Damping Behavior of Aluminum Replicated Foam

  • W. Riehemann
  • A. Finkelstein
  • U. Arlic
  • D. Husnullin
Part of the Innovation and Discovery in Russian Science and Engineering book series (IDRSE)


Damping is an important property of porous materials that defines its application for vibroinsulation. Damping of cast-replicated aluminum alloy AlSi7 (porosity 52–54%) has been investigated. In order to produce the specimen, the technique of vacuum impregnation of a leachable porous loose bed was applied. Damping was measured as the logarithmic decrement of free bending beam vibrations. Damping versus maximum strain amplitude of porous bending beams for various pore sizes has been obtained. As compared to the metal foams of higher porosity (85%), there is no considerable influence of pore size on the damping of replicated aluminum foam of small pore size (<1.6 mm). On the contrary, the damping behavior of replicated aluminum foam with coarse porous structure was like that of a metal foam.


Replicated aluminum foam Bending beam Pore size Vibration Vibroinsulation Damping Strain amplitude 



The authors would like to acknowledge Composite Materials Ltd. (Kirovgrad, Russia) for the kind assistance in sample production and machining.


  1. 1.
    Kuchek, H. A. (1964). Patent US 3138856 Method of producing clad porous metal articles.Google Scholar
  2. 2.
    Despois, J.-F. (2005). Replicated aluminium foam, processing and properties, Ecole Politechnique Federale de Lausanne, p. 265.Google Scholar
  3. 3.
    Furman, E. L., Finkelstein, A. B., & Cherny, M. L. (2013). Permeability of aluminium foams produced by replication casting. Metals, 3(1), 49–57.CrossRefGoogle Scholar
  4. 4.
    Furman, E. L., Finkelstein, А. B., & Cherny, M. L. (2014). The anisotropy of replicated aluminum foams. Advances in Materials Science and Engineering, 1–6.CrossRefGoogle Scholar
  5. 5.
    Golovin, I. S., Sinning, H. R., Göken, J., & Riehemann, W. (2003). Amplitude dependent damping of some metallic foams. Solid State Phenomena, 89, 267–272.CrossRefGoogle Scholar
  6. 6.
    Zhang, Y., Ma, N., & Wang, H. (2007). Effect of particulate/Al interface on the damping behavior of in situ TiB2. Materials Letters, 61, 3273–3275.CrossRefGoogle Scholar
  7. 7.
    Göken, J., & Riehemann, W. (2002). Thermoelastic damping of the low density metals AZ91 and DISPAL. Materials Science and Engineering A, 324(1–2), 134–140.CrossRefGoogle Scholar
  8. 8.
    Kazantsev, S. P., & Husnullin, D. V. Technological processes of obtaining of replicated aluminium foam. Contemporary Engineering Sciences, 8(16), 723–727.CrossRefGoogle Scholar
  9. 9.
    Golovin, I. S., & Sinning, H.-R. (2003). Damping in some cellular metallic materials. Journal of Alloys and Compounds, 355(1–2), 2–9.CrossRefGoogle Scholar
  10. 10.
    Granato, A., & Lücke, K. (1956). Theory of mechanical damping due to dislocations. Journal of Applied Physics, 27(6), 583.CrossRefGoogle Scholar
  11. 11.
    Golovin, I. S., Sinning, H.-R., Göken, J., & Riehemann, W. (2001). Mechanical damping of some Al foams under cyclic deformation. Proc. of MetFoam, Int. Conf. on Cellular Metals and Metal Foaming Technology, 323–328.Google Scholar
  12. 12.
    Golovin, I. S., Sinning, H.-R., Göken, J., & Riehemann, W. (2004). Fatigue related damping in some cellular metallic materials. Materials Science and Engineering A, 370(1–2), 537–541.CrossRefGoogle Scholar
  13. 13.
    Göken, J., & Riehemann, W. (2004). Damping behaviour of AZ91 magnesium alloy with cracks. Materials Science and Engineering A, 370(1–2), 417–421.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • W. Riehemann
    • 1
  • A. Finkelstein
    • 2
  • U. Arlic
    • 1
  • D. Husnullin
    • 2
  1. 1.Technical University ClausthalClausthal-ZellerfeldGermany
  2. 2.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations