Characterization of Graphene by Confocal Raman Spectroscopy

  • Christoph NeumannEmail author
  • Christoph Stampfer
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 66)


Confocal Raman spectroscopy has emerged as a key characterization technique in graphene research, as with this technique important material characteristics can be obtained locally and noninvasively. In this chapter, the fundamentals of the Raman spectrum of graphene are reviewed and the utilization of Raman spectroscopy for graphene characterization is demonstrated. In this regard, we show how crucial properties of graphene samples, i.e. doping , strain , defect-density and layer-number can be extracted from the Raman spectrum. Accessing these quantities is highly relevant for monitoring, understanding and improving graphene synthesis processes and device fabrication techniques for research and emerging industrial applications.


Confocal Raman Spectroscopy Graphene Samples Light-emitting diodesLight-emitting Diodes Bilayer Graphene Doped Charge Carriers 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank Sven Reichardt, Marc Drögeler, Luca Banszerus, Michael Schmitz, Donatus Halpaap, Bernat Terrés, Takashi Taniguchi, Kenji Watanabe, Slava V. Rotkin, Francesco Mauri, Pedro Venezuela and Bernd Beschoten, who contributed in different ways to the sample fabrication, measurements and data interpretation shown in this chapter.


  1. 1.
    K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, A. Firsov, Science 306(5696), 666 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6(3), 183 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    A. Geim, I. Grigorieva, Nature 499(7459), 419 (2013)CrossRefGoogle Scholar
  4. 4.
    L. Britnell, R. Gorbachev, R. Jalil, B. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. Katsnelson, L. Eaves, S. Morozov et al., Science 335(6071), 947 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    B. Hunt, J. Sanchez-Yamagishi, A. Young, M. Yankowitz, B.J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero et al., Science 340(6139), 1427 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    B.W. Baugher, H.O. Churchill, Y. Yang, P. Jarillo-Herrero, Nat. Nanotechnol. 9(4), 262 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    R. Saito, M. Fujita, G. Dresselhaus, U.M. Dresselhaus, Appl. Phys. Lett. 60(18), 2204 (1992)ADSCrossRefGoogle Scholar
  8. 8.
    D. Basko, S. Piscanec, A. Ferrari, Phys. Rev. B 80(16), 165413 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    M. Lazzeri, C. Attaccalite, L. Wirtz, F. Mauri, Phys. Rev. B 78(8), 081406 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    P. Venezuela, M. Lazzeri, F. Mauri, Phys. Rev. B 84(3), 035433 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    A.C. Ferrari, D.M. Basko, Nat. Nanotechnol. 8(4), 235 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    M. Mohr, J. Maultzsch, E. Dobardžić, S. Reich, I. Milošević, M. Damnjanović, A. Bosak, M. Krisch, C. Thomsen, Phys. Rev. B 76(3), 035439 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    J. Maultzsch, S. Reich, C. Thomsen, Phys. Rev. B 70(15), 155403 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    A. Grüneis, J. Serrano, A. Bosak, M. Lazzeri, S.L. Molodtsov, L. Wirtz, C. Attaccalite, M. Krisch, A. Rubio, F. Mauri et al., Phys. Rev. B 80(8), 085423 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    S. Piscanec, M. Lazzeri, F. Mauri, A. Ferrari, J. Robertson, Phys. Rev. Lett. 93(18), 185503 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    S. Piscanec, M. Lazzeri, J. Robertson, A.C. Ferrari, F. Mauri, Phys. Rev. B 75(3), 035427 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    C. Thomsen, S. Reich, Phys. Rev. Lett. 85(24), 5214 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    R. Saito, A. Jorio, A. Souza Filho, G. Dresselhaus, M. Dresselhaus, M. Pimenta, Phys. Rev. Lett. 88(2), 027401 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    O. Frank, M. Mohr, J. Maultzsch, C. Thomsen, I. Riaz, R. Jalil, K.S. Novoselov, G. Tsoukleri, J. Parthenios, K. Papagelis et al., ACS Nano 5(3), 2231 (2011)CrossRefGoogle Scholar
  20. 20.
