Advertisement

Arterial Stiffness in Early Phases of Prehypertension

  • Stéphane Laurent
  • Pedro Guimarães Cunha
Chapter
Part of the Updates in Hypertension and Cardiovascular Protection book series (UHCP)

Abstract

Children, adolescent, and adults with prehypertension have a high risk for developing hypertension. Modifiable cardiovascular risk factors, such as prediabetes and diabetes mellitus, overweight and obesity, high lipid diet, high salt intake, and lack of regular physical activity play a crucial role in the transition between prehypertension and hypertension. Because these cardiovascular risk factors are key determinants of increased arterial stiffness, and because increased arterial stiffness is a determinant of incident hypertension, the question arises as to whether arterial stiffness plays a crucial role in the transition between early phases of prehypertension and hypertension. In this review, we will analyze the epidemiological and hemodynamic evidences that increased arterial stiffness is a determinant of incident hypertension. We will also address the complexity of this relationship by discussing the hemodynamic and biomechanical pathways involved in the bidirectional influence between arterial stiffness and blood pressure. And then, we will discuss (a) the predictive value of arterial stiffness not only for incident hypertension, but also for cardiovascular events, (b) the influence of low-grade inflammation associated with chronic diseases in the development of arterial stiffness and subsequently hypertension, (c) how the concept of Early Vascular Ageing can help understanding the relationship between arterial stiffness and prehypertension, and (d) the relationships between metabolic syndrome, arterial stiffness, and prehypertension in children.

Keywords

Aging Arterial stiffness Artery Hypertension Large artery Prehypertension 

References

  1. 1.
    Egan BM, Stevens-Fabry S. Prehypertension—prevalence, health risks, and management strategies. Nat Rev Cardiol. 2015;12:289–300.CrossRefGoogle Scholar
  2. 2.
    Falkner B. Recent clinical and translational advances in pediatric hypertension. Hypertension. 2015;65:926–31.CrossRefGoogle Scholar
  3. 3.
    Vasan RS, Larson MG, Leip EP, Evans JC, O’Donnell CJ, Kannel WB, Levy D. Impact of high-normal blood pressure on the risk of cardiovascular disease. N Engl J Med. 2001;345:1291–7.CrossRefGoogle Scholar
  4. 4.
    Egan BM, Julius S. Prehypertension: risk stratification and management considerations. Curr Hypertens Rep. 2008;10(5):359–66.CrossRefGoogle Scholar
  5. 5.
    Lee M, Saver JL, Chang B, Chang KH, Hao Q, Ovbiagele B. Presence of baseline prehypertension and risk of incident stroke: a meta-analysis. Neurology. 2011;77(14):1330–7.CrossRefGoogle Scholar
  6. 6.
    Lorenzo C, Aung K, Stern MP, Haffner SM. Pulse pressure, prehypertension, and mortality: the San Antonio heart study. Am J Hypertens. 2009;22(11):1219–26.CrossRefGoogle Scholar
  7. 7.
    Zimlichman R. Treatment of hypertension and metabolic syndrome: lowering blood pressure is not enough for organ protection, new approach-arterial destiffening. Curr Hypertens Rep. 2014;16:479–84.CrossRefGoogle Scholar
  8. 8.
    Liao D, Arnett DK, Tyroler HA, Riley WA, Chambless LE, Szklo M, Heiss G. Arterial stiffness and the development of hypertension. The ARIC study. Hypertension. 1999;34:201–6.CrossRefGoogle Scholar
  9. 9.
    Dernellis J, Panaretou M. Aortic stiffness is an independent predictor of progression to hypertension in nonhypertensive subjects. Hypertension. 2005;45:426–31.CrossRefGoogle Scholar
  10. 10.
    Najjar SS, Scuteri A, Shetty V, Wright JG, Muller DC, Fleg JL, Spurgeon HP, Ferrucci L, Lakatta EG. Pulse wave velocity is an independent predictor of the longitudinal increase in systolic blood pressure and of incident hypertension in the Baltimore Longitudinal Study of Aging. J Am Coll Cardiol. 2008;51:1377–83.CrossRefGoogle Scholar
  11. 11.
