Correlation of Instrumented Charpy Load-Displacement Curves with Crack Growth in API 5L Grade X80 Pipeline Steels

  • V. Khotinov
  • V. Farber
  • A. Morozova
Part of the Innovation and Discovery in Russian Science and Engineering book series (IDRSE)


The correlation of instrumented Charpy data analysis with fracture mechanisms in API 5L grade X80 pipeline steels has been investigated. Optical fracture analysis has shown solely the occurrence of ductile zones on a fracture surface: shear zone LC, “lamellar” zone LB with separations, and shear lips λ. New parameters of smoothed instrumented impact load vs. displacement curves are suggested for the characterization of impact properties. Co-analysis of the instrumented impact test curves and fracture surface zones allows evaluating crack resistance in addition to standard required characteristics (Charpy toughness, transition temperature, impact yield strength, etc.).


Instrumented Charpy test Fracture surface Crack propagation zones API X80 steel 


  1. 1.
    Arabey, I. Y., Pyshmintsev, I. Y., Farber, V. M., Khotinov, V. A., & Struin, A. O. (2012). Failure of pipe steel of X80 (K65) strength class. Steel in Translation, 42(3), 212–218.CrossRefGoogle Scholar
  2. 2.
    Farber, V. M., Pyshmintsev, I. Y., Khotinov, V. A., et al. (2010). Proc. of XVIII Int. Pipeline Conf. (pp. 108–117). Chelyabinsk: RosNITI. Google Scholar
  3. 3.
    Manahan, M. P., & Stonesifer, R. B. (2000). The difference between total absorbed energy measured using an instrumented striker and that obtained using an optical encoder, ESIS/ASTM STP1380 (pp. 181–197).Google Scholar
  4. 4.
    Tronskar, J. P., Mannan, M. A., & Lai, M. O. (2002). Measurement of fracture initiation toughness and crack resistance in instrumented Charpy impact testing. Engineering Fracture Mechanics, 69, 321–328.CrossRefGoogle Scholar
  5. 5.
    Kobayashi, T., Inoue, N., Morita, S., & Toda, H. (2000). On the accuracy of measurement and calibration of load signal in the instrumented Charpy impact test, ESIS/ASTM STP1380 (pp. 198–209).Google Scholar
  6. 6.
    Viehrig, H. W., Boehmert, J., Richter, H., & Valo, M. (2000). Use of instrumented Charpy test for determination of crack initiation toughness, ESIS/ASTM STP1380 (pp. 354–364).Google Scholar
  7. 7.
    Steel Charpy, V. (2000) Notch pendulum impact test – Instrumented test method, ISO 14556.Google Scholar
  8. 8.
    Standard test method for instrumented impact testing of metallic materials, ASTM E2298 (2013).Google Scholar
  9. 9.
    Botvina, L. R. (2008). Fracture: Kinetics, mechanisms and total regularities. Moscow: Nauka publishing house.Google Scholar
  10. 10.
    Mannucci, G., & Demofonti, G. (2011). Control of ductile fracture propagation in X80 gas pipeline. Journal of Pipeline Engineering, 10(3), 133–145.Google Scholar
  11. 11.
    Wilkowski, G., Rudland, D., & Wolterman, R. (2005). Predicting the brittle-to-ductile fracture initiation transition temperature for surface-cracked pipe from Charpy data. In Proc. of ASME Pressure Vessels and Piping Conf. 6 (pp. 545–550). Denver, USA.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • V. Khotinov
    • 1
  • V. Farber
    • 1
  • A. Morozova
    • 1
  1. 1.Institute of Materials Science and MetallurgyUral Federal UniversityYekaterinburgRussia

Personalised recommendations