et al (2014) A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals. ISME J 8:999–1007.  https://doi.org/10.1038/ismej.2013.210 CrossRefPubMedGoogle Scholar
  65. Garren M, Son K, Tout J, Seymour JR, Stocker R (2016) Temperature-induced behavioral switches in a bacterial coral pathogen. ISME J 10:1363–1372.  https://doi.org/10.1038/ismej.2015.216 CrossRefPubMedGoogle Scholar
  66. Gil-Agudelo DL, Ban-Haim Y, Rosenberg E, Smith GW (2017) Differential response of coral symbiotic dinoflagellates to bacterial toxins that produce bleaching in stony corals. J South Carolina Acad Sci 15(1):6Google Scholar
  67. Gilbert JA, Hill R, Doblin MA, Ralph PJ (2012) Microbial consortia increase thermal tolerance of corals. Mar Biol 159:1763–1771.  https://doi.org/10.1007/s00227-012-1967-9 CrossRefGoogle Scholar
  68. Glasl B, Herndl GJ, Frade PR (2016) The microbiome of coral surface mucus has a key role in mediating holobiont health and survival upon disturbance. ISME J 10:2280–2292.  https://doi.org/10.1038/ismej.2016.9 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Godinot C, Houlbrèque F, Grover R, Ferrier-Pagès C (2011) Coral uptake of inorganic phosphorus and nitrogen negatively affected by simultaneous changes in temperature and pH. PLoS One 6.  https://doi.org/10.1371/journal.pone.0025024
  70. Grégoire V, Schmacka F, Coffroth MA, Karsten U (2017) Photophysiological and thermal tolerance of various genotypes of the coral endosymbiont Symbiodinium sp. (Dinophyceae). J Appl Phycol:1–13.  https://doi.org/10.1007/s10811-017-1127-1
  71. Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186–1189.  https://doi.org/10.1038/nature04565 CrossRefGoogle Scholar
  72. Guzman HM, Guevara C (1998) Massive mortality of zooxanthelate reef organisms during the 1995 bleaching Cayos Cochinos, Honduras. Rev Biol Trop 46:165–173Google Scholar
  73. Haapkylä J, Unsworth RKF, Flavell M, Bourne DG, Schaffelke B, Willis BL (2011) Seasonal rainfall and runoff promote coral disease on an inshore reef. PLoS One 6.  https://doi.org/10.1371/journal.pone.0016893
  74. Hadaidi G, Röthig T, Yum LK, Ziegler M, Arif C, Roder C et al (2017) Stable mucus-associated bacterial communities in bleached and healthy corals of Porites lobata from the Arabian Seas. Sci Rep 7.  https://doi.org/10.1038/srep45362 CrossRefGoogle Scholar
  75. Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS et al (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296:2158–2162.  https://doi.org/10.1126/science.1063699 CrossRefPubMedGoogle Scholar
  76. Hennige SJ, Suggett DJ, Warner ME, McDougall KE, Smith DJ (2009) Photobiology of Symbiodinium revisited: bio-physical and bio-optical signatures. Coral Reefs 28:179–195.  https://doi.org/10.1007/s00338-008-0444-x CrossRefGoogle Scholar
  77. Hernandez-Agreda A, Leggat W, Bongaerts P, Ainsworth TD (2016) The microbial signature provides insight into the mechanistic basis of coral success across reef habitats. MBio 7.  https://doi.org/10.1128/mBio.00560-16
  78. Hildemann WH, Raison RL, Cheung G, Hull CJ, Akaka L, Okamoto J (1977) Immunological specificity and memory in a scleractinian coral. Nature 270:219–223.  https://doi.org/10.1038/270219a0 CrossRefPubMedGoogle Scholar
  79. Hodgson G (1990) Tetracycline reduces sedimentation damage to corals. Mar Biol 104:493–496.  https://doi.org/10.1007/BF01314355 CrossRefGoogle Scholar
  80. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E et al (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742.  https://doi.org/10.1126/science.1152509 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Hong MJ, Yu YT, Chen CA, Chiang PW, Tang SL (2009) Influence of species specificity and other factors on bacteria associated with the coral Stylophora pistillata in Taiwan. Appl Environ Microbiol 75:7797–7806.  https://doi.org/10.1128/AEM.01418-09 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Hoogenboom MO, Campbell DA, Beraud E, DeZeeuw K, Ferrier-Pagès C (2012) Effects of light, food availability and temperature stress on the function of photosystem II and photosystem I of coral symbionts. PLoS One 7.  https://doi.org/10.1371/journal.pone.0030167 CrossRefGoogle Scholar
  83. Howard EC, Sun S, Reisch CR, del Valle DA, Bürgmann H, Liene RP et al (2011) Changes in dimethylsulfoniopropionate demethylase gene assemblages in response to an induced phytoplankton bloom. Appl Environ Microbiol 77:524–531.  https://doi.org/10.1128/AEM.01457-10 CrossRefPubMedGoogle Scholar
  84. Hu L, Peng X, Zhou J, Zhang Y, Xu S, Mao X et al (2015) Characterizing the interactions among a dinoflagellate, flagellate and bacteria in the phycosphere of Alexandrium tamarense (Dinophyta). Front Mar Sci 2.  https://doi.org/10.3389/fmars.2015.00100
  85. Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C et al (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933.  https://doi.org/10.1126/science.1085046 CrossRefGoogle Scholar
  86. Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez- Romero JG, Anderson KD, Baird AH et al (2017) Global warming and recurrent mass bleaching of corals. Nature 543:373–377.  https://doi.org/10.1038/nature21707 CrossRefGoogle Scholar
  87. Hussa EA, Goodrich-Blair H (2013) It takes a village: ecological and fitness impacts of multipartite mutualism. Annu Rev Microbiol 67:161–178.  https://doi.org/10.1146/annurev-micro-092412-155723 CrossRefPubMedGoogle Scholar
  88. Johansson MEV, Larsson JMH, Hansson GC (2011) The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci U S A 108:4659–4665.  https://doi.org/10.1073/pnas.1006451107 CrossRefPubMedGoogle Scholar