    Kaess BM, Rong J, Larson MG, Hamburg NM, Vita JA, Levy D, Benjamin EJ, Vasan RS, Mitchell GF. Aortic stiffness, blood pressure progression, and incident hypertension. JAMA. 2012;308:875–81.CrossRefGoogle Scholar
  12. 12.
    Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, Pannier B, Vlachopoulos C, Wilkinson I, Struijker-Boudier H. Expert Consensus Document on arterial stiffnes: methodological aspects and clinical applications. Eur Heart J. 2006;27:2588–605.CrossRefGoogle Scholar
  13. 13.
    Nichols WW, O’Rourke MF. McDonald’s blood flow in arteries; Theoretical, experimental and clinical principles. 5th ed. Oxford: Oxford University Press; 2005. 624 p.Google Scholar
  14. 14.
    Herbert A, Cruickshank K, Laurent S, Boutouyrie P, on behalf of The Reference Values for Arterial Measurements Collaboration. Establishing reference values for central blood pressure and its amplification in a general healthy population and according to cardiovascular risk-factors. Eur Heart J. 2014;35:3122–33.CrossRefGoogle Scholar
  15. 15.
    McEniery CM, Yasmin, McDonnell B, Munnery M, Wallace SM, Rowe CV, Cockcroft JR, Wilkinson IB. Central pressure: variability and impact of cardiovascular risk factors: the Anglo-Cardiff Collaborative Trial II. Hypertension. 2008;51(6):1476–82.CrossRefGoogle Scholar
  16. 16.
    Yano Y, Neeland IJ, Ayers C, Peshock R, Berry JD, Lloyd-Jones DM, Greenland P, Mitchell GF, Vongpatanasin W. Hemodynamic and mechanical properties of the proximal aorta in young and middle-aged adults with isolated systolic hypertension: the Dallas Heart Study. Hypertension. 2017;70:158–65.CrossRefGoogle Scholar
  17. 17.
    Redheuil A, Yu WC, Wu CO, Mousseaux E, de Cesare A, Yan R, Kachenoura N, Bluemke D, Lima JA. Reduced ascending aortic strain and distensibility: earliest manifestations of vascular aging in humans. Hypertension. 2010;55(2):319–26.CrossRefGoogle Scholar
  18. 18.
    Urbina EM, Khoury PR, McCoy C, Daniels SR, Kimball TR, Dolan LM. Cardiac and vascular consequences of pre-hypertension in youth. J Clin Hypertens (Greenwich). 2011;13(5):332–42.CrossRefGoogle Scholar
  19. 19.
    Drukteinis JS, Roman MJ, Fabsitz RR, Lee ET, Best LG, Russell M, Devereux RB. Cardiac and systemic hemodynamic characteristics of hypertension and prehypertension in adolescents and young adults: the Strong Heart Study. Circulation. 2007;115(2):221–7.CrossRefGoogle Scholar
  20. 20.
    Manios E, Tsivgoulis G, Koroboki E, Stamatelopoulos K, Papamichael C, Toumanidis S, Stamboulis E, Vemmos K, Zakopoulos N. Impact of prehypertension on common carotid artery intima-media thickness and left ventricular mass. Stroke. 2009;40(4):1515–8.CrossRefGoogle Scholar
  21. 21.
    Knight EL, Kramer HM, Curhan GC. High-normal blood pressure and microalbuminuria. Am J Kidney Dis. 2003;41(3):588–95.CrossRefGoogle Scholar
  22. 22.
    Peralta CA, Adeney KL, Shlipak MG, Jacobs D Jr, Duprez D, Bluemke D, Polak J, Psaty B, Kestenbaum BR. Structural and functional vascular alterations and incident hypertension in normotensive adults: the Multi-Ethnic Study of Atherosclerosis. Am J Epidemiol. 2010;171(1):63–71.CrossRefGoogle Scholar
  23. 23.
