Advertisement

Ocean Acidification and Coral Bleaching

  • R. Albright
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 233)

Abstract

Simultaneous with the increases in global sea surface temperature, increasing atmospheric carbon dioxide (CO2) is driving changes in the chemistry of the oceans—a process known as ocean acidification. Over the last two decades, reef-related ocean acidification research has focused primarily on the consequences of elevated CO2 on calcification. The impacts of ocean acidification on other critical processes such as coral-algal symbioses and bleaching thresholds are less well known. In this chapter, I review the available literature on the impacts of ocean acidification on coral bleaching. I begin by providing context for ocean acidification and its impacts on coral reefs. I focus primarily on primary literature investigating the effects of CO2 on photophysiology, coral–algal symbioses, and bleaching responses while shedding light on information needs and unresolved issues. I also briefly touch on environmental factors other than temperature and ocean acidification that have the potential to influence coral bleaching responses (e.g., nutrients).

References

  1. Albright R (2011) Reviewing the effects of ocean acidification on sexual reproduction and early life history stages of reef-building corals. J Mar Biol 2011:1–14.  https://doi.org/10.1155/2011/473615 CrossRefGoogle Scholar
  2. Albright R, Langdon C (2011) Ocean acidification impacts multiple early life history processes of the Caribbean coral Porites astreoides. Global Change Biol 17:2478–2487.  https://doi.org/10.1111/j.1365-2486.2011.02404.x CrossRefGoogle Scholar
  3. Albright R, Mason B (2013) Projected near-future levels of temperature and pCO2 reduce coral fertilization success. PLoS One 8.  https://doi.org/10.1371/journal.pone.0056468
  4. Albright R, Mason B, Langdon C (2008) Effect of aragonite saturation state on settlement and post-settlement growth of Porites astreoides larvae. Coral Reefs 27:485–490.  https://doi.org/10.1007/s00338-008-0392-5 CrossRefGoogle Scholar
  5. Albright R, Mason B, Miller M, Langdon C (2010) Ocean acidification compromises recruitment success of the threatened Caribbean coral Acropora palmata. Proc Natl Acad Sci USA 107:20400–20404.  https://doi.org/10.1073/pnas.1007273107 CrossRefPubMedGoogle Scholar
  6. Albright R, Langdon C, Anthony KRN (2013) Dynamics of seawater carbonate chemistry, production, and calcification of a coral reef flat, central Great Barrier Reef. Biogeosciences 10:6747–6758.  https://doi.org/10.5194/bg-10-6747-2013 CrossRefGoogle Scholar
  7. Albright R, Benthuysen J, Cantin N, Caldeira K, Anthony K (2015) Coral reef metabolism and carbon chemistry dynamics of a coral reef flat. Geophys Res Lett 42.  https://doi.org/10.1002/2015GL063488 CrossRefGoogle Scholar
  8. Albright R, Caldeira L, Hosfelt J, Kwiatkowski L, Maclaren JK, Mason BM et al (2016) Reversal of ocean acidification enhances net coral reef calcification. Nature 531:362–365.  https://doi.org/10.1038/nature17155 CrossRefPubMedGoogle Scholar
  9. Al-Horani FA, Al-Moghrabi SM, de Beer D (2003) Microsensor study of photosynthesis and calcification in the scleractinian coral, Galaxea fascicularis: active internal carbon cycle. J Exp Mar Biol Ecol 288:1–15.  https://doi.org/10.1016/s0022-0981(02)00578-6 CrossRefGoogle Scholar
  10. Altieri AH, Harrison SB, Seemann J, Collin R, Diaz RJ, Knowlton N (2017) Tropical dead zones and mass mortalities on coral reefs. Proc Natl Acad Sci USA 114:3660–3665.  https://doi.org/10.1073/pnas.1621517114 CrossRefPubMedGoogle Scholar
  11. Andersson AJ, Gledhill D (2013) Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification. Annu Rev Mar Sci 5:321–348.  https://doi.org/10.1146/annurev-marine-121211-172241 CrossRefGoogle Scholar
  12. Andersson AJ, Kline DI, Edmunds PJ, Archer SD, Bednaršek N, Carpenter RC et al (2015) Understanding ocean acidification impacts on organismal to ecological scales. Oceanography 25:16–27.  https://doi.org/10.5670/oceanog.2015.27 CrossRefGoogle Scholar
  13. Anlauf H, D’Croz L, O’Dea A (2011) A corrosive concoction: the combined effects of ocean warming and acidification on the early growth of a stony coral are multiplicative. J Exp Mar Biol Ecol 397:13–20.  https://doi.org/10.1016/j.jembe.2010.11.009 CrossRefGoogle Scholar
  14. Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci USA 105:17442–17446.  https://doi.org/10.1073/pnas.0804478105 CrossRefPubMedGoogle Scholar
  15. Anthony KRN, Kleypas A, JA GJ-P (2011a) Coral reefs modify their seawater carbon chemistry - implications for impacts of ocean acidification. Global Change Biol 17:3655–3666.  https://doi.org/10.1111/j.1365-2486.2011.02510.x CrossRefGoogle Scholar
  16. Anthony KRN, Maynard JA, Diaz-Pulido G, Mumby PJ, Marshall PA, Cao L et al (2011b) Ocean acidification and warming will lower coral reef resilience. Global Change Biol 17:1798–1808.  https://doi.org/10.1111/j.1365-2486.2010.02364.x CrossRefGoogle Scholar