  89. Jokiel PL, Bigger CH (1994) Aspects of histocompatibility and regeneration in the solitary reef coral Fungia scutaria. Biol Bull 186:72–80.  https://doi.org/10.2307/1542037 CrossRefPubMedGoogle Scholar
  90. Kimes NE, Grim CJ, Johnson WR, Hasan NA, Tall BD, Kothary MH et al (2012) Temperature regulation of virulence factors in the pathogen Vibrio coralliilyticus. ISME J 6:835–846.  https://doi.org/10.1038/ismej.2011.154 CrossRefPubMedGoogle Scholar
  91. Klimenko AI, Matushkin YG, Kolchanov NA, Lashin SA (2016) Bacteriophages affect evolution of bacterial communities in spatially distributed habitats: a simulation study. BMC Microbiol 16.  https://doi.org/10.1186/s12866-015-0620-4
  92. Koren O, Rosenberg E (2008) Bacteria associated with the bleached and cave coral Oculina patagonica. Microb Ecol 55:523–529.  https://doi.org/10.1007/s00248-007-9297-z CrossRefPubMedGoogle Scholar
  93. Krediet CJ, Ritchie KB, Cohen M, Lipp EK, Sutherland KP, Teplitski M (2009) Utilization of mucus from the coral Acropora palmata by the pathogen Serratia marcescens and by environmental and coral commensal bacteria. Appl Environ Microbiol 75:3851–3858.  https://doi.org/10.1128/AEM.00457-09 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Krueger T, Fisher PL, Becker S, Pontasch S, Dove S, Hoegh-Guldberg O et al (2015) Transcriptomic characterization of the enzymatic antioxidants FeSOD, MnSOD, APX and KatG in the dinoflagellate genus Symbiodinium. BMC Evol Biol 15:48.  https://doi.org/10.1186/s12862-015-0326-0 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Kushmaro A, Rosenberg E, Fine M, Loya Y (1997) Bleaching of the coral Oculina patagonica by Vibrio AK-1. Mar Ecol Prog Ser 147:159–165.  https://doi.org/10.3354/meps147159 CrossRefGoogle Scholar
  96. Kushmaro A, Rosenberg E, Fine M, Ben Haim Y, Loya Y (1998) Effect of temperature on bleaching of the coral Oculina patagonica by Vibrio AK-1. Mar Ecol Prog Ser 171:131–137.  https://doi.org/10.3354/meps147159 CrossRefGoogle Scholar
  97. Lawrence SA, Davy JE, Wilson WH, Hoegh-Guldberg O, Davy SK (2015) Porites white patch syndrome: associated viruses and disease physiology. Coral Reefs 34:249–257.  https://doi.org/10.1007/s00338-014-1218-2 CrossRefGoogle Scholar
  98. Lawrence SA, Floge SA, Davy JE, Davy SK, Wilson WH (2017) Exploratory analysis of Symbiodinium transcriptomes reveals potential latent infection by large dsDNA viruses. Environ Microbiol 19.  https://doi.org/10.1111/1462-2920.13782 CrossRefGoogle Scholar
  99. Lee STM, Davy SK, Tang SL, Fan TY, Kench PS (2015) Successive shifts in the microbial community of the surface mucus layer and tissues of the coral Acropora muricata under thermal stress. FEMS Microbiol Ecol 91.  https://doi.org/10.1093/femsec/fiv142
  100. Lee STM, Davy SK, Tang SL, Kench PS (2016) Mucus sugar content shapes the bacterial community structure in thermally stressed Acropora muricata. Front Microbiol 7.  https://doi.org/10.3389/fmicb.2016.00371
  101. Lema KA, Willis BL, Bourne DG (2014) Amplicon pyrosequencing reveals spatial and temporal consistency in diazotroph assemblages of the Acropora millepora microbiome. Environ Microbiol 16:3345–3359.  https://doi.org/10.1111/1462-2920.12366 CrossRefPubMedGoogle Scholar
  102. Leruste A, Bouvier T, Bettarel Y (2012) Enumerating viruses in coral mucus. Appl Environ Microbiol 78:6377–6379.  https://doi.org/10.1128/aem.01141-12 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Lesser MP (2004) Experimental biology of coral reef ecosystems. J Exp Mar Biol Ecol 300:217–252.  https://doi.org/10.1016/j.jembe.2003.12.027 CrossRefGoogle Scholar
  104. Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology early history of oxygen. Annu Rev Physiol 68:253–278.  https://doi.org/10.1146/annurev.physiol.68.040104.110001 CrossRefPubMedGoogle Scholar
  105. Lesser MP (2011) Coral bleaching: causes and mechanisms. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Dordrecht, pp 405–419CrossRefGoogle Scholar
  106. Lesser MP, Jarett JK (2014) Culture-dependent and culture-independent analyses reveal no prokaryotic community shifts or recovery of Serratia marcescens in Acropora palmata with white pox disease. FEMS Microbiol Ecol 88:457–467.  https://doi.org/10.1111/1574-6941.12311 CrossRefPubMedGoogle Scholar
  107. Lesser MP, Van Woesik R (2015) Modelling climate-change effects on coral disease. Reef Encounter 30:31–35Google Scholar
  108. Lesser MP, Mazel C, Gorbunov M, Falkowski PG (2004) Discovery of symbiotic nitrogen-fixing cyanobacteria in corals. Science 305:997–1000.  https://doi.org/10.1126/science.1099128 CrossRefPubMedGoogle Scholar
  109. Lesser MP, Falcón LI, Rodríguez-Román A, Enriquez S, Hoegh-Guldberg O, Iglesias-Prieto R (2007a) Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar Ecol Prog Ser 346:143–152.  https://doi.org/10.3354/meps07008 CrossRefGoogle Scholar
  110. Lesser MP, Bythell JC, Gates RD, Johnstone RW, Hoegh-Guldberg O (2007b) Are infectious diseases really killing corals? Alternative interpretations of the experimental and ecological data. J Exp Mar Biol Ecol 346:36–44.  https://doi.org/10.1016/j.jembe.2007.02.015 CrossRefGoogle Scholar
  111. Lesser MP, Morrow KM, Pankey SM, Noonan SHC (2017) Diazotroph diversity and nitrogen fixation in the coral Stylophora pistillata from the Great Barrier Reef. ISME J.  https://doi.org/10.1038/s41396-017-008-6