    Tomiyama H, Hashimoto H, Matsumoto C, Odaira M, Yoshida M, Shiina K, Nagata M, Yamashina A, Doba N, Hinohara S. Effects of aging and persistent prehypertension on arterial stiffening. Atherosclerosis. 2011;217(1):130–4.CrossRefGoogle Scholar
  24. 24.
    AlGhatrif M, Strait JB, Morrell CH, Canepa M, Wright J, Elango P, Scuteri A, Najjar SS, Ferrucci L, Lakatta EG. Longitudinal trajectories of arterial stiffness and the role of blood pressure: the Baltimore Longitudinal Study of Aging. Hypertension. 2013;62(5):934–41.CrossRefGoogle Scholar
  25. 25.
    Humphrey JD, Dufresne ER, Schwartz MA. Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol. 2014;15:802–12.CrossRefGoogle Scholar
  26. 26.
    Folkow B. “Structural factor” in primary and secondary hypertension. Hypertension. 1990;16:89–101.CrossRefGoogle Scholar
  27. 27.
    Wolinsky H. Long-term effects of hypertension on the rat aortic wall and their relation to concurrent aging changes. Morphological and chemical studies. Circ Res. 1972;30:301–9.CrossRefGoogle Scholar
  28. 28.
    Lacolley P, Challande P, Osborne-Pellegrin M, Regnault V. Genetics and pathophysiology of arterial stiffness. Cardiovasc Res. 2009;81:637–48.CrossRefGoogle Scholar
  29. 29.
    Laurent S, Briet M, Boutouyrie P. Large and small artery cross-talk and recent morbidity-mortality trials in hypertension. Hypertension. 2009;54:388–92.CrossRefGoogle Scholar
  30. 30.
    Muiesan ML, Salvetti M, Rizzoni D, Paini A, Agabiti-Rosei C, Aggiusti C, Bertacchini F, Stassaldi D, Gavazzi A, Porteri E, De Ciuceis C, Agabiti-Rosei E. Pulsatile hemodynamics and microcirculation: evidence for a close relationship in hypertensive patients. Hypertension. 2013;61:130–6.CrossRefGoogle Scholar
  31. 31.
    Laurent S, Safar M. Large artery damage: measurement and clinical importance in textbook of hypertension. In: Mancia G, Grassi G, Redon J, editors. Informa Healthcare. 2014. p. 191–202.CrossRefGoogle Scholar
  32. 32.
    Schillaci G, Bilo G, Pucci G, Laurent S, Macquin-Mavier I, Boutouyrie P, Battista F, Desamericq G, Dolbeau G, Faini A, Salvi P, Mannarino E, Parati G. Relationship between short-term blood pressure variability and large-artery stiffness in human hypertension: findings from 2 large databases. Hypertension. 2012;60:369–77.CrossRefGoogle Scholar
  33. 33.
    Christensen KL. Reducing pulse pressure in hypertension may normalize small artery structure. Hypertension. 1991;18:722–7.CrossRefGoogle Scholar
  34. 34.
    James MA, Watt PA, Potter JF, Thurston H, Swales JD. Pulse pressure and resistance artery structure in the elderly. Hypertension. 1995;26:301–6.CrossRefGoogle Scholar
  35. 35.
    Salvetti M, Agabiti Rosei C, Paini A, Aggiusti C, Cancarini A, Duse S, Semeraro F, Rizzoni D, Agabiti Rosei E, Muiesan ML. Relationship of wall-to-lumen ratio of retinal arterioles with clinic and 24-hour blood pressure. Hypertension. 2014;63:1110–5.CrossRefGoogle Scholar
  36. 36.
    Grassi G, Buzzi S, Dell’Oro R, Mineo C, Dimitriadis K, Seravalle G, Lonati L, Cuspidi C. Structural alterations of the retinal microcirculation in the “prehypertensive” high-normal blood pressure state. Curr Pharm Des. 2013;19(13):2375–81.CrossRefGoogle Scholar
  37. 37.
    Sharrett AR, Hubbard LD, Cooper LS, Sorlie PD, Brothers RJ, Nieto FJ, Pinsky JL, Klein R. Retinal arteriolar diameters and elevated blood pressure: the Atherosclerosis Risk in Communities Study. Am J Epidemiol. 1999;150(3):263–70.CrossRefGoogle Scholar
  38. 38.
    Harvey A, Montezano AC, Touyz RM. Vascular biology of ageing—implications in hypertension. J Mol Cell Cardiol. 2015;83:112–21.CrossRefGoogle Scholar
  39. 39.
    Vlachopoulos C, Dima I, Aznaouridis K, Vasiliadou C, Ioakeimidis N, Aggeli C, Toutouza M, Stefanadis C. Acute systemic inflammation increases arterial stiffness and decreases wave reflections in healthy individuals. Circulation. 2005;112(14):2193–200.CrossRefGoogle Scholar
  40. 40.
    Blankenberg S, Rupprecht HJ, Poirier O, Bickel C, Smieja M, Hafner G, Meyer J, Cambien F, Tiret L. Plasma concentrations and genetic variation of matrix metalloproteinase 9 and prognosis of patients with cardiovascular disease. Circulation. 2003;107(12):1579–85.CrossRefGoogle Scholar
  41. 41.
    van Bussel BC, Schouten F, Henry RM, Schalkwijk CG, de Boer MR, Ferreira I, Smulders YM, Twisk JW, Stehouwer CD. Endothelial dysfunction and low-grade inflammation are associated with greater arterial stiffness over a 6-year period. Hypertension. 2011;58(4):588–95.CrossRefGoogle Scholar
  42. 42.
    Kim M, Jung S, Kim SY, Lee SH, Lee JH. Prehypertension-associated elevation in circulating lysophosphatidlycholines, Lp-PLA2 activity, and oxidative stress. PLoS One. 2014;9(5):e96735.CrossRefGoogle Scholar
  43. 43.
    Kim M, Yoo HJ, Ahn HY, Park J, Lee SH, Lee JH. Associations among oxidative stress, Lp-PLA2 activity and arterial stiffness according to blood pressure status at a 3.5-year follow-up in subjects with prehypertension. Atherosclerosis. 2017;257:179–85.CrossRefGoogle Scholar
  44. 44.
    Tomiyama H, Shiina K, Matsumoto-Nakano C, Ninomiya T, Komatsu S, Kimura K, Chikamori T, Yamashina A. The contribution of inflammation to the development of hypertension mediated by increased arterial stiffness. J Am Heart Assoc. 2017;6(7):e005729.CrossRefGoogle Scholar
  45. 45.
    Muhammad IF, Borne Y, Ostling G, Kennback C, Gottsater M, Persson M, Nilsson PM, Engstrom G. Acute phase proteins as prospective risk markers for arterial stiffness: The Malmo Diet and Cancer cohort. PLoS One. 2017;12(7):e0181718.CrossRefGoogle Scholar
  46. 46.
    Ambrosino P, Tasso M, Lupoli R, Di Minno A, Baldassarre D, Tremoli E, Di Minno MN. Non-invasive assessment of arterial stiffness in patients with rheumatoid arthritis: a systematic review and meta-analysis of literature studies. Ann Med. 2015;47(6):457–67.CrossRefGoogle Scholar
  47. 47.
    Zanoli L, Rastelli S, Granata A, Inserra G, Empana JP, Boutouyrie P, Laurent S, Castellino P. Arterial stiffness in inflammatory bowel disease: a systematic review and meta-analysis. J Hypertens. 2016;34(5):822–9.CrossRefGoogle Scholar
  48. 48.
    Tam LS, Kitas GD, Gonzalez-Gay MA. Can suppression of inflammation by anti-TNF prevent progression of subclinical atherosclerosis in inflammatory arthritis? Rheumatology (Oxford). 2014;53(6):1108–19.CrossRefGoogle Scholar
  49. 49.
    Maia-Leite LH, Catez E, Boyd A, Haddour N, Curjol A, Lang S, Nuernberg M, Duvivier C, Desvarieux M, Kirstetter M, Girard PM, Cohen A, Boccara F. Aortic stiffness aging is influenced by past profound immunodeficiency in HIV-infected individuals: results from the EVAS-HIV (EValuation of Aortic Stiffness in HIV-infected individuals). J Hypertens. 2016;34(7):1338–46.CrossRefGoogle Scholar
  50. 50.