  17. Anthony KRN, Diaz-Pulido G, Verlinden N, Tilbrook B, Andersson AJ (2013) Benthic buffers and boosters of ocean acidification on coral reefs. Biogeosciences 10:4897–4909.  https://doi.org/10.5194/bg-10-4897-2013 CrossRefGoogle Scholar
  18. Archer D, Eby M, Brovkin V, Ridgwell A, Cao L, Mikolajewicz U et al (2009) Atmospheric lifetime of fossil fuel carbon dioxide. Annu Rev Earth Planet Sci 37:117–134.  https://doi.org/10.1146/annurev.earth.031208.100206 CrossRefGoogle Scholar
  19. Baghdasarian G, Osberg A, Mihora D, Putnam HM, Gates RD, Edmunds PJ (2017) Effects of temperature and pCO2 on population regulation of Symbiodinium spp. in a tropical reef coral. Biol Bull 232:123–139.  https://doi.org/10.1086/692718 CrossRefPubMedGoogle Scholar
  20. Barkley HC, Cohen AL, McCorkle DC, Golbuu Y (2017) Mechanisms and thresholds for pH tolerance in Palau corals. J Exp Mar Biol Ecol 489:7–14.  https://doi.org/10.1016/j.jembe.2017.01.003 CrossRefGoogle Scholar
  21. Bates NR, Amat A, Andersson AJ (2010) Feedbacks and responses of coral calcification on the Bermuda reef system to seasonal changes in biological processes and ocean acidification. Biogeosciences 7:2509–2530.  https://doi.org/10.5194/bg-7-2509-2010 CrossRefGoogle Scholar
  22. Bates NR, Astor YM, Church MJ, Currie K, Dore JE, González-Dávila M et al (2014) A time-series view of changing ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification. Oceanography 27:126–141.  https://doi.org/10.5670/oceanog.2014.16 CrossRefGoogle Scholar
  23. Bedwell-Ivers HE, Koch MS, Peach KE, Joles L, Dutra E, Manfrino C (2016) The role of in hospite zooxanthellae photophysiology and reef chemistry on elevated pCO2 effects in two branching Caribbean corals: Acropora cervicornis and Porites divaricata. ICES J Mar Sci 74:1103–1112.  https://doi.org/10.1093/icesjms/fsw026 CrossRefGoogle Scholar
  24. Beer S, Koch E (1996) Photosynthesis of marine macroalgae and seagrasses in globally changing CO2 environments. Mar Ecol Prog Ser 141:199–204.  https://doi.org/10.3354/meps141199 CrossRefGoogle Scholar
  25. Bille R, Kelly R, Biastoch A, Harrould-Kolieb E, Herr D, Joos F et al (2013) Taking action against ocean acidification: a review of management and policy options. Environ Manage 52:761–779.  https://doi.org/10.1007/s00267-013-0132-7 CrossRefPubMedGoogle Scholar
  26. Brading P, Warner ME, Davey P, Smith DJ, Achterberg EP, Suggett DJ (2011) Differential effects of ocean acidification on growth and photosynthesis among phylotypes of Symbiodinium (Dinophyceae). Limnol Oceanogr 56:927–938.  https://doi.org/10.4319/lo.2011.56.3.0927 CrossRefGoogle Scholar
  27. Broecker WS, Takahashi T, Simpson HJ, Peng TH (1979) Fate of fossil fuel carbon dioxide and the global carbon budget. Science 206:409–418.  https://doi.org/10.1126/science.206.4417.409 CrossRefPubMedGoogle Scholar
  28. Brown BE (1997) Coral bleaching: causes and consequences. Coral Reefs 16:S129–S138.  https://doi.org/10.1007/s003380050249 CrossRefGoogle Scholar
  29. Buddemeier RW, Baker AC, Fautin DG, Jacobs JR (2004) The adaptive hypothesis of bleaching. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, Berlin, pp 427–444CrossRefGoogle Scholar
  30. Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365.  https://doi.org/10.1038/425365a CrossRefPubMedGoogle Scholar
  31. Canadell JG, Le Quéré C, Raupach MR, Field CB, Buitenhuis ET, Ciais P et al (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci USA 104:18866–18870.  https://doi.org/10.1073/pnas.0702737104 CrossRefPubMedGoogle Scholar
  32. Cao L, Caldeira K (2008) Atmospheric CO2 stabilization and ocean acidification. Geophys Res Lett 35.  https://doi.org/10.1029/2008gl035072
  33. Chan NC, Connolly SR (2013) Sensitivity of coral calcification to ocean acidification: a meta-analysis. Global Change Biol 19:282–290.  https://doi.org/10.1111/gcb.12011 CrossRefGoogle Scholar
  34. Chua CM, Leggat W, Moya A, Baird AH (2013) Temperature affects the early life history stages of corals more than near future ocean acidification. Mar Ecol Prog Ser 475:85–92.  https://doi.org/10.3354/meps10077 CrossRefGoogle Scholar
  35. Clarkson MO, Kasemann SA, Wood RA, Lenton TM, Daines SJ, Richoz S et al (2015) Ocean acidification and the Permo-Triassic mass extinction. Science 348:229–232.  https://doi.org/10.1126/science.aaa0193 CrossRefPubMedGoogle Scholar
  36. Comeau S, Carpenter RC, Edmunds PJ (2013) Coral reef calcifiers buffer their response to ocean acidification using both bicarbonate and carbonate. Proc R Soc B 280.  https://doi.org/10.1098/rspb.2012.2374
  37. Comeau S, Carpenter RC, Edmunds PJ (2016) Effects of pCO2 on photosynthesis and respiration of tropical scleractinian corals and calcified algae. ICES J Mar Sci 74:1092–1102.  https://doi.org/10.1093/icesjms/fsv267 CrossRefGoogle Scholar