  112. Levin RA, Voolstra CR, Weynberg KD, van Oppen MJH (2017) Evidence for a role of viruses in thermal sensitivity of coral photosymbionts. ISME J 11:808–812.  https://doi.org/10.1038/ismej.2016.154 CrossRefPubMedGoogle Scholar
  113. Lipp EK, Griffin DW (2004) Analysis of coral mucus as an improved medium for detection of enteric microbes and for determining patterns of sewage contamination in reef environments. EcoHealth 1:317–323.  https://doi.org/10.1007/s10393-004-0132-4 CrossRefGoogle Scholar
  114. Littman RA, Willis BL, Pfeffer C, Bourne DG (2009) Diversities of coral-associated bacteria differ with location, but not species, for three acroporid corals on the Great Barrier Reef. FEMS Microbiol Ecol 68:152–163.  https://doi.org/10.1111/j.1574-6941.2009.00666.x CrossRefPubMedGoogle Scholar
  115. Littman RA, Bourne DG, Willis BL (2010) Responses of coral-associated bacterial communities to heat stress differ with Symbiodinium type on the same coral host. Mol Ecol 19:1978–1990.  https://doi.org/10.1111/j.1365-294X.2010.04620.x CrossRefPubMedGoogle Scholar
  116. Littman R, Willis BL, Bourne DG (2011) Metagenomic analysis of the coral holobiont during a natural bleaching event on the Great Barrier Reef. Environ Microbiol Rep 3:651–660.  https://doi.org/10.1111/j.1758-2229.2010.00234.x CrossRefPubMedGoogle Scholar
  117. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knoght R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489:220–230.  https://doi.org/10.1038/nature11550 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Mao-Jones J, Ritchie KB, Jones LE, Ellner SP (2010) How microbial community composition regulates coral disease development. PLoS Biol 8.  https://doi.org/10.1371/journal.pbio.1000345
  119. Marhaver KL, Edwards RA, Rohwer F (2008) Viral communities associated with healthy and bleaching corals. Environ Microbiol 10:2277–2286.  https://doi.org/10.1111/j.1462-2920.2008.01652.x CrossRefPubMedPubMedCentralGoogle Scholar
  120. Maynard J, van Hooidonk R, Eakin CM, Puotinen M, Garren M, Williams G et al (2015) Projections of climate conditions that increase coral disease susceptibility and pathogen abundance and virulence. Nat Clim Chang 5:688–694.  https://doi.org/10.1038/nclimate2625 CrossRefGoogle Scholar
  121. McClanahan TR, Weil E, Maina J (2009) Strong relationship between coral bleaching and growth anomalies in massive Porites. Glob Chang Biol 15:1804–1816.  https://doi.org/10.1111/j.1365-2486.2008.01799.x CrossRefGoogle Scholar
  122. McDevitt-Irwin JM, Baum JK, Garren M, Vega Thurber RL (2017) Responses of coral-associated bacterial communities to local and global stressors. Front Mar Sci.  https://doi.org/10.3389/fmars.2017.00262
  123. McGinty ES, Pieczonka J, Mydlarz LD (2012) Variations in reactive oxygen release and antioxidant activity in multiple Symbiodinium types in response to elevated temperature. Microb Ecol 64:1000–1007.  https://doi.org/10.1007/s00248-012-0085-z CrossRefPubMedGoogle Scholar
  124. Meyer JL, Paul VJ, Teplitski M (2014) Community shifts in the surface microbiomes of the coral Porites astreoides with unusual lesions. PLoS One 9.  https://doi.org/10.1371/journal.pone.0100316
  125. Middlebrook R, Hoegh-Guldberg O, Leggat W (2008) The effect of thermal history on the susceptibility of reef-building corals to thermal stress. J Exp Biol 211:1050–1056.  https://doi.org/10.1242/jeb.013284 CrossRefPubMedGoogle Scholar
  126. Miller J, Muller E, Rogers C, Waara R, Atkinson A, Whelan KRT et al (2009) Coral disease following massive bleaching in 2005 causes 60% decline in coral cover on reefs in the US Virgin Islands. Coral Reefs 28:925–937.  https://doi.org/10.1007/s00338-009-0531-7 CrossRefGoogle Scholar
  127. Miller MW, Lohr KE, Cameron CM, Williams DE, Peters EC (2014) Disease dynamics and potential mitigation among restored and wild staghorn coral, Acropora cervicornis. PeerJ 2.  https://doi.org/10.7717/peerj.541
  128. Mills E, Shechtman K, Loya Y, Rosenberg E (2013) Bacteria appear to play important roles in both causing and preventing the bleaching of the coral Oculina patagonica. Mar Ecol Prog Ser 489:155–162.  https://doi.org/10.3354/meps10391 CrossRefGoogle Scholar
  129. Mohamed NM, Colman AS, Tal Y, Hill RT (2008) Diversity and expression of nitrogen fixation genes in bacterial symbionts of marine sponges. Environ Microbiol 10:2910–2921.  https://doi.org/10.1111/j.1462-2920.2008.01704.x CrossRefPubMedGoogle Scholar
  130. Morrow KM, Moss AG, Chadwick NE, Liles MR (2012) Bacterial associates of two caribbean coral species reveal species-specific distribution and geographic variability. Appl Environ Microbiol 78:6438–6449.  https://doi.org/10.1128/AEM.01162-12 CrossRefPubMedPubMedCentralGoogle Scholar
  131. Morrow KM, Bourne DG, Humphrey C, Botté E, Laffy P, Zaneveld J et al (2015) Natural volcanic CO2 seeps reveal future trajectories for host-microbial associations in corals and sponges. ISME J 9:894–908.  https://doi.org/10.1038/ismej.2014.188 CrossRefPubMedGoogle Scholar
  132. Morrow KM, Fiore CL, Lesser MP (2016) Environmental drivers of microbial community shifts in the giant barrel sponge, Xestospongia muta, over a shallow to mesophotic depth gradient. Environ Microbiol 18:2025–2038.  https://doi.org/10.1111/1462-2920.13226 CrossRefPubMedGoogle Scholar
  133. Morrow KM, Bromhall K, Motti CA, Munn CB, Bourne DG (2017) Allelochemicals produced by brown macroalgae of the Lobophora genus are active against coral larvae and associated bacteria, supporting pathogenic shifts to Vibrio dominance. Appl Environ Microbiol 83.  https://doi.org/10.1128/AEM.02391-16