    Wang J, Yu W, Gao M, Zhang F, Gu C, Yu Y, Wei Y. Impact of obstructive sleep apnea syndrome on endothelial function, arterial stiffening, and serum inflammatory markers: an updated meta-analysis and metaregression of 18 studies. J Am Heart Assoc. 2015;4(11):e002454.CrossRefGoogle Scholar
  51. 51.
    Liu C, Kellems RE, Xia Y. Inflammation, autoimmunity, and hypertension: the essential role of tissue transglutaminase. Am J Hypertens. 2017;30(8):756–64.CrossRefGoogle Scholar
  52. 52.
    Laurent S, Marais L, Boutouyrie P. the non-invasive assessment of vascular ageing. Can J Cardiol. 2016;32:669–79.CrossRefGoogle Scholar
  53. 53.
    Boutouyrie P, Tropeano AI, Asmar R, Gautier I, Benetos A, Lacolley P, Laurent S. Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: a longitudinal study. Hypertension. 2002;39:10–5.CrossRefGoogle Scholar
  54. 54.
    Laurent S, Boutouyrie P, Asmar R, Gautier I, Laloux B, Guize L, Ducimetiere P, Benetos A. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension. 2001;37:1236–41.CrossRefGoogle Scholar
  55. 55.
    Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55:1318–27.CrossRefGoogle Scholar
  56. 56.
    Pannier B, Guerin AP, Marchais SJ, et al. Stiffness of capacitive and conduit arteries: prognostic significance for end-stage renal disease patients. Hypertension. 2005;45:592–6.CrossRefGoogle Scholar
  57. 57.
    Asmar R, Benetos A, Topouchian J, Laurent P, Pannier B, Brisac AM, Target R, Levy B. Assessment of arterial distensibility by automatic pulse wave velocity measurement. Validation and clinical application studies. Hypertension. 1995;26:485–90.CrossRefGoogle Scholar
  58. 58.
    Pauca AL, O’Rourke MF, Kon ND. Prospective evaluation of a method for estimating ascending aortic pressure from the radial artery pressure waveform. Hypertension. 2001;38:932–7.CrossRefGoogle Scholar
  59. 59.
    Cruickshank K, Riste L, Anderson SG, Wright JS, Dunn G, Gosling RG. Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: an integrated index of vascular function? Circulation. 2002;106:2085–90.CrossRefGoogle Scholar
  60. 60.
    Vlachopoulos C, Aznaouridis K, Terentes-Printzios D, Ioakeimidis N, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with brachial-ankle elasticity index: a systematic review and meta-analysis. Hypertension. 2012;60:556–62.CrossRefGoogle Scholar
  61. 61.
    Ben-Shlomo Y, Spears M, Boustred C, May M, Anderson SG, Benjamin EJ, Boutouyrie P, Cameron J, Chen CH, Cruickshank JK, Hwang SJ, Lakatta EG, Laurent S, Maldonado J, Mitchell GF, Najjar SS, Newman AB, Ohishi M, Pannier B, Pereira T, Vasan RS, Shokawa T, Sutton-Tyrell K, Verbeke F, Wang KL, Webb DJ, Hansen TW, Zoungas S, McEniery CM, Cockcroft JR, Wilkinson IB. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63(7):636–46.CrossRefGoogle Scholar
  62. 62.
    Bussy C, Boutouyrie P, Lacolley P, Challande P, Laurent S. Intrinsic stiffness of the carotid arterial wall material in essential hypertensives. Hypertension. 2000;35:1049–54.CrossRefGoogle Scholar
  63. 63.
    Laurent S, Boutouyrie P, Lacolley P. Structural and genetic bases of arterial stiffness. Hypertension. 2005;45:1050–5.CrossRefGoogle Scholar
  64. 64.
    Laurent S, Boutouyrie P. The structural factor in hypertension: large and small artery alterations. Circ Res. 2015;116:1007–21.CrossRefGoogle Scholar
  65. 65.