  38. Comeau S, Edmunds PJ, Lantz CA, Carpenter RC (2017) Daily variation in net primary production and net calcification in coral reef communities exposed to elevated pCO2. Biogeosciences 14:3549–3560.  https://doi.org/10.5194/bg-14-3549-2017 CrossRefGoogle Scholar
  39. Cooley SR, Kite-Powell HL, Doney SC (2009) Ocean acidification’s potential to alter global marine ecosystem services. Oceanography 22:172–181.  https://doi.org/10.5670/oceanog.2009.106 CrossRefGoogle Scholar
  40. Crawley A, Kline DI, Dunn S, Anthony KRN, Dove S (2010) The effect of ocean acidification on symbiont photorespiration and productivity in Acropora formosa. Global Change Biol 16:851–863.  https://doi.org/10.1111/j.1365-2486.2009.01943.x CrossRefGoogle Scholar
  41. Cunning R, Baker AC (2012) Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat Clim Change 3:259–262.  https://doi.org/10.1038/nclimate1711 CrossRefGoogle Scholar
  42. Cunning R, Silverstein RN, Baker AC (2015) Investigating the causes and consequences of symbiont shuffling in a multi-partner reef coral symbiosis under environmental change. Proc R Soc B 282.  https://doi.org/10.1098/rspb.2014.1725
  43. Cyronak T, Schulz KG, Santos IR, Eyre BD (2014) Enhanced acidification of global coral reefs driven by regional biogeochemical feedbacks. Geophys Res Lett 41:5538–5545.  https://doi.org/10.1002/2014GL060849 CrossRefGoogle Scholar
  44. de Putron SJ, McCorkle DC, Cohen AL, Dillon AB (2010) The impact of seawater saturation state and bicarbonate ion concentration on calcification by new recruits of two Atlantic corals. Coral Reefs 30:321–328.  https://doi.org/10.1007/s00338-010-0697-z CrossRefGoogle Scholar
  45. DeSalvo MK, Voolstra CR, Sunagawa S, Schwarz JA, Stillman JH, Coffroth MA et al (2008) Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata. Mol Ecol 17:3952–3971.  https://doi.org/10.1111/j.1365-294X.2008.03879.x CrossRefPubMedGoogle Scholar
  46. Diaz-Pulido G, Gouezo M, Tilbrook B, Dove S, Anthony KRN (2011) High CO2 enhances the competitive strength of seaweeds over corals. Ecol Lett 14:156–162.  https://doi.org/10.1111/j.1461-0248.2010.01565.x CrossRefPubMedPubMedCentralGoogle Scholar
  47. Doney SC (2010) The growing human footprint on coastal and open-ocean biogeochemistry. Science 328:1512–1516.  https://doi.org/10.1126/science.1185198 CrossRefPubMedGoogle Scholar
  48. Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Annu Rev Mar Sci 1:169–192.  https://doi.org/10.1146/annurev.marine.010908.163834 CrossRefGoogle Scholar
  49. Doropoulos C, Diaz-Pulido G (2013) High CO2 reduces the settlement of a spawning coral on three common species of crustose coralline algae. Mar Ecol Prog Ser 475:93–99.  https://doi.org/10.3354/meps10096 CrossRefGoogle Scholar
  50. Doropoulos C, Ward S, Diaz-Pulido G, Hoegh-Guldberg O, Mumby PJ (2012) Ocean acidification reduces coral recruitment by disrupting intimate larval-algal settlement interactions. Ecol Lett 15:338–346.  https://doi.org/10.1111/j.1461-0248.2012.01743.x CrossRefPubMedGoogle Scholar
  51. Dove SG, Kline DI, Pantos O, Angly FE, Tyson GW, Hoegh-Guldberg O (2013) Future reef decalcification under a business-as-usual CO2 emission scenario. Proc Natl Acad Sci 110:15342–15347.  https://doi.org/10.1073/pnas.1302701110 CrossRefPubMedGoogle Scholar
  52. Duarte CM, Hendriks IE, Moore TS, Olsen YS, Steckbauer A, Ramajo L et al (2013) Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH. Estuaries Coast 36:221–236.  https://doi.org/10.1007/s12237-013-9594-3 CrossRefGoogle Scholar
  53. Edmunds PJ (2012) Effect of pCO2 on the growth, respiration, and photophysiology of massive Porites spp. in Moorea, French Polynesia. Mar Biol 159:2149–2160.  https://doi.org/10.1007/s00227-012-2001-y CrossRefGoogle Scholar
  54. Edmunds PJ, Comeau S, Lantz C, Andersson A, Biggs C, Cohen A et al (2016) Integrating the effects of ocean acidification across functional scales on tropical coral reefs. BioScience 66:350–362.  https://doi.org/10.1093/bi-osci/biw023 CrossRefGoogle Scholar
  55. Fabricius KE (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar Pollut Bull 50:125–146.  https://doi.org/10.1016/j.marpolbul.2004.11.028 CrossRefPubMedGoogle Scholar
  56. Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G et al (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Change 1:165–169.  https://doi.org/10.1038/nclimate1122 CrossRefGoogle Scholar
  57. Fabricius KE, Cséke HC, De’ath G (2013) Does trophic status enhance or reduce the thermal tolerance of scleractinian corals? A review, experiment and conceptual framework. PLoS One 8.  https://doi.org/10.1371/journal.pone.0054399 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Fabricius KE, De’ath G, Noonan S, Uthicke S (2014) Ecological effects of ocean acidification and habitat complexity on reef-associated macroinvertebrate communities. Proc R Soc B 281.  https://doi.org/10.1098/rspb.2013.2479
