Advertisement

Effects of Coral Bleaching and Coral Loss on the Structure and Function of Reef Fish Assemblages

  • M. S. Pratchett
  • C. A. Thompson
  • A. S. Hoey
  • P. F. Cowman
  • S. K. Wilson
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 233)

Abstract

Climate-induced coral bleaching poses a significant threat to coral reef ecosystems, causing extensive coral loss and degradation of reef habitats. Moreover, many reef fishes exhibit declines in abundance following severe episodes of coral bleaching, attributable to loss of live coral and/or declines in the structural complexity of reef habitats. This chapter considers the effects of mass coral bleaching (and associated changes in the structure of tropical reef habitats) on the structure and function of reef fish assemblages, whereby significant declines in the biodiversity and abundance of reef fishes may jeopardise ecosystem function and fisheries productivity in coral reef systems. It is now clear that effects of coral bleaching and associated coral loss extend well beyond those species traditionally thought to have specific reliance on corals for food and shelter (e.g. butterflyfishes, damselfishes, gobies). In extreme cases, the abundance and species richness of fishes may decline >60% following extensive coral depletion and topographic collapse of reef habitats, combined with increasing dominance of non-coral biota. Negative effects of coral loss on reef fishes are apparent across 18 (out of 19) broadly defined functional groups, including scraping herbivores and piscivores. Coral bleaching and coral loss is also shown to have a wide range of sublethal effects on coral reef fishes, further affecting their individual behaviour, survivorship and fitness. Given the taxonomic extent and severity of effects, mass coral bleaching is likely to compromise the functioning and productivity of coral reefs, providing significant imperative to reduce greenhouse gas emissions.

References

  1. Adam TC, Schmitt RJ, Holbrook SJ, Brooks AJ, Edmunds PJ, Carpenter RC et al (2011) Herbivory, connectivity, and ecosystem resilience: response of a coral reef to a large-scale perturbation. PLoS One 6:e23717.  https://doi.org/10.1371/journal.pone.0023717 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ainsworth CH, Mumby P (2015) Coral–algal phase shifts alter fish communities and reduce fisheries production. Glob Change Biol 21:165–172.  https://doi.org/10.1111/gcb.12667 CrossRefGoogle Scholar
  3. Almany GR (2004) Does increased habitat complexity reduce predation and competition in coral reef fish assemblages? Oikos 106:275–284.  https://doi.org/10.1111/j.0030-1299.2004.13193.x CrossRefGoogle Scholar
  4. Alvarez-Filip L, Dulvy NK, Côté IM, Watkinson AR, Gill JA (2011) Coral identity underpins architectural complexity on Caribbean reefs. Ecol Appl 21:2223–2231.  https://doi.org/10.1890/10-1563.1 CrossRefPubMedGoogle Scholar
  5. Baird AH, Marshall PA (2002) Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar Ecol Prog Ser 237:133–141.  https://doi.org/10.3354/meps237133 CrossRefGoogle Scholar
  6. Baker AC, Glynn PW, Riegl B (2008) Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuar Coast Shelf Sci 80:435–471.  https://doi.org/10.1016/j.ecss.2008.09.003 CrossRefGoogle Scholar
  7. Bell JB, Ganachaud A, Gehrke PC, Griffiths SP, Hobday AJ, Hoegh-Guldberg O et al (2013) Mixed responses of tropical Pacific fisheries and aquaculture to climate change. Nat Clim Change 3:591–599.  https://doi.org/10.1038/nlimate1838 CrossRefGoogle Scholar
  8. Bell JD, Cisneros-Montemayor A, Crowder L, Hanich Q, Johnson J, Lehodey P et al (2017) Adaptations to maintain the contributions of small-scale fisheries to food security in the Pacific Islands. Mar Policy.  https://doi.org/10.1016/j.marpol.2017.05.019
  9. Bellwood DR, Hoey AS, Choat JH (2003) Limited functional redundancy in high diversity systems: resilience and ecosystem function on coral reefs. Ecol Lett 6:281–285.  https://doi.org/10.1046/j.1461-0248.2003.00432.x CrossRefGoogle Scholar
  10. Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429:827–833.  https://doi.org/10.1038/nature02691 CrossRefPubMedGoogle Scholar
  11. Bellwood DR, Hoey AS, Ackerman JL, Depczynski M (2006) Coral bleaching, reef fish community phase shifts and the resilience of coral reefs. Glob Change Biol 12:1587–1594.  https://doi.org/10.1111/j.1365-2486.2006.01204.x CrossRefGoogle Scholar
  12. Bellwood DR, Hoey AS, Hughes TP (2012) Human activity selectively impacts the ecosystem roles of parrotfishes on coral reefs. Proc R Soc B 279:1621–1629.  https://doi.org/10.1098/rspb.2011.1906 CrossRefPubMedGoogle Scholar
  13. Berumen ML, Pratchett MS (2006) Effects of resource availability on the competitive behaviour of butterflyfishes (Chaetodontidae). In: Proceedings of 10th international coral reef symposium, Japan, vol 1, pp 644–650Google Scholar
  14. Berumen ML, Pratchett MS (2008) Trade-offs associated with dietary specialization in corallivorous butterflyfishes (Chaetodontidae: Chaetodon). Behav Ecol Sociol 62:989–994.  https://doi.org/10.1007/s00265-007-0526-8 CrossRefGoogle Scholar
  15. Blowes S, Pratchett MS, Connolly S (2013) Heterospecific aggression, dominance and specialization in a guild of corallivorous reef fishes. Am Nat 182:157–168.  https://doi.org/10.1086/670821 CrossRefPubMedGoogle Scholar
  16. Bonin MC, Munday PL, McCormick MI, Srinivasan M, Jones GP (2009) Coral-dwelling fishes resistant to bleaching but not to mortality of host corals. Mar Ecol Prog Ser 394:215–222.  https://doi.org/10.3354/meps08294 CrossRefGoogle Scholar
  17. Bouchon-Navaro Y, Bouchon C, Harmelin-Vivien ML (1985) Impact of coral degradation on a chaetodontid fish assemblage (Moorea, French Polynesia). In: Proceedings of 5th coral reef symposium, Tahiti, vol 5, pp 427–432Google Scholar
  18. Bozec YM, O’Farrell S, Bruggemann JH, Luckhurst BE, Mumby PJ (2016) Tradeoffs between fisheries harvest and the resilience of coral reefs. Proc Natl Acad Sci USA 113:4536–4541.  https://doi.org/10.1073/pnas.1601529113 CrossRefPubMedGoogle Scholar
  19. Brander KM (2007) Global fish production and climate change. Proc Natl Acad Sci USA 104:19709–19714.  https://doi.org/10.1073/pnas.0702059104 CrossRefPubMedGoogle Scholar
  20. Brandl SJ, Emslie MJ, Ceccarelli DM, Richards ZT (2016) Habitat degradation increases functional originality in highly diverse coral reef fish assemblages. Ecosphere 7:e01557.  https://doi.org/10.1002/ecs2.1557 CrossRefGoogle Scholar
  21. Brooker RM, Jones GP, Munday PL (2013) Prey selectivity affects reproductive success of a corallivorous reef fish. Oecologia 172:409–416.  https://doi.org/10.1007/s00442-012-2521-7 CrossRefPubMedGoogle Scholar
  22. Brooker RM, Munday PL, Brandl SJ, Jones GP (2014) Local extinction of a coral reef fish explained by inflexible prey choice. Coral Reefs 33:891–896.  https://doi.org/10.1007/s00338-014-1197-3 CrossRefGoogle Scholar
  23. Cheal AJ, MacNeil MA, Emslie MJ, Sweatman HPA (2017) The threat to coral reefs from more intense cyclones under climate change. Glob Change Biol 23:1511–1524.  https://doi.org/10.1111/gcb.13593 CrossRefGoogle Scholar
  24. Cheung WW, Lam VW, Sarmiento JL, Kearney K, Watson R, Zeller D et al (2010) Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob Change Biol 16:24–35.  https://doi.org/10.1111/j.1365-2486.2009.01995.x CrossRefGoogle Scholar
  25. Cheung WW, Watson R, Pauly D (2013) Signature of ocean warming in global fisheries catch. Nature 497:365–368.  https://doi.org/10.1038/nature12156 CrossRefPubMedGoogle Scholar
  26. Chivers DP, McCormick MI, Allan BJ, Ferrari MC (2016) Risk assessment and predator learning in a changing world: understanding the impacts of coral reef degradation. Sci Rep 6:32542.  https://doi.org/10.1038/srep32542 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Chong-Seng KM, Graham NAJ, Pratchett MS (2014) Bottlenecks to coral recovery in Seychelles. Coral Reefs 33:449–461.  https://doi.org/10.1007/s00338-014-1137-2 CrossRefGoogle Scholar
  28. Cinner JE, Huchery C, Darling ES, Humphries AT, Graham NA, Hicks CC et al (2013) Evaluating social and ecological vulnerability of coral reef fisheries to climate change. PloS One 8:e74321.  https://doi.org/10.1371/journal.pone.0074321 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Coker DJ, Pratchett MS, Munday PL (2009) Coral bleaching and habitat degradation increase susceptibility to predation for coral-dwelling fishes. Behav Ecol 20:1204–1210.  https://doi.org/10.1093/beheco/arp113 CrossRefGoogle Scholar
  30. Coker DJ, Graham NAJ, Pratchett MS (2012) Interactive effects of live coral and structural complexity on the recruitment of reef fishes. Coral Reefs 31:919–927.  https://doi.org/10.1007/s00338-012-0920-1 CrossRefGoogle Scholar
  31. Coker DJ, Walker S, Munday P, Pratchett MS (2013) Social group entry rules may limit population resilience to patchy habitat disturbance. Mar Ecol Prog Ser 493:237–242.  https://doi.org/10.3354/meps10493 CrossRefGoogle Scholar
  32. Coker DJ, Wilson SK, Pratchett MS (2014) Importance of live coral habitat for reef fishes. Rev Fish Biol Fish 24:89–126.  https://doi.org/10.1007/s11160-013-9319-5 CrossRefGoogle Scholar
  33. Coker DJ, Nowicki JP, Pratchett MS (2015) Body condition of the coral-dwelling fish Dascyllus aruanus (Linnaeus 1758) following host colony bleaching. Environ Biol Fish 98:691–695.  https://doi.org/10.1007/s10641-014-0277-0 CrossRefGoogle Scholar