    Cunha PG, Boutouyrie P, Nilsson PM, Laurent S. Early Vascular Ageing (EVA): definitions and clinical applicability. Curr Hypertens Rev. 2017;13:8.  https://doi.org/10.2174/1573402113666170413094319.CrossRefGoogle Scholar
  66. 66.
    Cunha PG, Cotter J, Oliveira P, Vila I, Boutouyrie P, Laurent S, Nilsson P, Scuteri A, Sousa N. Pulse wave velocity distribution in a cohort study–From arterial stiffness to early vascular ageing (EVA). J Hypertens. 2015;33:1438–45.CrossRefGoogle Scholar
  67. 67.
    Nilsson P, Boutouyrie P, Cunha P, Kotsis V, Narkiewicz K, Parati G, Rietzschel E, Scuteri A, Laurent S. Early vascular ageing (EVA) in translation—from laboratory investigations to clinical applications in cardiovascular prevention. J Hypertens. 2013;31:1517–26.CrossRefGoogle Scholar
  68. 68.
    Nilsson P, Boutouyrie P, Laurent S. Vascular aging: a tale of EVA and ADAM in cardiovascular risk assessment and prevention. Hypertension. 2009;54:3–10.CrossRefGoogle Scholar
  69. 69.
    Zethelius B, Berglund L, Sundström J, Ingelsson E, Basu S, Larsson A, Venge P, Arnlöv J. Use of multiple biomarkers to improve the prediction of death from cardiovascular causes. N Engl J Med. 2008;358:2107–716.CrossRefGoogle Scholar
  70. 70.
    Sehestedt T, Jeppesen J, Hansen TW, Rasmussen S, Wachtell K, Ibsen H, Torp-Pedersen C, Olsen MH. Thresholds for pulse wave velocity, urine albumin creatinine ratio and left ventricular mass index using SCORE, Framingham and ESH/ESC risk charts. J Hypertens. 2012;30(10):1928–36.CrossRefGoogle Scholar
  71. 71.
    Sehestedt T, Jeppesen J, Hansen TW, Wachtell K, Ibsen H, Torp-Pedersen C, Hildebrandt P, Olsen MH. Risk prediction is improved by adding markers of subclinical organ damage to SCORE. Eur Heart J. 2010;31(7):883–91.CrossRefGoogle Scholar
  72. 72.
    Wang TJ. Assessing the role of circulating, genetic, and imaging biomarkers in cardiovascular risk prediction. Circulation. 2011;123:551–65.CrossRefGoogle Scholar
  73. 73.
    Olsen M, Angell S, Asma S, Boutouyrie P, Burger D, Chirinos J, et al. A call to action and a life-course strategy to address the global burden of raised blood pressure on current and future generations. The Lancet Commission on Hypertension. Lancet. 2016;388:2665–712.CrossRefGoogle Scholar
  74. 74.
    Safar ME, Thomas F, Blacher J, Nzietchueng R, Bureau JM, Pannier B, Benetos A. Metabolic syndrome and age-related progression of aortic stiffness. J Am Coll Cardiol. 2006;47(1):72–5.CrossRefGoogle Scholar
  75. 75.
    Scuteri A, Cunha PG, Rosei EA, Badariere J, Bekaert S, Cockcroft JR, Cotter J, Cucca F, De Buyzere ML, De Meyer T, Ferrucci L, Franco O, Gale N, Gillebert TC, Hofman A, Langlois M, Laucevicius A, Laurent S, Matta Ceraso FU, Morrell CH, Muiesan ML, Munnery MM, Navickas R, Oliveira P, Orru’ M, Pilia MG, Rietzschel ER, Ryliskyte L, Salvetti M, Schlessinger D, Sousa N, Stefanadis C, Strait J, Van daele C, Villa I, Vlachopoulos C, Witteman J, Xaplanteris P, Nilsson P, Lakatta EG, MARE Consortium. Arterial stiffness and influences of the metabolic syndrome: a cross-countries study. Atherosclerosis. 2014;233:654–60.CrossRefGoogle Scholar
  76. 76.