  59. Fabricius KE, Nonnan SHC, Abrego D, Harrington L, De’ath G (2017) Low recruitment due to altered settlement substrata as primary constraint for coral communities under ocean acidification. Proc R Soc B 284.  https://doi.org/10.1098/prsb.2017.1536
  60. Falter JL, Lowe RJ, Atkinson MJ, Monismith SG, Schar DW (2008) Continuous measurements of net production over a shallow reef community using a modified Eulerian approach. J Geophys Res 113.  https://doi.org/10.1029/2007jc004663
  61. Falter JL, Lowe RJ, Atkinson MJ, Cuet P (2012) Seasonal coupling and de-coupling of net calcification rates from coral reef metabolism and carbonate chemistry at Ningaloo Reef, Western Australia. J Geophys Res 117.  https://doi.org/10.1029/2011jc007268 CrossRefGoogle Scholar
  62. Fang JKH, Mello-Athayde MA, Schönberg CHL, Kline DI, Hoegh-Guldberg O, Dove S (2013) Sponge biomass and bioerosion rates increase under ocean warming and acidification. Global Change Biol 19:3581–3591.  https://doi.org/10.1111/gcb.12334 CrossRefGoogle Scholar
  63. Feely RA, Doney SC, Cooley SR (2009) Ocean acidification: present conditions and future changes in a high-CO2 world. Oceanography 22:36–47.  https://doi.org/10.5670/oceanog.2009.95 CrossRefGoogle Scholar
  64. Feely RA, Alin SR, Newton J, Sabine CL, Warner M, Devol A et al (2010) The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuaries Coast Shelf Sci 88:442–449.  https://doi.org/10.1016/j.ecss.2010.05.004 CrossRefGoogle Scholar
  65. Fine M, Tchernov D (2007) Scleractinian coral species survive and recover from decalcification. Science 315:1881.  https://doi.org/10.1126/science.1137094 CrossRefGoogle Scholar
  66. Fitt WK, Brown BE, Warner ME, Dunne RP (2001) Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20:51–65.  https://doi.org/10.1007/s003380100146 CrossRefGoogle Scholar
  67. Foster T, Gilmour JP, Chua CM, Falter JL, McCulloch MT (2015) Effect of ocean warming and acidification on the early life stages of subtropical Acropora spicifera. Coral Reefs 34:1217–1226.  https://doi.org/10.1007/s00338-015-1342-7 CrossRefGoogle Scholar
  68. Foster T, Falter JL, McCulloch MT, Clode PL (2016) Ocean acidification causes structural deformities in juvenile coral skeletons. Sci Adv 2.  https://doi.org/10.1126/sciadv.1501130
  69. Furla P, Galgani I, Durand I, Allemand D (2000) Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J Exp Biol 203:3445–3457PubMedGoogle Scholar
  70. Gattuso J-P, Frankignoulle M, Bourge I, Romaine S, Buddemeier RW (1998) Effect of calcium carbonate saturation of seawater on coral calcification. Global Planet Change 18:37–46.  https://doi.org/10.1016/S0921-8181(98)00035-6 CrossRefGoogle Scholar
  71. Gattuso J-P, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am Zool 39:160–183.  https://doi.org/10.1093/icb/39.1.160 CrossRefGoogle Scholar
  72. Goiran C, Al-Moghrabi S, Allemand D, Jaubert J (1996) Inorganic carbon uptake for photosynthesis by the symbiotic coral/dinoflagellate association I. Photosynthetic performances of symbionts and dependence on sea water bicarbonate. J Exp Mar Biol Ecol 199:207–225.  https://doi.org/10.1016/0022-0981(95)00201-4 CrossRefGoogle Scholar
  73. Golbuu Y, Gouezo M, Kurihara H, Rehm L, Wolanski E (2016) Long-term isolation and local adaptation in Palau’s Nikko Bay help corals thrive in acidic waters. Coral Reefs 35:909–918.  https://doi.org/10.1007/s00338-016-1457-5 CrossRefGoogle Scholar
  74. Gray SEC, DeGrandpre MD, Langdon C, Corredor JE (2012) Short-term and seasonal pH, pCO2 and saturation state variability in a coral-reef ecosystem. Global Biogeochem Cycles 26.  https://doi.org/10.1029/2011gb004114
  75. Harrington L, Fabricius KE, De’ath G, Negri AP (2004) Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology 85:3428–3437.  https://doi.org/10.1890/04-0298 CrossRefGoogle Scholar
  76. Hoadley KD, Pettay DT, Grottoli AG, Cai WC, Melman TF, Schoepf V et al (2015) Physiological response to elevated temperature and pCO2 varies across four Pacific coral species: understanding the unique host+symbiont response. Sci Rep 5.  https://doi.org/10.1038/srep18371
  77. Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshwater Res 50:839–866.  https://doi.org/10.1071/MF99078 CrossRefGoogle Scholar
  78. Hoegh-Guldberg O (2014) Coral reef sustainability through adaptation: glimmer of hope or persistent mirage? Curr Opin Environ Sustain 7:127–133.  https://doi.org/10.1016/j.cosust.2014.01.005 CrossRefGoogle Scholar
  79. Hoegh-Guldberg O, Smith GJ (1989) Influence of the population density of zooxanthellae and supply of ammonium on the biomass and metabolic characteristics of the reef corals Seriatopora hystrix and Stylophora pistillata. Mar Ecol Prog Ser 57:173–186.  https://doi.org/10.3354/meps057173 CrossRefGoogle Scholar
  80. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E et al (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742.  https://doi.org/10.1126/science.1152509 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Hofmann GE, Smith JE, Johnson KS, Send U, Levin LA, Micheli F et al (2011) High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS One 6.  https://doi.org/10.1371/journal.pone.0028983
  82. Horwitz R, Hoogenboom MO, Fine M (2017) Spatial competition dynamics between reef corals under ocean acidification. Sci Rep 7.  https://doi.org/10.1038/srep40288 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH et al (2017) Global warming and recurrent mass bleaching of corals. Nature 543:373–377.  https://doi.org/10.1038/nature21707 CrossRefPubMedGoogle Scholar
  84. Iguchi A, Ozaki S, Nakamura T, Inoue M, Tanaka Y, Suzuki A et al (2012) Effects of acidified seawater on coral calcification and symbiotic algae on the massive coral Porites australiensis. Mar Environ Res 73:32–36.  https://doi.org/10.1016/j.marenvres.2011.10.008 CrossRefPubMedGoogle Scholar
  85. Jiang ZJ, Huang XP, Zhang JP (2010) Effects of CO(2) enrichment on photosynthesis, growth, and biochemical composition of seagrass Thalassia hemprichii (Ehrenb.) Aschers. J Integr Plant Biol 52:904–913.  https://doi.org/10.1111/j.1744-7909.2010.00991.x CrossRefPubMedGoogle Scholar
  86. Jokiel PL (2004) Temperature stress and coral bleaching. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, Berlin, pp 401–425CrossRefGoogle Scholar
  87. Kaniewska P, Campbell PR, Kline DI, Rodriguez-Lanetty M, Miller DJ, Dove S et al (2012) Major cellular and physiological impacts of ocean acidification on a reef building coral. PLoS One 7.  https://doi.org/10.1371/journal.pone.0034659
  88. Kavousi J, Reimer JD, Tanaka Y, Nakamura T (2015) Colony-specific investigations reveal highly variable responses among individual corals to ocean acidification and warming. Mar Environ Res 109:9–20.  https://doi.org/10.1016/j.marenvres.2015.05.004 CrossRefPubMedGoogle Scholar
  89. Kleypas JA, Buddemeier RW, Archer D, Gattuso J-P, Langdon C, Opdyke BN (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120.  https://doi.org/10.1126/science.284.5411.118 CrossRefPubMedGoogle Scholar
  90. Kleypas JA, Anthony KRN, Gattuso J-P (2011) Coral reefs modify their seawater carbon chemistry - case study from a barrier reef (Moorea, French Polynesia). Global Change Biol 17:3667–3678.  https://doi.org/10.1111/j.1365-2486.2011.02530.x CrossRefGoogle Scholar
  91. Koweek D, Dunbar RB, Rogers JS, Williams GJ, Price N, Mucciarone D et al (2014) Environmental and ecological controls of coral community metabolism on Palmyra Atoll. Coral Reefs 34: 3339-351. doi: https://doi.org/10.1007/s00338-014-1217-3 CrossRefGoogle Scholar
  92. Koweek DA, Dunbar RB, Monismith SG, Mucciarone DA, Woodson CB, Samuel L (2015) High-resolution physical and biogeochemical variability from a shallow back reef on Ofu, American Samoa: an end-member perspective. Coral Reefs 34:979–991.  https://doi.org/10.1007/s00338-015-1308-9 CrossRefGoogle Scholar
  93. Krief S, Hendy EJ, Fine M, Yam R, Meibom A, Foster GL et al (2010) Physiological and isotopic responses of scleractinian corals to ocean acidification. Geochim Cosmochim Acta 74:4988–5001.  https://doi.org/10.1016/j.gca.2010.05.023 CrossRefGoogle Scholar
  94. Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13:1419–1434.  https://doi.org/10.1111/j.1461-0248.2010.01518.x CrossRefPubMedGoogle Scholar
  95. Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, Singh GS et al (2013) Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Global Change Biol 19:1884–1896.  https://doi.org/10.1111/gcb.12179 CrossRefGoogle Scholar
  96. Krueger T, Horwitz N, Bodin J, Giovani ME, Escrig S, Meibom A et al (2017) Common reef-building coral in the Northern Red Sea resistant to elevated temperature and acidification. R Soc Open Sci 4.  https://doi.org/10.1098/rsos.170038
  97. Kuffner IB, Andersson AJ, Jokiel PL, Rodgers KS, Mackenzie FT (2007) Decreased abundance of crustose coralline algae due to ocean acidification. Nat Geosci 1:114–117.  https://doi.org/10.1038/ngeo100 CrossRefGoogle Scholar
  98. Kwiatkowski L, Cox P, Halloran PR, Mumby PJ, Wiltshire AJ (2015) Coral bleaching under unconventional scenarios of climate warming and ocean acidification. Nat Clim Change 5:777–781.  https://doi.org/10.1038/nclimate2655 CrossRefGoogle Scholar
  99. Langdon C, Atkinson MJ (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J Geophys Res 110.  https://doi.org/10.1029/2004jc002576
  100. Langdon C, Takahashi T, Sweeney C, Chipman D, Goddard J, Marubini et al (2000) Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biogeochem Cycles 14:639–654.  https://doi.org/10.1029/1999gb001195 CrossRefGoogle Scholar
  101. Langdon C, Broecker WS, Hammond DE, Glenn E, Fitzsimmons K, Nelson SG et al (2003) Effect of elevated CO2 on the community metabolism of an experimental coral reef. Global Biogeochem Cycles 17.  https://doi.org/10.1029/2002gb001941
  102. Le Quéré C, Moriarty R, Andrew RM, Peters GP, Friedlingstein P, Jones SD et al (2015) Global carbon budget 2014. Earth Syst Sci Data 7:47–85.  https://doi.org/10.5194/essd-7-47-2015 CrossRefGoogle Scholar