  34. Cole AJ, Pratchett MS, Jones GP (2008) Diversity and functional importance of coral-feeding fishes on tropical coral reefs. Fish Fish 9:286–307.  https://doi.org/10.1111/j.1467-2979.2008.00290.x CrossRefGoogle Scholar
  35. Cole AJ, Pratchett MS, Jones GP (2009) Effects of coral bleaching on the feeding response of two species of coral-feeding fish. J Exp Mar Biol Ecol 373:11–15.  https://doi.org/10.1016/j.jembe.2009.02.016 CrossRefGoogle Scholar
  36. Cole AJ, Lawton RJ, Pisapia C, Pratchett MS (2014) The effects of coral bleaching on settlement preferences and growth of juvenile butterflyfishes. Mar Environ Res 98:106–110.  https://doi.org/10.1016/j.marenvres.2014.03.003 CrossRefPubMedGoogle Scholar
  37. Dahlgren CP, Eggleston DB (2000) Ecological processes underlying ontogenetic habitat shifts in a coral reef fish. Ecology 81:2227–2240.  https://doi.org/10.1890/0012-9658(2000)081[2227,EPUOHS]2.0.CO;2 CrossRefGoogle Scholar
  38. Dalzell P, Adams TJH, Polunin NVC (1996) Coastal fisheries in the Pacific Islands. Oceanogr Mar Biol Annu Rev 34:395–531Google Scholar
  39. De’ath G, Fabricius KE, Sweatman H, Puotinen M (2012) The 27–year decline of coral cover on the Great Barrier Reef and its causes. Proc Natl Acad Sci USA 109:17995–17999.  https://doi.org/10.1073/pnas.1208909109 CrossRefPubMedGoogle Scholar
  40. Diaz-Pulido G, McCook LJ (2002) The fate of bleached corals: patterns and dynamics of algal recruitment. Mar Ecol Prog Ser 232:115–128.  https://doi.org/10.3354/meps232115 CrossRefGoogle Scholar
  41. Dixson DL, Abrego D, Hay ME (2014) Chemically mediated behavior of recruiting corals and fishes: a tipping point that may limit reef recovery. Science 345:892–897.  https://doi.org/10.1126/science.1255057 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Doherty PJ, Dufour V, Galzin R, Hixon MA, Meekan MG, Planes S (2004) High mortality during settlement is a population bottleneck for a tropical surgeonfish. Ecology 85:2422–2428.  https://doi.org/10.1890/04-0366 CrossRefGoogle Scholar
  43. Dorenbosch M, Grol MGG, Nagelkerken I, Van der Velde G (2006) Seagrass beds and mangroves as potential nurseries for the threatened Indo-Pacific humphead wrasse, Cheilinus undulatus and Caribbean rainbow parrotfish, Scarus guacamaia. Biol Conserv 129:277–282.  https://doi.org/10.1016/j.biocon.2005.10.032 CrossRefGoogle Scholar
  44. Elmqvist T, Folke C, Nyström M, Peterson M, Bengtsson J, Walker B et al (2003) Response diversity, ecosystem change, and resilience. Front Ecol Environ 1:488–494.  https://doi.org/10.1890/1540-9295(2003)001[0488,RDECAR]2.0.CO;2 CrossRefGoogle Scholar
  45. Emslie MJ, Pratchett MS, Cheal AJ (2011) Effects of different disturbance types on butterflyfish communities of Australia’s Great Barrier Reef. Coral Reefs 30:461–471.  https://doi.org/10.1007/s00338-011-0730-x CrossRefGoogle Scholar
  46. Emslie MJ, Cheal AJ, Johns KA (2014) Retention of habitat complexity minimizes disassembly of reef fish communities following disturbance: a large-scale natural experiment. PLoS One 9:e105384.  https://doi.org/10.1371/journal.pone.0105384 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Emslie MJ, Cheal AJ, Logan M (2017) The distribution and abundance of reef-associated predatory fishes on the Great Barrier Reef. Coral Reefs 36:829–846.  https://doi.org/10.1007/s00338-017-1573-x CrossRefGoogle Scholar
  48. Evans RD, Wilson SK, Field SN, Moore JAY (2014) Importance of macroalgal fields as coral reef fish nursery habitat in north-west Australia. Mar Biol 161:599–607.  https://doi.org/10.1007/s00227-013-2362-x CrossRefGoogle Scholar
  49. Feary DA, Almany GR, McCormick MI, Jones FP (2007) Habitat choice, recruitment and the response of coral reef fishes to coral degradation. Oecologia 153:727–737.  https://doi.org/10.1007/s00442-007-0773-4 CrossRefPubMedGoogle Scholar
  50. Feary DA, McCormick MI, Jones GP (2009) Growth of reef fishes in response to live coral cover. J Exp Mar Biol Ecol 373:45–49.  https://doi.org/10.1016/j.jembe.2009.03.002 CrossRefGoogle Scholar
  51. Ferrari R, Figueira WF, Pratchett MS, Boube T, Adam A, Kebelkowsky-Vidrio T et al (2017a) 3D photogrammetry quantifies growth and external erosion of individual coral colonies and skeletons. Sci Rep 7.  https://doi.org/10.1038/s41598-017-16408-z
  52. Ferrari MC, McCormick MI, Allan BJ, Chivers DP (2017b) Not equal in the face of habitat change: closely related fishes differ in their ability to use predation-related information in degraded coral. Proc R Soc B 284.  https://doi.org/10.1098/rspb.2016.2758
  53. Gardiner NM, Jones GP (2005) Habitat specialisation and overlap in a guild of coral reef cardinal fishes (Apogonidae). Mar Ecol Prog Ser 305:163–175.  https://doi.org/10.3354/meps305163 CrossRefGoogle Scholar