  134. Mouchka ME, Hewson I, Harvell CD (2010) Coral-associated bacterial assemblages: current knowledge and the potential for climate-driven impacts. Integr Comp Biol 50:662–674.  https://doi.org/10.1093/icb/icq061 CrossRefPubMedGoogle Scholar
  135. Mueller NT, Bakacs E, Combellick J, Grigoryan Z, Dominiguez-Bello MG (2015) The infant microbiome development: mom matters. Trends Mol Med 21:109–117.  https://doi.org/10.1016/j.molmed.2014.12.002 CrossRefPubMedGoogle Scholar
  136. Muller EM, van Woesik R (2012) Caribbean coral diseases: primary transmission or secondary infection? Glob Chang Biol 18:3529–3535.  https://doi.org/10.1111/gcb.12019 CrossRefGoogle Scholar
  137. Muller EM, van Woesik R (2014) Genetic susceptibility, colony size, and water temperature drive white-pox disease on the coral Acropora palmata. PLoS One 9.  https://doi.org/10.1371/journal.pone.0110759
  138. Muller EM, Rogers CS, Spitzack AS, van Woesik R (2008) Bleaching increases likelihood of disease on Acropora palmata (Lamarck) in Hawksnest Bay, St John, US Virgin Islands. Coral Reefs 27:191–195.  https://doi.org/10.1007/s00338-007-0310-2 CrossRefGoogle Scholar
  139. Mydlarz LD, Couch CS, Weil E, Smith G, Harvell CD (2009) Immune defenses of healthy, bleached and diseased Montastraea faveolata during a natural bleaching event. Dis Aquat Org 87:67–78.  https://doi.org/10.3354/dao02088 CrossRefPubMedGoogle Scholar
  140. Neave MJ, Rachmawati R, Xun L, Mitchell CT, Bourne DG, Apprill A et al (2016a) Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales. ISME J 11:186–200.  https://doi.org/10.1038/ismej.2016.95 CrossRefPubMedPubMedCentralGoogle Scholar
  141. Neave MJ, Apprill A, Ferrier-Pagès C, Voolstra CR (2016b) Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas. Appl Microbiol Biotechnol 100:8315–8324.  https://doi.org/10.1007/s00253-016-7777-0 CrossRefPubMedPubMedCentralGoogle Scholar
  142. Negri AP, Webster NS, Hill RT, Heyward AJ (2001) Metamorphosis of broadcast spawning corals in response to bacteria isolated from crustose algae. Mar Ecol Prog Ser 223:121–131.  https://doi.org/10.3354/meps223121 CrossRefGoogle Scholar
  143. Nguyen-Kim H, Bouvier T, Bouvier C, Doan-Nhu H, Nguyen-Ngoc L, Rochelle-Newall E et al (2014) High occurrence of viruses in the mucus layer of scleractinian corals. Environ Microbiol Rep 6:675–682.  https://doi.org/10.1111/1758-2229.12185 CrossRefPubMedGoogle Scholar
  144. Nguyen-Kim H, Bouvier T, Bouvier C, Bui VN, Le-Lan H, Bettarel Y (2015) Viral and bacterial epibionts in thermally-stressed corals. J Mar Sci Eng 3:1272–1286.  https://doi.org/10.3390/jmse3041272 CrossRefGoogle Scholar
  145. Niggl W, Glas M, Laforsch C, Mayr C, Wild C (2009) First evidence of coral bleaching stimulating organic matter release by reef corals. In: Proceedings of the 11th international coral reef symposium, Ft. Lauderdale. Session 19, pp 905–910Google Scholar
  146. Norval M (2006) The effect of ultraviolet radiation on human viral infections. Photochem Photobiol 82:1495–1504.  https://doi.org/10.1562/2006-07-28-IR-987 CrossRefPubMedGoogle Scholar
  147. Oakley CA, Durand E, Wilkinson SP, Peng L, Weis VM, Grossman AR et al (2017) Thermal shock induces host proteostasis disruption and endoplasmic reticulum stress in the model symbiotic cnidarian Aiptasia. J Proteome Res 16:2121–2134.  https://doi.org/10.1021/acs.jproteome.6b00797 CrossRefPubMedGoogle Scholar
  148. Olson ND, Lesser MP (2013) Diazotrophic diversity in the Caribbean coral, Montastraea cavernosa. Arch Microbiol 195:853–859.  https://doi.org/10.1007/s00203-013-0937-z CrossRefPubMedGoogle Scholar
  149. Palumbi SR, Barshis DJ, Traylor-Knowles N, Bay RA (2014) Mechanisms of reef coral resistance to future climate change. Science 344:895–898.  https://doi.org/10.1126/science.1251336 CrossRefPubMedGoogle Scholar
  150. Pantos O, Bongaerts P, Dennis PG, Tyson GW, Hoegh-Guldberg O (2015) Habitat-specific environmental conditions primarily control the microbiomes of the coral Seriatopora hystrix. ISME J 9:1916–1927.  https://doi.org/10.1038/ismej.2015.3 CrossRefPubMedPubMedCentralGoogle Scholar
  151. Parkinson JE, Baums IB (2014) The extended phenotypes of marine symbioses: ecological and evolutionary consequences of intraspecific genetic diversity in coral-algal associations. Front Microbiol.  https://doi.org/10.3389/fmicb.2014.00445
  152. Patra VK, Byrne SN, Wolf P (2016) The skin microbiome: Is it affected by UV-induced immune suppression? Front Microbiol 7.  https://doi.org/10.3389/fmicb.2016.01235
  153. Patten NL, Harrison PL, Mitchell JG (2008) Prevalence of virus-like particles within a staghorn scleractinian coral (Acropora muricata) from the Great Barrier Reef. Coral Reefs 27:569–580.  https://doi.org/10.1007/s00338-008-0356-9 CrossRefGoogle Scholar
  154. Peixoto RS, Rosado PM, Leite DC de A, Rosado AS, Bourne DG (2017) Beneficial microorganisms for corals (BMC): proposed mechanisms for coral health and resilience. Front Microbiol 8:1–16.  https://doi.org/10.3389/fmicb.2017.00341 CrossRefGoogle Scholar
  155. Pernice M, Meibom A, Van Den Heuvel A, Kopp C, Domart-Coulon I, Hoegh-Guldberg O et al (2012) A single-cell view of ammonium assimilation in coral–dinoflagellate symbiosis. ISME J 6:1314–1324.  https://doi.org/10.1038/ismej.2011.196 CrossRefPubMedPubMedCentralGoogle Scholar