  103. Leclercq N, Gattuso J-P, Jaubert J (2002) Primary production, respiration, and calcification of a coral reef mesocosm under increased CO2 partial pressure. Limnol Oceanogr 47:558–564.  https://doi.org/10.4319/lo.2002.47.2.0558 CrossRefGoogle Scholar
  104. Lesser MP (1996) Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates. Limnol Oceanogr 41:271–283.  https://doi.org/10.4319/lo.1996.41.2.0271 CrossRefGoogle Scholar
  105. Lesser MP (2004) Experimental biology of coral reef ecosystems. J Exp Mar Biol Ecol 300:217–252.  https://doi.org/10.1016/j.jembe.2003.12.027 CrossRefGoogle Scholar
  106. Lesser MP (2011) Coral bleaching: causes and mechanisms. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Berlin, pp 405–419CrossRefGoogle Scholar
  107. Mackey KRM, Morris JJ, Morel FMM, Kranz SA (2015) Response of photosynthesis to ocean acidification. Oceanography 25:74–91.  https://doi.org/10.5670/oceanog.2015.33 CrossRefGoogle Scholar
  108. Madin JS, O’Donnell MJ, Connolly SR (2008) Climate-mediated mechanical changes to post-disturbance coral assemblages. Biol Lett 4:490–493.  https://doi.org/10.1098/rsbl.2008.0249 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Marubini F, Davies PS (1996) Nitrate increases zooxanthellae population density and reduces skeletogenesis in corals. Mar Biol 127:319–328.  https://doi.org/10.1007/BF00942117 CrossRefGoogle Scholar
  110. Marubini F, Barnett H, Langdon C, Atkinson MJ (2001) Dependence of calcification on light and carbonate ion concentration for the hermatypic coral Porites compressa. Mar Ecol Prog Ser 220:153–162.  https://doi.org/10.3354/meps220153 CrossRefGoogle Scholar
  111. Marubini F, Ferrier-Pagès C, Cuif J-P (2003) Suppression of skeletal growth in scleractinian corals by decreasing ambient carbonate-ion concentration: a cross-family comparison. Proc R Soc B 270:179–184.  https://doi.org/10.1098/rspb.2002.2212 CrossRefPubMedGoogle Scholar
  112. Marubini F, Ferrier-Pagès C, Furla P, Allemand D (2008) Coral calcification responds to seawater acidification: a working hypothesis towards a physiological mechanism. Coral Reefs 27:491–499.  https://doi.org/10.1007/s00338-008-0375-6 CrossRefGoogle Scholar
  113. McCulloch M, Falter J, Trotter J, Montagna P (2012) Coral resilience to ocean acidification and global warming through pH up-regulation. Nat Clim Change 2:623–627.  https://doi.org/10.1038/nclimate1473 CrossRefGoogle Scholar
  114. Moya A, Huisman L, Ball EE, Hayward DC, Grasso LC, Chua CM et al (2012) Whole transcriptome analysis of the coral Acropora millepora reveals complex responses to CO2-driven acidification during the initiation of calcification. Mol Ecol 21:2440–2454.  https://doi.org/10.1111/j.1365-294X.2012.05554.x CrossRefPubMedGoogle Scholar
  115. Munday PL, Dixson DL, McCormick MI, Meekan M, Ferrari MCO, Chivers DP (2010) Replenishment of fish populations is threatened by ocean acidification. Proc Natl Acad Sci USA 107:12930–12934.  https://doi.org/10.1073/pnas.1004519107 CrossRefPubMedGoogle Scholar
  116. Munday PL, Cheal AJ, Dixson DL, Rummer JL, Fabricius KE (2014) Behavioural impairment in reef fishes caused by ocean acidification at CO2 seeps. Nat Clim Change 4:487–492.  https://doi.org/10.1038/nclimate2195 CrossRefGoogle Scholar
  117. Muscatine L, Falkowski PG, Dubinsky Z, Cook PA, McCloskey LR (1989) The effect of external nutrient resources on the population dynamics of zooxanthellae in a reef coral. Proc R Soc B 236.  https://doi.org/10.1098/prsb.1989.0025
  118. Noonan SHC, Fabricius KE (2016) Ocean acidification affects productivity but not the severity of thermal bleaching in some tropical corals. ICES J Mar Sci 73:715–726.  https://doi.org/10.1093/icesjms/fsv127 CrossRefGoogle Scholar
  119. Noonan SHC, Fabricius KE, Humphrey C (2013) Symbiodinium community composition in scleractinian corals is not affected by life-long exposure to elevated carbon dioxide. PLoS One 8.  https://doi.org/10.1371/journal.pone.0063985 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Ohde S, van Woesik R (1999) Carbon dioxide flux and metabolic processes of a coral reef, Okinawa. Bull Mar Sci 65:559–576Google Scholar
  121. Ow YX, Collier CJ, Uthicke S (2015) Responses of three tropical seagrass species to CO2 enrichment. Mar Biol 162:1005–1017.  https://doi.org/10.1007/s00227-015-2644-6 CrossRefGoogle Scholar
  122. Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333:418–422.  https://doi.org/10.1126/science.1204794 CrossRefPubMedGoogle Scholar
  123. Pascal N, Allenbach M, Brathwaite A, Burke L, Le Port G, Clua E (2016) Economic valuation of coral reef ecosystem service of coastal protection: a pragmatic approach. Ecosyst Services 21:72–80.  https://doi.org/10.1016/j.ecoser.2016.07.005 CrossRefGoogle Scholar
  124. Pecheux M (2002) CO2 increase, a direct cause of coral reef mass bleaching? Mar Life 12:63–68Google Scholar
  125. Pendleton LH (1995) Valuing coral reef protection. Ocean Coast Manage 26:119–131.  https://doi.org/10.1016/0964-5691(95)00007-O CrossRefGoogle Scholar
  126. Perry CT, Murphy GN, Kench PS, Smithers SG, Edinger EN, Steneck RS et al (2013) Caribbean-wide decline in carbonate production threatens coral reef growth. Nat Commun 4.  https://doi.org/10.1038/ncomms2409
  127. Pörtner HO (2005) Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: from Earth history to global change. J Geophys Res 110.  https://doi.org/10.1029/2004jc002561
  128. Pörtner H (2008) Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Mar Ecol Prog Ser 373:203–217.  https://doi.org/10.3354/meps07768 CrossRefGoogle Scholar
  129. Prada F, Caroselli E, Mengoli S, Brizi L, Fantazzini P, Capaccioni B et al (2017) Ocean warming and acidification synergistically increase coral mortality. Sci Rep 7.  https://doi.org/10.1038/srep40842 CrossRefPubMedPubMedCentralGoogle Scholar
  130. Putnam HM, Gates RD (2015) Preconditioning in the reef-building coral Pocillopora damicornis and the potential for trans-generational acclimatization in coral larvae under future climate change conditions. J Exp Biol 218:2365–2372.  https://doi.org/10.1242/jeb.123018 CrossRefPubMedGoogle Scholar
  131. Reyes-Nivia C, Diaz-Pulido G, Kline D, Guldberg OH, Dove S (2013) Ocean acidification and warming scenarios increase microbioerosion of coral skeletons. Global Change Biol 19:1919–1929.  https://doi.org/10.1111/gcb.12158 CrossRefGoogle Scholar
  132. Reynaud S, Leclercq N, Romaine-Lioud S, Ferrier-Pages C, Jaubert J, Gattuso J-P (2003) Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Global Change Biol 9:1660–1668.  https://doi.org/10.1046/j.1529-8817.2003.00678.x CrossRefGoogle Scholar
  133. Rhein M, Rintoul SR, Aoki S, Campos E, Chambers D, Feely RA et al (2013) Observations: ocean. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J et al (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UKGoogle Scholar
  134. Riebesell U, Gattuso J-P (2014) Lessons learned from ocean acidification research. Nat Clim Change 5:12–14.  https://doi.org/10.1038/nclimate2456 CrossRefGoogle Scholar
  135. Rodolfo-Metalpa R, Martin S, Ferrier-Pages C, Gattuso J-P (2010) Response of the temperate coral Cladocora caespitosa to mid- and long-term exposure to pCO2 and temperature levels projected for the year 2100 AD. Biogeosciences 7:289–300.  https://doi.org/10.5194/bg-7-289-2010 CrossRefGoogle Scholar
  136. Rowan R, Whitney SM, Fowler A, Yellowlees D (1996) Rubisco in marine symbiotic dinoflagellates: form II enzymes in eukaryotic oxygenic phototrophs encoded by a nuclear multigene family. Plant Cell 8:539–553.  https://doi.org/10.2307/3870331 CrossRefPubMedPubMedCentralGoogle Scholar
  137. Russell BD, Connell SD, Uthicke S, Muehllehner N, Fabricius KE, Hall-Spencer JM (2013) Future seagrass beds: can increased productivity lead to increased carbon storage? Mar Pollut Bull 73:463–469.  https://doi.org/10.1016/j.marpolbul.2013.01.031 CrossRefPubMedGoogle Scholar
  138. Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL et al (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371.  https://doi.org/10.1126/science.1097403 CrossRefPubMedGoogle Scholar
  139. Sabine CL, Feely RA, Wanninkhof R, Takahashi T, Khatiwala S, Park G-H (2011) The global ocean carbon cycle. State of the Climate 2010. Bull Am Meteorol Soc 92:S100–S108.  https://doi.org/10.1175/1520-0477-92.6.S1 CrossRefGoogle Scholar
  140. Schneider K, Erez J (2006) The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral Acropora eurystoma. Limnol Oceanogr 51:1284–1293.  https://doi.org/10.4319/lo.2006.51.3.1284 CrossRefGoogle Scholar
  141. Schoepf V, Grottoli AG, Warner ME, Cai WJ, Melman TF, Hoadley KD et al (2013) Coral energy reserves and calcification in a high-CO2 world at two temperatures. PLoS One 8.  https://doi.org/10.1371/journal.pone.0075049 CrossRefPubMedPubMedCentralGoogle Scholar
  142. Shamberger KEF, Feely RA, Sabine CL, Atkinson MJ, DeCarlo EH, Mackenzie FT et al (2011) Calcification and organic production on a Hawaiian coral reef. Mar Chem 127:64–75.  https://doi.org/10.1016/j.marchem.2011.08.003 CrossRefGoogle Scholar
  143. Shaw EC, McNeil BI, Tilbrook B (2012) Impacts of ocean acidification in naturally variable coral reef flat ecosystems. J Geophys Res. 117.  https://doi.org/10.1029/2011jc007655
  144. Silverman J, Lazar B, Cao L, Caldeira K, Erez J (2009) Coral reefs may start dissolving when atmospheric CO2 doubles. Geophys Res Lett 36.  https://doi.org/10.1029/2008gl036282
  145. Stimson J, Sakai K, Sembali H (2002) Interspecific comparison of the symbiotic relationship in corals with high and low rates of bleaching-induced mortality. Coral Reefs 21:409–421.  https://doi.org/10.1007/s00338-002-0264-3 CrossRefGoogle Scholar