  54. Gardner TA, Côté IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean corals. Science 301:958–960.  https://doi.org/10.1126/science.1086050 CrossRefPubMedGoogle Scholar
  55. Gilmour JP, Smith LD, Heyward AJ, Baird AH, Pratchett MS (2013) Recovery of an isolated coral reef system following severe disturbance. Science 340:69–71.  https://doi.org/10.1126/science.1232310 CrossRefPubMedGoogle Scholar
  56. Glynn PW (1997) Bioerosion and coral reef growth: a dynamic balance. In: Birkeland C (ed) Life and death of coral reefs. Chapman & Hall, New York, pp 68–95CrossRefGoogle Scholar
  57. Goreau T, McClanahan TR, Hayes R, Strong A (2000) Conservation of coral reefs after the 1998 global bleaching event. Conserv Biol 14:5–15.  https://doi.org/10.1046/j.1523-1739.2000.00011.x CrossRefGoogle Scholar
  58. Graham NAJ, Nash KL (2013) The importance of structural complexity in coral reef ecosystems. Coral Reefs 32:315–326.  https://doi.org/10.1007/s00338-012-0984-y CrossRefGoogle Scholar
  59. Graham NAJ, Wilson SK, Jennings S, Polunin NVC, Bijoux JP, Robinson J (2006) Dynamic fragility of oceanic coral reef ecosystems. Proc Nat Acad Sci USA 103:8425–8429.  https://doi.org/10.1073/pnas.0600693103 CrossRefPubMedGoogle Scholar
  60. Graham NAJ, Wilson SK, Jennings S, Polunin NVC, Robinson J, Bijoux JP et al (2007) Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems. Conserv Biol 21:1291–1300.  https://doi.org/10.1111/j.1523-1739.2007.00754.x CrossRefPubMedGoogle Scholar
  61. Graham NAJ, McClanahan TR, MacNeil MA, Wilson SK, Polunin NVC, Jennings S et al (2008) Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems. PLoS One 3:e3039.  https://doi.org/10.1371/journal.pone.0003039 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Graham NAJ, Wilson SK, Pratchett MS, Polunin NVC, Spalding MD (2009) Coral mortality versus structural collapse as drivers of corallivorous butterflyfish decline. Biodivers Conserv 18:3325–3336.  https://doi.org/10.1007/s10531-009-9633-3 CrossRefGoogle Scholar
  63. Graham NAJ, Chabanet P, Evans RD, Jennings S, Letourneur Y, MacNeil AM et al (2011) Extinction vulnerability of coral reef fishes. Ecol Lett 14:341–348.  https://doi.org/10.1111/j.1461-0248.2011.01592.x CrossRefPubMedPubMedCentralGoogle Scholar
  64. Graham NA, Cinner JE, Norström AV, Nyström M (2014) Coral reefs as novel ecosystems: embracing new futures. Curr Opin Environ Sustain 7:9–14.  https://doi.org/10.1016/j.cosust.2013.11.023 CrossRefGoogle Scholar
  65. Graham NAJ, Jennings S, MacNeil MA, Mouillot D, Wilson SK (2015) Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518:94–97.  https://doi.org/10.1038/nature14140 CrossRefPubMedGoogle Scholar
  66. Grandcourt EM, Cesar HS (2003) The bio-economic impact of mass coral mortality on the coastal reef fisheries of the Seychelles. Fish Res 60:539–550.  https://doi.org/10.1016/S0165-7836(02)00173-X CrossRefGoogle Scholar
  67. Gratwicke B, Speight MR (2005) The relationship between fish species richness, abundance and habitat complexity in a range of shallow tropical marine habitats. J Fish Biol 66:650–667.  https://doi.org/10.1111/j.0022-1112.2005.00629.x CrossRefGoogle Scholar
  68. Green AL (1998) Spatio-temporal patterns of recruitment of labroid fishes (Pisces: Labridae and Scaridae) to damselfish territories. Environ Biol Fish 51:235–244.  https://doi.org/10.1023/A:1007389206099 CrossRefGoogle Scholar
  69. Guest JR, Baird AH, Maynard JA, Muttaqin E, Edwards AJ, Campbell SJ et al (2012) Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. PLoS One 7:e33353.  https://doi.org/10.1371/journal.pone.0033353 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Halford AR, Caley MJ (2009) Towards an understanding of resilience in isolated coral reefs. Glob Change Biol 15:3031–3045.  https://doi.org/10.1111/j.1365-2486.2009.01972 CrossRefGoogle Scholar
  71. Hamilton RJ, Almany GR, Brown CJ, Pita J, Peterson NA, Choat JH (2017) Logging degrades nursery habitat for an iconic coral reef fish. Biol Conserv 210:273–280.  https://doi.org/10.1016/j.biocon.2017.04.024 CrossRefGoogle Scholar
  72. Hart AM, Klumpp DW, Russ GR (1996) Response of herbivorous fishes to crown-of-thorns starfish Acanthaster planci outbreaks. II. Density and biomass of selected species of herbivorous fish and fish habitat correlations. Mar Ecol Prog Ser 132:21–30.  https://doi.org/10.3354/meps132021 CrossRefGoogle Scholar
  73. Hempson TN, Graham NAJ, MacNeil MA, Williamson DH, Jones GP, Almany GR (2017a) Coral reef mesopredators switch prey, shortening food chains, in response to habitat degradation. Ecol Evol 7:2626–2635.  https://doi.org/10.1002/ece3.2805 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Hempson TN, Graham NAJ, MacNeil MA, Bodin N, Wilson SK (2017b) Regime shifts shorten food chains for mesopredators with potential sublethal effects. Funct Ecol.  https://doi.org/10.1111/1365-2435.13012