  156. Peters EC, Pilson MEQ (1985) A comparative study of the effects of sedimentation on symbiotic and asymbiotic colonies of the coral Astrangia danae Milne Edwards and Haime 1849. J Exp Mar Biol Ecol 92:215–230.  https://doi.org/10.1016/0022-0981(85)90096-6 CrossRefGoogle Scholar
  157. Piggot AM, Fouke BW, Sivaguru M, Sanford RA, Gaskins HR (2009) Change in zooxanthellae and mucocyte tissue density as an adaptive response to environmental stress by the coral, Montastraea annularis. Mar Biol 156:2379–2389.  https://doi.org/10.1007/s00227-009-1267-1 CrossRefGoogle Scholar
  158. Pinzón JH, Kamel B, Burge CA, Harvell CD, Medina M, Weil E et al (2015) Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral. Roy Soc Open Sci 2.  https://doi.org/10.1098/rsos.140214
  159. Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Voolstra CR, Wild C (2017) Sugar enrichment provides evidence for a role of nitrogen fixation in coral bleaching. Glob Chang Biol 23:3838–3848.  https://doi.org/10.1111/gcb.13695 CrossRefPubMedPubMedCentralGoogle Scholar
  160. Pollock FJ, M. Wood-Charlson E, van Oppen MJH, Bourne DG, Willis BL, Weynberg KD (2014) Abundance and morphology of virus-like particles associated with the coral Acropora hyacinthus differ between healthy and white syndrome-infected states. Mar Ecol Prog Ser 510:39–43. doi: https://doi.org/10.3354/meps10927 CrossRefGoogle Scholar
  161. Pollock FJ, Lamb JB, Field SN, Heron SF, Schaffelke B, Shedrawi G et al (2016) Correction: sediment and turbidity associated with offshore dredging increase coral disease prevalence on nearby reefs. PLoS One 11.  https://doi.org/10.1371/journal.pone.0165541
  162. Pratte ZA, Richardson LL (2014) Impacts of temperature increase and acidification on thickness of the surface mucopolysaccharide layer of the Caribbean coral Diploria spp. Coral Reefs 33:487–496.  https://doi.org/10.1007/s00338-013-1115-0 CrossRefGoogle Scholar
  163. Putnam HM, Barott KL, Ainsworth TD, Gates RD (2017) The vulnerability and resilience of reef-building corals. Curr Biol 27:R528–R540.  https://doi.org/10.1016/j.cub.2017.04.047 CrossRefPubMedGoogle Scholar
  164. Rädecker N, Pogoreutz C, Voolstra CR, Wiedenmann J, Wild C (2015) Nitrogen cycling in corals: The key to understanding holobiont functioning? Trends Microbiol 23:490–497.  https://doi.org/10.1016/j.tim.2015.03.008 CrossRefPubMedGoogle Scholar
  165. Raina JB, Tapiolas D, Willis BL, Bourne DG (2009) Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. Appl Environ Microbiol 75:3492–3501.  https://doi.org/10.1128/AEM.02567-08 CrossRefPubMedPubMedCentralGoogle Scholar
  166. Raina JB, Dinsdale EA, Willis BL, Bourne DG (2010) Do the organic sulfur compounds DMSP and DMS drive coral microbial associations? Trends Microbiol 18:101–108.  https://doi.org/10.1016/j.tim.2009.12.002 CrossRefPubMedGoogle Scholar
  167. Raina J-B, Tapiolas DM, Forêt S, Lutz A, Abrego D, Ceh J et al (2013) DMSP biosynthesis by an animal and its role in coral thermal stress response. Nature 502:677–680.  https://doi.org/10.1038/nature12677 CrossRefPubMedGoogle Scholar
  168. Ramanan R, Kim BH, Cho DH, Oh HM, Kim HS (2016) Algae-bacteria interactions: evolution, ecology and emerging applications. Biotechnol Adv 34:14–29.  https://doi.org/10.1016/j.biotechadv.2015.12.003 CrossRefPubMedGoogle Scholar
  169. Randall CJ, van Woesik R (2015) Contemporary white-band disease in Caribbean corals driven by climate change. Nat Clim Chang 5:375–379.  https://doi.org/10.1038/nclimate2530 CrossRefGoogle Scholar
  170. Randall CJ, Jordan-Garza AG, Muller EM, van Woesik R (2014) Relationships between the history of thermal stress and the relative risk of diseases of Caribbean corals. Ecology 95:1981–1994.  https://doi.org/10.1890/13-0774.1 CrossRefPubMedGoogle Scholar
  171. Reed KC, Muller EM, van Woesik R (2010) Coral immunology and resistance to disease. Dis Aquat Org 90:85–92.  https://doi.org/10.3354/dao02213 CrossRefPubMedGoogle Scholar
  172. Reshef L, Koren O, Loya Y, Zilber-Rosenberg I, Rosenberg E (2006) The coral probiotic hypothesis. Environ Microbiol 8:2068–2073.  https://doi.org/10.1111/j.1462-2920.2006.01148.x CrossRefPubMedGoogle Scholar
  173. Reynolds JM, Bruns BU, Fitt WK, Schmidt GW (2008) Enhanced photoprotection pathways in symbiotic dinoflagellates of shallow-water corals and other cnidarians. Proc Natl Acad Sci U S A 105:13674–13678.  https://doi.org/10.1073/pnas.0805187105 CrossRefPubMedPubMedCentralGoogle Scholar
  174. Riegl B, Branch GM (1995) Effects of sediment on the energy budgets of four scleractinian (Bourne 1900) and five alcyonacean (Lamouroux 1816) corals. J Exp Mar Biol Ecol 186:259–275.  https://doi.org/10.1016/0022-0981(94)00164-9 CrossRefGoogle Scholar
  175. Ritchie KB (2006) Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar Ecol Prog Ser 322:1–14.  https://doi.org/10.3354/meps322001 CrossRefGoogle Scholar
  176. Ritchie KB (2012) Bacterial symbionts of corals and Symbiodinium. In: Rosenberg E, Gophina U (eds) Beneficial microorganisms in multicellular life forms. Springer, Berlin, pp 139–150.  https://doi.org/10.1007/978-3-642-21680-0 CrossRefGoogle Scholar
  177. Ritchie KB, Smith GW (2004) Microbial communities of coral surface mucopolysaccharide layers. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, Berlin, pp 259–264CrossRefGoogle Scholar
  178. Ritchie KB, Dennis J, McGrath T, Smith GW (1994) Bacteria associated with bleached and nonbleached areas of Montastrea annularis. In: Proceedings of the 5th symposium on the natural history of the Bahamas, pp 75–80Google Scholar