  146. Strahl J, Francis DS, Doyle J, Humphrey C, Fabricius KE (2016) Biochemical responses to ocean acidification contrast between tropical corals with high and low abundances at volcanic carbon dioxide seeps. ICES J Mar Sci 73:897–909.  https://doi.org/10.1093/icesjms/fsv194 CrossRefGoogle Scholar
  147. Suggett DJ, Hall-Spencer JM, Rodolfo-Metalpa R, Boatman TG, Payton R, Pettay DT et al (2012) Sea anemones may thrive in a high CO2 world. Global Change Biol 18:3015–3025.  https://doi.org/10.1111/j.1365-2486.2012.02767.x CrossRefGoogle Scholar
  148. Takahashi A, Kurihara H (2013) Ocean acidification does not affect the physiology of the tropical coral Acropora digitifera during a 5-week experiment. Coral Reefs 32:305–314.  https://doi.org/10.1007/s00338-012-0979-8 CrossRefGoogle Scholar
  149. Towanda T, Thuesen EV (2012) Prolonged exposure to elevated CO2 promotes growth of the algal symbiont Symbiodinium muscatinei in the intertidal sea anemone Anthopleura elegantissima. Biol Open 1:615–621.  https://doi.org/10.1242/bio.2012521 CrossRefPubMedPubMedCentralGoogle Scholar
  150. Uthicke S, Furnas M, Lønborg C (2014) Coral reefs on the edge? Carbon chemistry on inshore reefs of the Great Barrier Reef. PLoS One 9.  https://doi.org/10.1371/journal.pone.0109092
  151. Vega Thurber RL, Burkepile DE, Fuchs C, Shantz AA, McMinds R, Zaneveld JR (2014) Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching. Global Change Biol 20:544–554.  https://doi.org/10.1111/gcb.12450 CrossRefGoogle Scholar
  152. Veron JEN (2008) Mass extinctions and ocean acidification: biological constraints on geological dilemmas. Coral Reefs 27:459–472.  https://doi.org/10.1007/s00338-008-0381-8 CrossRefGoogle Scholar
  153. Wagner DE, Kramer P, van Woesik R (2010) Species composition, habitat, and water quality influence coral bleaching in southern Florida. Mar Ecol Prog Ser 408:65–78.  https://doi.org/10.3354/meps08584 CrossRefGoogle Scholar
  154. Wall CB, Fan TY, Edmunds PJ (2013) Ocean acidification has no effect on thermal bleaching in the coral Seriatopora caliendrum. Coral Reefs 33:119–130.  https://doi.org/10.1007/s00338-013-1085-2 CrossRefGoogle Scholar
  155. Weis VM (2008) Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol 211:3059–3066.  https://doi.org/10.1242/jeb.009597 CrossRefPubMedGoogle Scholar
  156. Wiedenmann J, D’Angelo C, Smith EG, Hunt AN, Legiret F-E, Postle AD et al (2012) Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat Clim Change 3:160–164.  https://doi.org/10.1038/nclimate1661 CrossRefGoogle Scholar
  157. Wong PP, Losada IJ, Gattuso J-P, Hinkel J, Khattabi A, McInnes KL et al (2014) Coastal systems and low-lying areas. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE et al (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, pp 361–409Google Scholar
  158. Wooldridge SA (2009a) A new conceptual model for the warm-water breakdown of the coral–algae endosymbiosis. Mar Freshwater Res 60:483–496.  https://doi.org/10.1071/mf08251 CrossRefGoogle Scholar
  159. Wooldridge SA (2009b) Water quality and coral bleaching thresholds: formalising the linkage for the inshore reefs of the Great Barrier Reef, Australia. Mar Pollut Bull 58:745–751.  https://doi.org/10.1016/j.marpolbul.2008.12.013 CrossRefPubMedGoogle Scholar
  160. Wooldridge SA (2013) Breakdown of the coral-algae symbiosis: towards formalizing a linkage between warm-water bleaching thresholds and the growth rate of intracellular zooxanthellae. Biogeosciences 10:1647–1658.  https://doi.org/10.5194/bg-10-1647-2013 CrossRefGoogle Scholar
  161. Wooldridge SA (2016) Excess seawater nutrients, enlarged algal symbiont densities and bleaching sensitive reef locations: 1. Identifying thresholds of concern for the Great Barrier Reef, Australia. Mar Pollut Bull.  https://doi.org/10.1016/j.marpolbul.2016.04.054
  162. Wooldridge SA (2017) Instability and breakdown of the coral–algae symbiosis upon exceedence of the interglacial pCO2 threshold (>260 ppmv): the “missing” Earth-system feedback mechanism. Coral Reefs 36:1025–1037.  https://doi.org/10.1007/s00338-017-1594-5 CrossRefGoogle Scholar
  163. Wooldridge SA, Done TJ (2009) Improved water quality can ameliorate effects of climate change on corals. Ecol Appl 19:1492–1499.  https://doi.org/10.1890/08-0963.1 CrossRefPubMedGoogle Scholar
  164. Zeebe RE (2012) History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification. Annu Rev Earth Planet Sci 40:141–165.  https://doi.org/10.1146/annurev-earth-042711-105521 CrossRefGoogle Scholar
  165. Zeebe RE, Wolf-Gladrow D (2001) CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier oceanography series, Vol 65. Elsevier, New YorkGoogle Scholar
  166. Zimmerman RC, Kohrs DG, Steller DL, Alberte RS (1997) Impacts of CO2 enrichment on productivity and light requirements of eelgrass. Plant Physiol 115:599–607.  https://doi.org/10.1104/pp.115.2.599 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.California Academy of SciencesSan FranciscoUSA

Personalised recommendations