  75. Heron SF, Maynard J, van Hooidonk R, Eakin CM (2016) Warming trends and bleaching stress of the world’s coral reefs 1985–2012. Sci Rep 6:38402.  https://doi.org/10.1038/srep38402 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshwater Res 50:839–866.  https://doi.org/10.1071/MF99078 CrossRefGoogle Scholar
  77. Hoey AS, Bellwood DR (2009) Limited functional redundancy in a high diversity system: single species dominates key ecological process on coral reefs. Ecosystems 12:1316–1328.  https://doi.org/10.1007/s10021-009-9291-z CrossRefGoogle Scholar
  78. Hoey AS, Bellwood DR (2011) Suppression of herbivory by macroalgal density: a critical feedback on coral reefs? Ecol Lett 14:267–273.  https://doi.org/10.1111/j.1461-0248.2010.01581.x CrossRefPubMedGoogle Scholar
  79. Hoey AS, Brandl SJ, Bellwood DR (2013) Diet and cross-shelf distribution of rabbitfishes (f. Siganidae) on the northern Great Barrier Reef: implications for ecosystem function. Coral Reefs 32:973–984.  https://doi.org/10.1007/s00338-013-1043-z CrossRefGoogle Scholar
  80. Hoey AS, Howells E, Johansen JL, Hobbs JPA, Messmer V, McCowan DM et al (2016) Recent advances in understanding the effects of climate change on coral reefs. Diversity 8:12.  https://doi.org/10.3390/d8020012 CrossRefGoogle Scholar
  81. Holbrook SJ, Schmitt RJ, Brooks AJ (2008) Resistance and resilience of a coral reef fish community to changes in coral cover. Mar Ecol Prog Ser 371:263–271.  https://doi.org/10.3354/meps07690 CrossRefGoogle Scholar
  82. Holbrook SJ, Schmitt RJ, Messmer V, Brooks AJ, Srinivasan M, Munday PL et al (2015) Reef fishes in biodiversity hotspots are at greatest risk from loss of coral species. PLoS One 10:e0124054.  https://doi.org/10.1371/journal.pone.0124054 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Houlahan JE, Currie DJ, Cottenie K, Cumming GS, Ernest SKM, Findlay CS et al (2007) Compensatory dynamics are rare in natural ecological communities. Proc Natl Acad Sci USA 104:3273–3277.  https://doi.org/10.1073/pnas.0603798104 CrossRefPubMedGoogle Scholar
  84. Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C et al (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933.  https://doi.org/10.1126/science.1085046 CrossRefPubMedGoogle Scholar
  85. Hughes TP, Rodrigues MJ, Bellwood DR, Ceccarelli DM, Hoegh-Guldberg O, McCook LJ et al (2007) Phase shifts, herbivory and the resilience of coral reefs to climate change. Curr Biol 17:360–365.  https://doi.org/10.1016/j.cub.2006.12.049 CrossRefPubMedGoogle Scholar
  86. Hughes TP, Graham NA, Jackson JB, Mumby PJ, Steneck RS (2010) Rising to the challenge of sustaining coral reef resilience. Trends Ecol Evol 25:633-642. doi: https://doi.org/10.1016/j.tree.2010.07.011 CrossRefGoogle Scholar
  87. Hughes TP, Kerry JT, Alvarez-Noriega M, Alvarez-Romero JC, Anderson KD, Baird AH et al (2017) Global warming and recurrent mass bleaching of corals. Nature 543:373–377.  https://doi.org/10.1038/nature21707 CrossRefPubMedGoogle Scholar
  88. Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM et al (2018) Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359:80–83.  https://doi.org/10.1126/science.aan8048 CrossRefPubMedGoogle Scholar
  89. Jokiel PL, Coles SL (1990) Response of Hawaiian and other Indo-Pacific reef corals to elevated temperature. Coral Reefs 8:155–162.  https://doi.org/10.1007/BF00265006 CrossRefGoogle Scholar
  90. Jones GP, McCormick MI, Srinivasan M, Eagle JV (2004) Coral decline threatens fish biodiversity in marine reserves. Proc Natl Acad Sci USA 101:8251–8253.  https://doi.org/10.1073/pnas.0401277101 CrossRefPubMedGoogle Scholar
  91. Kerry JT, Bellwood DR (2012) The effect of coral morphology on shelter selection by coral reef fishes. Coral Reefs 31:415–424.  https://doi.org/10.1007/s00338-011-0859-7 CrossRefGoogle Scholar
  92. Kok JE, Graham NAJ, Hoogenboom MO (2016) Climate-driven coral reorganisation influences aggressive behaviour in juvenile coral-reef fishes. Coral Reefs 35:473–483.  https://doi.org/10.1007/s00338-016-1411-6 CrossRefGoogle Scholar
  93. Kokita T, Nakazono A (2001) Rapid response of an obligately corallivorous filefish Oxymonacanthus longirostris (Monacanthidae) to a mass coral bleaching event. Coral Reefs 20:155–158.  https://doi.org/10.1007/s00338100153 CrossRefGoogle Scholar
  94. Komyakova V, Munday PL, Jones GP (2013) Relative importance of coral cover, habitat complexity and diversity in determining the structure of reef fish communities. PLoS One 8:e83178.  https://doi.org/10.1371/journal.pone.0083178 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Kramer MJ, Bellwood O, Bellwood DR (2013) The trophic importance of algal turfs for coral reef fishes: the crustacean link. Coral Reefs 32:575–583.  https://doi.org/10.1007/s00338-013-1009-1 CrossRefGoogle Scholar