  179. Roberty S, Bailleul B, Berne N, Franck F, Cardol P (2014) PSI Mehler reaction is the main alternative photosynthetic electron pathway in Symbiodinium sp., symbiotic dinoflagellates of cnidarians. New Phytol 204:81–91.  https://doi.org/10.1111/nph.12903 CrossRefPubMedGoogle Scholar
  180. Robison JD, Warner ME (2006) Differential impacts of photoacclimation and thermal stress on the photobiology of four different phylotypes of Symbiodinium (Pyrrhophyta). J Phycol 42:568–579.  https://doi.org/10.1111/j.1529-8817.2006.00232.x CrossRefGoogle Scholar
  181. Rodriguez-Lanetty M, Granados-Cifuentes C, Barberan A, Bellantuono AJ, Bastidas C (2013) Ecological inferences from a deep screening of the complex bacterial consortia associated with the coral, Porites astreoides. Mol Ecol 22:4349–4362.  https://doi.org/10.1111/mec.12392 CrossRefPubMedGoogle Scholar
  182. Rohwer F, Youle M (2010) Coral Reefs in the Microbial Seas. Plaid Press, Granada HillsGoogle Scholar
  183. Rohwer F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243:1–10.  https://doi.org/10.3354/meps243001 CrossRefGoogle Scholar
  184. Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5:355–362.  https://doi.org/10.1038/nrmicro1635 CrossRefPubMedGoogle Scholar
  185. Rosenberg E, Kushmaro A, Kramarsky-Winter E, Banin E, Loya Y (2009) The role of microorganisms in coral bleaching. ISME J 3:139–146.  https://doi.org/10.1038/ismej.2008.104 CrossRefPubMedGoogle Scholar
  186. Rua CPJ, Trindade-Silva AE, Appolinario LR, Venas TM, Garcia GD, Carvalho LS et al (2014) Diversity and antimicrobial potential of culturable heterotrophic bacteria associated with the endemic marine sponge Arenosclera brasiliensis. PeerJ 2.  https://doi.org/10.7717/peerj.419
  187. Rypien KL, Ward JR, Azam F (2010) Antagonistic interactions among coral-associated bacteria. Environ Microbiol 12:28–39.  https://doi.org/10.1111/j.1462-2920.2009.02027.x CrossRefPubMedGoogle Scholar
  188. Salerno JL, Reineman DR, Gates RD, Rappé MS (2011) The effect of a sublethal temperature elevation on the structure of bacterial communities associated with the coral Porites compressa. J Mar Biol 2011:1–9.  https://doi.org/10.1155/2011/969173 CrossRefGoogle Scholar
  189. Salter-Cid L, Bigger CH (1991) Alloimmunity in the gorgonian coral Swiftia exserta. Biol Bull 181:127–134.  https://doi.org/10.2307/1542495 CrossRefPubMedGoogle Scholar
  190. Santos HF, Carmo FL, Duarte G, Dini-Andreote F, Castro CB, Rosado AS et al (2014) Climate change affects key nitrogen-fixing bacterial populations on coral reefs. ISME J 8:2272–2279.  https://doi.org/10.1038/ismej.2014.70 CrossRefPubMedPubMedCentralGoogle Scholar
  191. Scheffers BR, De Meester L, Bridge TCL, Hoffmann AA, Pandolfi JM, Corlett RT et al (2016) The broad footprint of climate change from genes to biomes to people. Science 354.  https://doi.org/10.1126/science.aaf7671
  192. Schrag SJ, Mittler JE (1996) Host-parasite coexistence: the role of spatial refuges in stabilizing bacteria-phage interactions. Am Nat 148:348–376.  https://doi.org/10.1086/285929 CrossRefGoogle Scholar
  193. Sellstedt A, Richau KH (2013) Aspects of nitrogen-fixing actinobacteria, in particular free-living and symbiotic Frankia. FEMS Microbiol Lett 342:179–186.  https://doi.org/10.1111/1574-6968.12116 CrossRefPubMedGoogle Scholar
  194. Shantz AA, Lemoine NP, Burkepile DE (2016) Nutrient loading alters the performance of key nutrient exchange mutualisms. Ecol Lett 19:20–28.  https://doi.org/10.1111/ele.12538 CrossRefPubMedGoogle Scholar
  195. Sharifah EN, Eguchi M (2011) The phytoplankton Nannochloropsis oculata enhances the ability of Roseobacter clade bacteria to inhibit the growth of fish pathogen Vibrio anguillarum. PLoS One 6.  https://doi.org/10.1371/journal.pone.0026756
  196. Sharp KH, Distel D, Paul VJ (2012) Diversity and dynamics of bacterial communities in early life stages of the Caribbean coral Porites astreoides. ISME J 6:790–801.  https://doi.org/10.1038/ismej.2011.144 CrossRefPubMedGoogle Scholar
  197. Sharp KH, Sneed JM, Ritchie KB, Mcdaniel LD, Paul VJ (2015) Induction of larval settlement in the reef coral Porites astreoides by a cultivated marine Roseobacter strain. Biol Bull 228:98–107.  https://doi.org/10.1086/BBLv228n2p98 CrossRefPubMedGoogle Scholar
  198. Shick JM, Lesser MP, Jokiel PL (1996) Effects of ultraviolet radiation on corals and other coral reef organisms. Glob Chang Biol 2:527–545.  https://doi.org/10.1111/j.1365-2486.1996.tb00065.x CrossRefGoogle Scholar
  199. Shnit-Orland M, Kushmaro A (2009) Coral mucus-associated bacteria: a possible first line of defense. FEMS Microbiol Ecol 67:371–380.  https://doi.org/10.1111/j.1574-6941.2008.00644.x CrossRefPubMedGoogle Scholar
  200. Siboni N, Ben-Dov E, Sivan A, Kushmaro A (2012) Geographic specific coral-associated ammonia-oxidizing Archaea in the Northern Gulf of Eilat (Red Sea). Microb Ecol 64:18–24.  https://doi.org/10.1007/s00248-011-0006-6 CrossRefPubMedGoogle Scholar
  201. Silveira CB, Rohwer FL (2016) Piggyback-the-Winner in host-associated microbial communities. npj Biofilms Microbiomes 2.  https://doi.org/10.1038/npjbiofilms.2016.10
  202. Smillie CS, Smith MB, Friedman J, Cordero OX, David LA, Alm EJ (2011) Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480:241–244.  https://doi.org/10.1038/nature10571 CrossRefPubMedGoogle Scholar
  203. Sneed JM, Sharp KH, Ritchie KB, Paul VJ (2014) The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals. Proc R Soc B 281.  https://doi.org/10.1098/rspb.2013.3086