    Scuteri A, Najjar SS, Muller DC, Andres R, Hougaku H, Metter EJ, Lakatta EG. Metabolic syndrome amplifies the age-associated increases in vascular thickness and stiffness. J Am Coll Cardiol. 2004;43:1388–95.CrossRefGoogle Scholar
  77. 77.
    Smulyan H, Lieber A, Safar ME. Hypertension, diabetes type II, and their association: role of arterial stiffness. Am J Hypertens. 2016;29:5–13.CrossRefGoogle Scholar
  78. 78.
    Lurbe E, Agabiti-Rosei E, Cruickshank JK, Dominiczak A, Erdine S, Hirth A, Invitti C, Litwin M, Mancia G, Pall D, Rascher W, Redon J, Schaefer F, Seeman T, Sinha M, Stabouli S, Webb NJ, Wühl E, Zanchetti A. 2016 European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J Hypertens. 2016a;34:1887–920.CrossRefGoogle Scholar
  79. 79.
    Lurbe E, Torro MI, Alvarez-Pitti J, Redon P, Redon J. Central blood pressure and pulse wave amplification across the spectrum of peripheral blood pressure in overweight and obese youth. J Hypertens. 2016b;34:1389–95.CrossRefGoogle Scholar
  80. 80.
    Su S, Wang X, Kapuku GK, Treiber FA, Pollock DM, Harshfield GA, McCall WV, Pollock JS. Adverse childhood experiences are associated with detrimental hemodynamics and elevated circulating endothelin-1 in adolescents and young adults. Hypertension. 2014;64:201–7.CrossRefGoogle Scholar
  81. 81.
    Chu C, Dai Y, Mu J, Yang R, Wang M, Yang J, Ren Y, Xie B, Dong Z, Yang F, Wang D, Yan D, Guo TS, Wang Y. Associations of risk factors in childhood with arterial stiffness 26 years later: the Hanzhong adolescent hypertension cohort. J Hypertens. 2017;35(Suppl 1):S10–S5.CrossRefGoogle Scholar
  82. 82.
    Ferreira I, van de Laar RJ, Prins MH, Twisk JW, Stehouwer CD. Carotid stiffness in young adults: a life-course analysis of its early determinants: the Amsterdam Growth and Health Longitudinal Study. Hypertension. 2012;59:54–61.CrossRefGoogle Scholar
  83. 83.
    Juonala M, Jarvisalo MJ, Maki-Torkko N, Kahonen M, Viikari JS, Raitakari OT. Risk factors identified in childhood and decreased carotid artery elasticity in adulthood: the Cardiovascular Risk in Young Finns Study. Circulation. 2005;112(10):1486–93.CrossRefGoogle Scholar
  84. 84.
    Li S, Chen W, Srinivasan SR, Berenson GS. Childhood blood pressure as a predictor of arterial stiffness in young adults: the Bogalusa heart study. Hypertension. 2004;43(3):541–6.CrossRefGoogle Scholar
  85. 85.
    Bao W, Threefoot SA, Srinivasan SR, Berenson GS. Essential hypertension predicted by tracking of elevated blood pressure from childhood to adulthood: the Bogalusa Heart Study. Am J Hypertens. 1995;8(7):657–65.CrossRefGoogle Scholar
  86. 86.
    Srinivasan SR, Myers L, Berenson GS. Changes in metabolic syndrome variables since childhood in prehypertensive and hypertensive subjects: the Bogalusa Heart Study. Hypertension. 2006;48(1):33–9.CrossRefGoogle Scholar
  87. 87.
    Magnussen CG, Venn A, Thomson R, Juonala M, Srinivasan SR, Viikari JS, Berenson GS, Dwyer T, Raitakari OT. The association of pediatric low- and high-density lipoprotein cholesterol dyslipidemia classifications and change in dyslipidemia status with carotid intima-media thickness in adulthood evidence from the cardiovascular risk in Young Finns study, the Bogalusa Heart study, and the CDAH (Childhood Determinants of Adult Health) study. J Am Coll Cardiol. 2009;53(10):860–9.CrossRefGoogle Scholar
  88. 88.