  96. Light PR, Jones GP (1997) Habitat preference in newly settled coral trout (Plectropomus leopardus, Serranidae). Coral Reefs 16:117–126.  https://doi.org/10.1007/s003380050065 CrossRefGoogle Scholar
  97. Linares C, Pratchett MS, Coker MS (2011) Recolonisation and growth of Acropora hyacinthus following climate-induced coral bleaching on the Great Barrier Reef. Mar Ecol Prog Ser 438:97–104.  https://doi.org/10.3354/meps09272 CrossRefGoogle Scholar
  98. Lönnstedt OM, McCormick MI, Chivers DP, Ferrari MC (2014) Habitat degradation is threatening reef replenishment by making fish fearless. J Anim Ecol 83:1178–1185.  https://doi.org/10.1111/1365-2656.12209 CrossRefPubMedGoogle Scholar
  99. Loya Y, Sakai K, Yamazato K, Nakano Y, Sambali H, van Woesik R (2001) Coral bleaching: the winners and losers. Ecol Lett 4:122–131.  https://doi.org/10.1046/j.1461-0248.2001.00203.x CrossRefGoogle Scholar
  100. Madin JS, Connolly SR (2006) Ecological consequences of major hydrodynamic disturbances on coral reefs. Nature 444:477–480.  https://doi.org/10.1038/nature05328 CrossRefPubMedGoogle Scholar
  101. McClanahan TR, Maina J, Pet-Soede L (2002) Effects of the 1998 coral mortality event on Kenyan coral reefs and fisheries. Ambio 31:543–550.  https://doi.org/10.1579/0044-7447-31.7.543 CrossRefPubMedGoogle Scholar
  102. McClanahan TR, Baird AH, Marshall PA, Toscano MA (2004) Comparing bleaching and mortality responses of hard corals between southern Kenya and the Great Barrier Reef, Australia. Mar Pollut Bull 48:327–335.  https://doi.org/10.1016/j.marpolbul.2003.08.024 CrossRefPubMedGoogle Scholar
  103. McCormick MI, Allan BJ (2017) Interspecific differences in how habitat degradation affects escape response. Sci Rep 7:426.  https://doi.org/10.1038/s41598-017-00521-0 CrossRefPubMedPubMedCentralGoogle Scholar
  104. McCormick MI, Moore JAY, Munday PL (2010) Influence of habitat degradation on fish replenishment. Coral Reefs 29:537–546.  https://doi.org/10.1007/s00338-010-0620-7 CrossRefGoogle Scholar
  105. McCowan DM, Pratchett MS, Baird AH (2012) Variation in bleaching susceptibility and mortality attributable to growth forms. In: Proceedings of 12th international coral reef symposium, Cairns, vol 9A, pp 1–6Google Scholar
  106. McIlwain JL, Jones GP (1997) Prey selection by an obligate coral-feeding wrasse and its response to small-scale disturbance. Mar Ecol Prog Ser 155:189–198.  https://doi.org/10.3354/meps155189 CrossRefGoogle Scholar
  107. Messmer V, Jones GP, Munday PL, Holbrook SJ, Schmitt RJ, Brooks AJ (2011) Habitat diversity as a determinant of fish community structure on coral reefs. Ecology 92:2285–2298.  https://doi.org/10.1890/11-0037.1 CrossRefPubMedGoogle Scholar
  108. Mouillot D, Villéger S, Parravicini V, Kulbicki M, Arias-González JE, Bender M et al (2014) Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc Natl Acad Sci USA 111:13757–13762.  https://doi.org/10.1073/pnas.1317625111 CrossRefPubMedGoogle Scholar
  109. Mumby PJ, Steneck RS (2008) Coral reef management and conservation in light of rapidly evolving ecological paradigms. Trends Ecol Evol 23:555–563.  https://doi.org/10.1016/j.tree.2008.06.011 CrossRefPubMedGoogle Scholar
  110. Munday PL (2001) Fitness consequences of habitat use and competition among coral-dwelling fishes. Oecologia 128:585–593.  https://doi.org/10.1007/s004420100690 CrossRefPubMedGoogle Scholar
  111. Munday PL (2004) Habitat loss, resource specialization, and extinction on coral reefs. Glob Change Biol 10:1642–1647.  https://doi.org/10.1111/j.1365-2486.2004.00839.x CrossRefGoogle Scholar
  112. Munday PL, Jones GP, Pratchett MS, Williams A (2008) Climate change and the future for coral reef fishes. Fish Fish 9:261–285.  https://doi.org/10.1111/j.1467-2979.2008.00281 CrossRefGoogle Scholar
  113. Nash KL, Graham NAJ, Jennings S, Wilson SK, Bellwood DR (2016) Herbivore cross-scale redundancy supports response diversity and promotes coral reef resilience. J Appl Ecol 53:646–655.  https://doi.org/10.1111/1365-2664.12430 CrossRefGoogle Scholar
  114. Noonan SHC, Jones GP, Pratchett MS (2012) Coral size, health and structural complexity: effects on the ecology of a coral reef damselfish. Mar Ecol Prog Ser 456:127–137.  https://doi.org/10.3354/meps09687 CrossRefGoogle Scholar
  115. Pisapia C, Pratchett MS, Cole A (2012) Butterflyfishes feeding responses to bleached corals. In: Proceedings of 12th international coral reef symposium, Cairns, vol 13C, pp 1–5Google Scholar
  116. Pratchett MS (2014) Feeding preferences and dietary specialization among obligate coral-feeding butterflyfishes. In: Pratchett MS, Berumen ML, Kapoor B (eds) Biology of butterflyfishes. CRC, Boca Raton, pp 140–179Google Scholar