  204. Soffer N, Zaneveld J, Vega Thurber R (2015) Phage-bacteria network analysis and its implication for the understanding of coral disease. Environ Microbiol 17:1203–1218.  https://doi.org/10.1111/1462-2920.12553 CrossRefPubMedGoogle Scholar
  205. Sokolow S (2009) Effects of a changing climate on the dynamics of coral infectious disease: a review of the evidence. Dis Aquat Org 87:5–18.  https://doi.org/10.3354/dao02099 CrossRefPubMedGoogle Scholar
  206. Suescún-Bolívar LP, Traverse GMI, Thomé PE (2016) Glycerol outflow in Symbiodinium under osmotic and nitrogen stress. Mar Biol 163.  https://doi.org/10.1007/s00227-016-2899-6
  207. Suggett DJ, Warner ME, Smith DJ, Davey P, Henninge S, Baker NR (2008) Photosynthesis and production of hydrogen peroxide by Symbiodinium (Pyrrhophyta) phylotypes with different thermal tolerances. J Phycol 44:948–956.  https://doi.org/10.1111/j.1529-8817.2008.00537.x CrossRefPubMedGoogle Scholar
  208. Sule P, Belas R (2013) A novel inducer of Roseobacter motility is also a disruptor of algal symbiosis. J Bacteriol 195:637–646.  https://doi.org/10.1128/JB.01777-12 CrossRefPubMedPubMedCentralGoogle Scholar
  209. Sunagawa S, DeSantis TZ, Piceno YM, Brodie EL, DeSalvo MK, Voolstra CR et al (2009) Bacterial diversity and white plague disease-associated community changes in the Caribbean coral Montastraea faveolata. ISME J 3:512–521.  https://doi.org/10.1038/ismej.2008.131 CrossRefPubMedGoogle Scholar
  210. Sunda W, Kieber DJ, Kiene RP, Huntsman S (2002) An antioxidant function for DMSP and DMS in marine algae. Nature 418:317–320.  https://doi.org/10.1038/nature00851 CrossRefPubMedGoogle Scholar
  211. Sweet MJ, Bulling MT (2017) On the importance of the microbiome and pathobiome in coral health and disease. Front Mar Sci.  https://doi.org/10.3389/fmars.2017.00009
  212. Sweet MJ, Croquer A, Bythell JC (2011) Bacterial assemblages differ between compartments within the coral holobiont. Coral Reefs 30:39–52.  https://doi.org/10.1007/s00338-010-0695-1 CrossRefGoogle Scholar
  213. Tang X, He LY, Tao XQ, Dang Z, Guo CL, Lu GN et al (2010) Construction of an artificial microalgal-bacterial consortium that efficiently degrades crude oil. J Hazard Mater 181:1158–1162.  https://doi.org/10.1016/j.jhazmat.2010.05.033 CrossRefPubMedGoogle Scholar
  214. Thompson JR, Rivera HE, Closek CJ, Medina M (2015) Microbes in the coral holobiont: partners through evolution, development, and ecological interactions. Front Cell Infect Microbiol 4.  https://doi.org/10.3389/fcimb.2014.00176
  215. Thornhill DJ, Lewis AM, Wham DC, LaJeunesse TC (2014) Host-specialist lineages dominate the adaptive radiation of reef coral endosymbionts. Evolution 68:352–367.  https://doi.org/10.1111/evo.12270 CrossRefPubMedGoogle Scholar
  216. Todd JD, Curson ARJ, Nikolaidou-Katsaraidou N, Brealey CA, Watmough NJ, Chan Y et al (2010) Molecular dissection of bacterial acrylate catabolism – unexpected links with dimethylsulfoniopropionate catabolism and dimethyl sulfide production. Environ Microbiol 12:327–343.  https://doi.org/10.1111/j.1462-2920.2009.02071.x CrossRefPubMedGoogle Scholar
  217. Torda G, Donelson JM, Aranda M, Barshis DJ, Bay L, Berumen ML et al (2017) Rapid adaptive responses to climate change in corals. Nat Clim Chang 7:627–636.  https://doi.org/10.1038/nclimate3374 CrossRefGoogle Scholar
  218. Tout J, Siboni N, Messer LF, Garren M, Stocker R, Webster NS et al (2015) Increased seawater temperature increases the abundance and alters the structure of natural Vibrio populations associated with the coral Pocillopora damicornis. Front Microbiol.  https://doi.org/10.3389/fmicb.2015.00432
  219. Tracy AM, Koren O, Douglas N, Weil E, Harvell CD (2015) Persistent shifts in Caribbean coral microbiota are linked to the 2010 warm thermal anomaly. Environ Microbiol Rep 7:471–479.  https://doi.org/10.1111/1758-2229.12274 CrossRefPubMedGoogle Scholar
  220. Tsoy OV, Ravcheev DA, Čuklina J, Gelfand MS (2016) Nitrogen fixation and molecular oxygen: comparative genomic reconstruction of transcription regulation in Alphaproteobacteria. Front Microbiol 7.  https://doi.org/10.3389/fmicb.2016.01343
  221. van Oppen MJH, Oliver JK, Putnam HM, Gates RD (2015) Building coral reef resilience through assisted evolution. Proc Natl Acad Sci U S A 112:2307–2313.  https://doi.org/10.1073/pnas.1422301112 CrossRefPubMedPubMedCentralGoogle Scholar
  222. Vega Thurber RL, Correa AMS (2011) Viruses of reef-building scleractinian corals. J Exp Mar Biol Ecol 408:102–113.  https://doi.org/10.1016/j.jembe.2011.07.030 CrossRefGoogle Scholar
  223. Vega Thurber RL, Barott KL, Hall D, Liu H, Rodriguez-Mueller B, Desnues C et al (2008) Metagenomic analysis indicates that stressors induce production of herpes-like viruses in the coral Porites compressa. Proc Natl Acad Sci U S A 105:18413–18418.  https://doi.org/10.1073/pnas.0808985105 CrossRefPubMedPubMedCentralGoogle Scholar
  224. Vega Thurber RL, Willner-Hall D, Rodriguez-Mueller B, Desnues C, Edwards RA, Angly F et al (2009) Metagenomic analysis of stressed coral holobionts. Environ Microbiol 11:2148–2163.  https://doi.org/10.1111/j.1462-2920.2009.01935.x CrossRefPubMedGoogle Scholar
  225. Vega Thurber RL, Burkepile DE, Fuchs C, Shantz AA, McMinds R, Zaneveld JR (2014) Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching. Glob Chang Biol 20:544–554.  https://doi.org/10.1111/gcb.12450 CrossRefPubMedGoogle Scholar