    S. Berciaud, X. Li, H. Htoon, L.E. Brus, S.K. Doorn, T.F. Heinz, Nano Lett. 13(8), 3517 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    F. Herziger, M. Calandra, P. Gava, P. May, M. Lazzeri, F. Mauri, J. Maultzsch, Phys. Rev. Lett. 113(18), 187401 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    M. Mohr, J. Maultzsch, C. Thomsen, Phys. Rev. B 82(20), 201409 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Nano Lett. 7(2), 238 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    A. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov, S. Roth, A. Geim, Phys. Rev. Lett. 97(18), 187401 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    C. Neumann, S. Reichardt, P. Venezuela, M. Drögeler, L. Banszerus, M. Schmitz, K. Watanabe, T. Taniguchi, F. Mauri, B. Beschoten et al., Nat. Commun. 6, 8429 (2015)CrossRefGoogle Scholar
  26. 26.
    L.G. Cançado, A. Jorio, E.M. Ferreira, F. Stavale, C. Achete, R. Capaz, M. Moutinho, A. Lombardo, T. Kulmala, A. Ferrari, Nano Lett. 11(8), 3190 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    M.M. Lucchese, F. Stavale, E.M. Ferreira, C. Vilani, M. Moutinho, R.B. Capaz, C. Achete, A. Jorio, Carbon 48(5), 1592 (2010)CrossRefGoogle Scholar
  28. 28.
    C. Stampfer, F. Molitor, D. Graf, K. Ensslin, A. Jungen, C. Hierold, L. Wirtz, Appl. Phys. Lett. 91(24), 241907 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    J. Yan, Y. Zhang, P. Kim, A. Pinczuk, Phys. Rev. Lett. 98(16), 166802 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    G. Froehlicher, S. Berciaud, Phys. Rev. B 91(20), 205413 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. Saha, U. Waghmare, K. Novoselov, H. Krishnamurthy, A. Geim, A. Ferrari et al., Nat. Nanotechnol. 3(4), 210 (2008)CrossRefGoogle Scholar
  32. 32.
    M. Lazzeri, F. Mauri, Phys. Rev. Lett. 97(26), 266407 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    S. Pisana, M. Lazzeri, C. Casiraghi, K.S. Novoselov, A.K. Geim, A.C. Ferrari, F. Mauri, Nat. Mater. 6(3), 198 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    T. Mohiuddin, A. Lombardo, R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. Basko, C. Galiotis, N. Marzari, Phys. Rev. B 79(20), 205433 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    M. Mohr, K. Papagelis, J. Maultzsch, C. Thomsen, Phys. Rev. B 80(20), 205410 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    J. Zabel, R.R. Nair, A. Ott, T. Georgiou, A.K. Geim, K.S. Novoselov, C. Casiraghi, Nano Lett. 12(2), 617 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    D. Yoon, Y.W. Son, H. Cheong, Phys. Rev. Lett. 106(15), 155502 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    G. Tsoukleri, J. Parthenios, K. Papagelis, R. Jalil, A.C. Ferrari, A.K. Geim, K.S. Novoselov, C. Galiotis, Small 5(21), 2397 (2009)CrossRefGoogle Scholar
  39. 39.
    M. Huang, H. Yan, T.F. Heinz, J. Hone, Nano Lett. 10(10), 4074 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    J.E. Lee, G. Ahn, J. Shim, Y.S. Lee, S. Ryu, Nat. Commun. 3, 1024 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    S. Engels, B. Terrés, F. Klein, S. Reichardt, M. Goldsche, S. Kuhlen, K. Watanabe, T. Taniguchi, C. Stampfer, Phys. Status Solidi (b) 251(12), 2545 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    M. Drögeler, F. Volmer, M. Wolter, B. Terrés, K. Watanabe, T. Taniguchi, G. Güntherodt, C. Stampfer, B. Beschoten, Nano Lett. (2014)Google Scholar
  43. 43.
    L. Banszerus, M. Schmitz, S. Engels, J. Dauber, M. Oellers, F. Haupt, K. Watanabe, T. Taniguchi, B. Beschoten, C. Stampfer, Sci. Adv. 1(6), e1500222 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    F. Forster, A. Molina-Sanchez, S. Engels, A. Epping, K. Watanabe, T. Taniguchi, L. Wirtz, C. Stampfer, Phys. Rev. B 88, 085419 (2013). ADSCrossRefGoogle Scholar
  45. 45.
    A.V. Kretinin, Y. Cao, J.S. Tu, G. Yu, R. Jalil, K.S. Novoselov, S. Haigh, A. Gholinia, A. Mishchenko, M. Lozada et al., Nano Lett. 14(6), 3270 (2014)ADSCrossRefGoogle Scholar
  46. 46.
    N.J. Couto, D. Costanzo, S. Engels, D.K. Ki, K. Watanabe, T. Taniguchi, C. Stampfer, F. Guinea, A.F. Morpurgo, Phys. Rev. X 4(4), 041019 (2014)Google Scholar
  47. 47.
    C. Neumann, S. Reichardt, M. Drögeler, B. Terrés, K. Watanabe, T. Taniguchi, B. Beschoten, S.V. Rotkin, C. Stampfer, Nano Lett. 15(3), 1547 (2015)ADSCrossRefGoogle Scholar
  48. 48.
    A.C. Ferrari, Solid State Commun. 143(1), 47 (2007)ADSCrossRefGoogle Scholar
  49. 49.
    S. Reich, C. Thomsen, Philos. Trans. R. Soc. Lond Ser. A: Mat. Phys. Eng. Sci. 362(1824), 2271 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.JARA-FIT and 2nd Institute of PhysicsRWTH Aachen UniversityAachenGermany
  2. 2.Peter Grünberg Institute (PGI-9)Forschungszentrum JülichJülichGermany

Personalised recommendations