  117. Pratchett MS, Wilson SK, Berumen ML, McCormick MI (2004) Sub-lethal effects of coral bleaching on an obligate coral feeding butterflyfish. Coral Reefs 23:352–356.  https://doi.org/10.1007/s00338-004-0394-x CrossRefGoogle Scholar
  118. Pratchett MS, Wilson SK, Baird AH (2006) Declines in the abundance of Chaetodon butterflyfishes (Chaetodontidae) following extensive coral depletion. J Fish Biol 69:1269–1280.  https://doi.org/10.1111/j.1095-8649.2006.01161.x CrossRefGoogle Scholar
  119. Pratchett MS, Munday PL, Wilson SK, Graham NAJ, Cinner JE, Bellwood DR et al (2008a) Effects of climate-induced coral bleaching on coral-reef fishes: ecological and economic consequences. Oceanogr Mar Biol 46:251–296.  https://doi.org/10.1201/9781420065756.ch6 CrossRefGoogle Scholar
  120. Pratchett MS, Berumen ML, Marnane MJ, Eagle JE, Pratchett DJ (2008b) Habitat associations of juvenile versus adult butterflyfishes. Coral Reefs 27:541–551.  https://doi.org/10.1007/s00338-008-0357-8 CrossRefGoogle Scholar
  121. Pratchett MS, Wilson SK, Graham NAJ, Munday PL, Jones GP, Polunin NVC (2009) Coral bleaching and consequences for motile reef organisms: past, present and uncertain future effects. In: van Oppen MJH, Lough JM (eds) Coral bleaching: patterns, processes, causes and consequences. Springer, Heidelberg, pp 139–158CrossRefGoogle Scholar
  122. Pratchett MS, Bay LK, Gehrke PC, Koehn J, Osborne K, Pressey RL et al (2011a) Contribution of climate change to degradation and loss of critical fish habitats in Australian aquatic environments. Mar Freshwater Res 62:1062–1081.  https://doi.org/10.1071/MF10303 CrossRefGoogle Scholar
  123. Pratchett MS, Hoey AS, Wilson SK, Messmer V, Graham NAJ (2011b) Changes in the biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Diversity 3:424–452.  https://doi.org/10.3390/d3030424 CrossRefGoogle Scholar
  124. Pratchett MS, Munday PL, Graham NAJ, Kronen M, Pinica S, Friedman K et al (2011c) Vulnerability of coastal fisheries in the tropical Pacific to climate change. In: Bell JD, Johnson JE, Hobday AJ (eds) Vulnerability of tropical pacific fisheries and aquaculture to climate change. Secretariat for the Pacific Community, Noumea, New Caledonia, pp 493–576Google Scholar
  125. Pratchett MS, Coker DJ, Jones GP, Munday PL (2012) Specialization in habitat use by coral reef damselfishes and their susceptibility to habitat loss. Ecol Evol 2:2168–2180.  https://doi.org/10.1002/ece3.321 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Pratchett MS, McCowan DM, Heron S, Maynard JA (2013) Changes in bleaching susceptibility among corals subject to ocean warming and recurrent bleaching in Moorea, French Polynesia. PLoS One 8:e70443.  https://doi.org/10.1371/journal.pone.0070443 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Pratchett MS, Hoey AS, Wilson SK (2014) Reef degradation and the loss of critical ecosystem goods and services provided by coral reef fishes. Curr Opin Environ Sustain 7:37–43.  https://doi.org/10.1016/j.cosust.2013.11.022 CrossRefGoogle Scholar
  128. Pratchett MS, Anderson KD, Hoogenboom MO, Widman E, Baird AH, Pandolfi JM et al (2015a) Spatial, temporal and taxonomic variation in coral growth: implications for the structure and function of coral reef ecosystems. Oceanogr Mar Biol 53:215–295.  https://doi.org/10.1201/b18733-7 CrossRefGoogle Scholar
  129. Pratchett MS, Blowes SA, Coker D, Kubacki E, Nowicki J, Hoey AS (2015b) Indirect benefits of scleractinian corals for non-corallivorous butterflyfishes. Coral Reefs 34:665–672.  https://doi.org/10.1007/s00338-014-1254-y CrossRefGoogle Scholar
  130. Pratchett MS, Cameron D, Donelson J, Evans L, Frisch AJ, Hobday AJ et al (2017) Effects of climate change on coral grouper (Plectropomus spp.) and possible adaptation options. Rev Fish Biol Fish 27:297–316.  https://doi.org/10.1007/s11160-016-9455-9 CrossRefGoogle Scholar
  131. Rasher DB, Hoey AS, Hay ME (2013) Consumer diversity interacts with prey defenses to drive ecosystem function. Ecology 94:1347–1358.  https://doi.org/10.1890/12-0389.1 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Richardson LE, Graham NA, Pratchett MS, Hoey AS (2017) Structural complexity mediates functional structure of reef fish assemblages among coral habitats. Environ Biol Fish 100:193–207.  https://doi.org/10.1007/s10641-016-0571-0 CrossRefGoogle Scholar
  133. Rogers A, Blanchard JL, Mumby PJ (2014) Vulnerability of coral reef fisheries to a loss of structural complexity. Curr Biol 24:1000–1005.  https://doi.org/10.1016/j.cub.2014.03.026 CrossRefPubMedGoogle Scholar
  134. Sano M (2001) Short term responses of fishes to macroalgal overgrowth on coral rubble on a degraded reef at Iriomote Island, Japan. Bull Mar Sci 68:543–556Google Scholar