  226. Ward JR, Kim K, Harvell CD (2007) Temperature affects coral disease resistance and pathogen growth. Mar Ecol Prog Ser 329:115–121.  https://doi.org/10.3354/meps329115 CrossRefGoogle Scholar
  227. Warner ME, Suggett DJ (2016) The photobiology of symbiodinium spp.: linking physiological diversity to the implications of stress and resilience. In: Goffredo S, Dubinsky Z (eds) The cnidaria, past, present and future. Springer, Cham, pp 489–509CrossRefGoogle Scholar
  228. Weber M, de Beer D, Lott C, Polerecky L, Kohls K, Abed RMM et al (2012) Mechanisms of damage to corals exposed to sedimentation. Proc Natl Acad Sci U S A 109:E1558–E1567.  https://doi.org/10.1073/pnas.1100715109 CrossRefPubMedPubMedCentralGoogle Scholar
  229. Webster NS, Reusch TBH (2017) Microbial contributions to the persistence of coral reefs. ISME J 11:2167–2174.  https://doi.org/10.1038/ismej.2017.66 CrossRefPubMedPubMedCentralGoogle Scholar
  230. Webster NS, Smith LD, Heyward AJ, Watts JE, Webb RI, Blackall LL et al (2004) Metamorphosis of a scleractinian coral in response to microbial biofilms metamorphosis of a scleractinian coral in response to microbial biofilms. Appl Environ Microbiol 70:1213–1221.  https://doi.org/10.1128/AEM.70.2.1213 CrossRefPubMedPubMedCentralGoogle Scholar
  231. Webster NS, Negri AP, Botté ES, Laffy PW, Flores F, Noonan S et al (2016) Host-associated coral reef microbes respond to the cumulative pressures of ocean warming and ocean acidification. Sci Rep 6.  https://doi.org/10.1038/srep19324
  232. Wegley L, Edwards R, Rodriguez-Brito B, Liu H, Rohwer F (2007) Metagenomic analysis of the microbial community associated with the coral Porites astreoides. Environ Microbiol 9:2707–2719.  https://doi.org/10.1111/j.1462-2920.2007.01383.x CrossRefPubMedGoogle Scholar
  233. Welsh RM, Rosales SM, Zaneveld JR, Payet JP, McMinds R, Hubbs SL et al (2017) Alien vs. predator: bacterial challenge alters coral microbiomes unless controlled by Halobacteriovorax predators. PeerJ 5.  https://doi.org/10.7717/peerj.3315 CrossRefGoogle Scholar
  234. Weynberg KD, Voolstra CR, Neave MJ, Buerger P, van Oppen MJH (2015) From cholera to corals: viruses as drivers of virulence in a major coral bacterial pathogen. Sci Rep 5.  https://doi.org/10.1038/srep17889
  235. Weynberg KD, Neave M, Clode PL, Voolstra CR, Brownlee C, Laffy P et al (2017) Prevalent and persistent viral infection in cultures of the coral algal endosymbiont Symbiodinium. Coral Reefs 36:773–784.  https://doi.org/10.1007/s00338-017-1568-7 CrossRefGoogle Scholar
  236. Williams AD, Brown BE, Putchim L, Sweet MJ (2015) Age-related shifts in bacterial diversity in a reef coral. PLoS One 10.  https://doi.org/10.1371/journal.pone.0144902
  237. Wilson WH (2011) Coral viruses. In: Hurst CJ (ed) Studies in viral ecology: animal host systems. Wiley-Blackwell, pp 143–151CrossRefGoogle Scholar
  238. Wilson WH, Francis I, Ryan K, Davy SK (2001) Temperature induction of viruses in symbiotic dinoflagellates. Aquat Microb Ecol 25:99–102.  https://doi.org/10.3354/ame025099 CrossRefGoogle Scholar
  239. Wobeser GA (2006) Essentials of disease in wild animals. Blackwell, Ames, IAGoogle Scholar
  240. Wood-Charlson EM, Weynberg KD, Suttle CA, Roux S, van Oppen MJH (2015) Metagenomic characterization of viral communities in corals: mining biological signal from methodological noise. Environ Microbiol 17:3440–3449.  https://doi.org/10.1111/1462-2920.12803 CrossRefPubMedGoogle Scholar
  241. Wooldridge SA (2013) Breakdown of the coral-algae symbiosis: towards formalising a linkage between warm-water bleaching thresholds and the growth rate of the intracellular zooxanthellae. Biogeosciences 10:1647–1658.  https://doi.org/10.5194/bg-10-1647-2013 CrossRefGoogle Scholar
  242. Wooldridge S, Done TJ (2009) Improved water quality can ameliorate effects of climate change on corals. Ecol Appl 19:1492–1499.  https://doi.org/10.1890/08-0963.1 CrossRefPubMedGoogle Scholar
  243. Yee SH, Santavy DL, Kern JW, Hession S (2011) Consideration of species community composition in statistical analyses of coral disease risk. Mar Ecol Prog Ser 431:83–96.  https://doi.org/10.3354/meps09135 CrossRefGoogle Scholar
  244. Zaneveld JR, Burkepile DE, Shantz AA, Pritchard CE, McMinds R, Payet JP et al (2016) Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat Commun 7.  https://doi.org/10.1038/ncomms11833 CrossRefGoogle Scholar
  245. Zaneveld JR, McMinds R, Vega Thurber R (2017) Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat Microbiol 2.  https://doi.org/10.1038/nmicrobiol.2017.121
  246. Zhang Y, Ling J, Yang Q, Wen C, Yan Q, Sun H et al (2015) The functional gene composition and metabolic potential of coral-associated microbial communities. Sci Rep 5.  https://doi.org/10.1038/srep16191
  247. Ziegler M, Seneca FO, Yum LK, Palumbi SR, Voolstra CR (2017) Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat Commun 8.  https://doi.org/10.1038/ncomms14213 CrossRefGoogle Scholar
  248. Zvuloni A, Artzy-Randrup Y, Katriel G, Loya Y, Stone L (2015) Modeling the impact of white-plague coral disease in climate change scenarios. PLoS Comput Biol 11.  https://doi.org/10.1371/journal.pcbi.1004151

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • K. M. Morrow
    • 1
    • 2
  • E. Muller
    • 3
  • M. P. Lesser
    • 1
  1. 1.Department of Molecular, Cellular and Biomedical SciencesUniversity of New HampshireDurhamUSA
  2. 2.Department of Environmental Science and PolicyGeorge Mason UniversityFairfaxUSA
  3. 3.Mote Marine LaboratorySaratosaUSA

Personalised recommendations