  135. Sano M, Shimizu M, Nose Y (1984) Changes in structure of coral-reef fish communities by destruction of hermatypic corals — observational and experimental views. Pac Sci 38:51–79Google Scholar
  136. Sano M, Shimizu M, Nose Y (1987) Long-term effects of destruction of hermatypic corals by Acanthaster planci infestation of reef fish communities at Iriomote Island, Japan. Mar Ecol Prog Ser 37:191–199.  https://doi.org/10.3354/meps037191 CrossRefGoogle Scholar
  137. Sheppard CRC, Spalding S, Bradshaw C, Wilson SK (2002) Erosion vs recovery of coral reefs after 1998 El Niño: Chagos reefs, Indian Ocean. Ambio 31:40–48.  https://doi.org/10.1579/0044-7447-31.1.40 CrossRefPubMedGoogle Scholar
  138. Smith SV, Buddemeier RW (1992) Global change and coral reef ecosystems. Annu Rev Ecol Syst 23:89–118.  https://doi.org/10.1146/annurev.es.23.110192.000513 CrossRefGoogle Scholar
  139. Speers AE, Besedin EY, Palardy JE, Moore C (2016) Impacts of climate change and ocean acidification on coral reef fisheries: an integrated ecological–economic model. Ecol Econ 128:33–43.  https://doi.org/10.1016/j.ecolecon.2016.04.012 CrossRefGoogle Scholar
  140. Stella JS, Pratchett MS, Hutchings PA, Jones GP (2011) Coral-associated invertebrates: diversity, ecological importance and vulnerability to disturbance. Oceanogr Mar Biol 49:43–104Google Scholar
  141. Syms C, Jones GP (2000) Disturbance, habitat structure, and the dynamics of a coral-reef fish community. Ecology 81:2714–2729.  https://doi.org/10.1890/0012-9658(2000)081 CrossRefGoogle Scholar
  142. Walther G-R, Post E, Convey P, Menzels A, Parmesan C, Beebee TJC et al (2002) Ecological responses to recent climate change. Nature 416:389–395.  https://doi.org/10.1038/416389a CrossRefPubMedGoogle Scholar
  143. Wen C, Pratchett MS, Almany G, Jones GP (2013) Patterns of recruitment and microhabitat associations for three predatory coral reef fishes on the southern Great Barrier Reef, Australia. Coral Reefs 32:389–398.  https://doi.org/10.1007/s00338-012-0985-x CrossRefGoogle Scholar
  144. Wen CKC, Bonin MC, Harrison HB, Williamson DH, Jones GP (2016) Dietary shift in juvenile coral trout (Plectropomus maculatus) following coral reef degradation from a flood plume disturbance. Coral Reefs 35:451–455.  https://doi.org/10.1007/s00338-016-1398-x CrossRefGoogle Scholar
  145. Wilkinson CR (2000) World-wide coral reef bleaching and mortality during 1998: a global climate change warning for the new millennium? In: Sheppard CRC (ed) Seas at the millennium: an environmental evaluation. Elsevier Science, Amsterdam, pp 43–57Google Scholar
  146. Williamson DH, Ceccarelli DM, Evans RD, Jones GP, Russ GR (2014) Habitat dynamics, marine reserve status, and the decline and recovery of coral reef fish communities. Ecol Evol 4:337–354.  https://doi.org/10.1002/ece3.934 CrossRefPubMedPubMedCentralGoogle Scholar
  147. Wilson SK, Graham NAJ, Pratchett MS, Jones GP, Polunin N (2006) Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient? Glob Change Biol 12:1–15.  https://doi.org/10.1111/j.1365-2486.2006.01252.x CrossRefGoogle Scholar
  148. Wilson SK, Burgess SC, Cheal AJ, Emslie M, Fisher R, Miller I et al (2008) Habitat utilization by coral reef fish: implications for specialists vs. generalists in a changing environment. J Anim Ecol 77:220–228.  https://doi.org/10.1111/j.1365-2656.2007.01341.x CrossRefPubMedGoogle Scholar
  149. Wilson SK, Depczynski M, Fisher R, Holmes TH, O’Leary R, Tinkler P (2010) Habitat associations of juvenile fish at Ningaloo Reef, Western Australia: the importance of coral and algae. PLoS One 5:e15185.  https://doi.org/10.1371/journal.pone.0015185 CrossRefPubMedPubMedCentralGoogle Scholar
  150. Wilson SK, Graham NAJ, Pratchett MS (2014) Susceptibility of butterflyfish to habitat disturbance: Do ‘chaets’ ever prosper? In: Pratchett MS, Berumen ML, Kapoor B (eds) Biology of butterflyfishes. CRC, Boca Raton, pp 226–245Google Scholar
  151. Wilson SK, Depczynski M, Holmes TH, Noble MM, Radford BT, Tinkler P et al (2017) Climatic conditions and nursery habitat quality provide indicators of reef fish recruitment strength. Limnol Oceanogr.  https://doi.org/10.1002/lno.10540

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • M. S. Pratchett
    • 1
  • C. A. Thompson
    • 2
  • A. S. Hoey
    • 1
  • P. F. Cowman
    • 1
  • S. K. Wilson
    • 3
    • 4
  1. 1.ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleAustralia
  2. 2.College of Science and Engineering and ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleAustralia
  3. 3.Marine Science Program, Government of Western Australia Department of Biodiversity, Conservation and AttractionsKensingtonAustralia
  4. 4.Oceans InstituteUniversity of Western AustraliaCrawleyAustralia

Personalised recommendations