    Magnussen CG, Koskinen J, Chen W, Thomson R, Schmidt MD, Srinivasan SR, Kivimaki M, Mattsson N, Kahonen M, Laitinen T, Taittonen L, Ronnemaa T, Viikari JS, Berenson GS, Juonala M, Raitakari OT. Pediatric metabolic syndrome predicts adulthood metabolic syndrome, subclinical atherosclerosis, and type 2 diabetes mellitus but is no better than body mass index alone: the Bogalusa Heart Study and the Cardiovascular Risk in Young Finns Study. Circulation. 2010;122(16):1604–11.CrossRefGoogle Scholar
  89. 89.
    Koskinen J, Magnussen CG, Sabin MA, Kahonen M, Hutri-Kahonen N, Laitinen T, Taittonen L, Jokinen E, Lehtimaki T, Viikari JS, Raitakari OT, Juonala M. Youth overweight and metabolic disturbances in predicting carotid intima-media thickness, type 2 diabetes, and metabolic syndrome in adulthood: the Cardiovascular Risk in Young Finns Study. Diabetes Care. 2014;37(7):1870–7.CrossRefGoogle Scholar
  90. 90.
    Juonala M, Magnussen CG, Venn A, Dwyer T, Burns TL, Davis PH, Chen W, Srinivasan SR, Daniels SR, Kahonen M, Laitinen T, Taittonen L, Berenson GS, Viikari JS, Raitakari OT. Influence of age on associations between childhood risk factors and carotid intima-media thickness in adulthood: the Cardiovascular Risk in Young Finns Study, the Childhood Determinants of Adult Health Study, the Bogalusa Heart Study, and the Muscatine Study for the International Childhood Cardiovascular Cohort (i3C) Consortium. Circulation. 2010;122(24):2514–20.CrossRefGoogle Scholar
  91. 91.
    Lamotte C, Iliescu C, Libersa C, Gottrand F. Increased intima-media thickness of the carotid artery in childhood: a systematic review of observational studies. Eur J Pediatr. 2011;170(6):719–29.CrossRefGoogle Scholar
  92. 92.
    Berry JD, Dyer A, Cai X, Garside DB, Ning H, Thomas A, Greenland P, Van Horn L, Tracy RP, Lloyd-Jones DM. Lifetime risks of cardiovascular disease. N Engl J Med. 2012;366(4):321–9.CrossRefGoogle Scholar
  93. 93.
    Lloyd-Jones DM, Hong Y, Labarthe D, Mozaffarian D, Appel LJ, Van Horn L, Greenlund K, Daniels S, Nichol G, Tomaselli GF, Arnett DK, Fonarow GC, Ho PM, Lauer MS, Masoudi FA, Robertson RM, Roger V, Schwamm LH, Sorlie P, Yancy CW, Rosamond WD. Defining and setting national goals for cardiovascular health promotion and disease reduction: the American Heart Association’s strategic impact goal through 2020 and beyond. Circulation. 2010;121(4):586–613.CrossRefGoogle Scholar
  94. 94.
    Chen W, Srinivasan SR, Berenson GS. Amplification of the association between birthweight and blood pressure with age: the Bogalusa Heart Study. J Hypertens. 2010;28(10):2046–52.CrossRefGoogle Scholar
  95. 95.
    Gamborg M, Byberg L, Rasmussen F, Andersen PK, Baker JL, Bengtsson C, Canoy D, Droyvold W, Eriksson JG, Forsen T, Gunnarsdottir I, Jarvelin MR, Koupil I, Lapidus L, Nilsen TI, Olsen SF, Schack-Nielsen L, Thorsdottir I, Tuomainen TP, Sorensen TI. Birth weight and systolic blood pressure in adolescence and adulthood: meta-regression analysis of sex- and age-specific results from 20 Nordic studies. Am J Epidemiol. 2007;166(6):634–45.CrossRefGoogle Scholar
  96. 96.
    Aatola H, Hutri-Kahonen N, Juonala M, Viikari JS, Hulkkonen J, Laitinen T, Taittonen L, Lehtimaki T, Raitakari OT, Kahonen M. Lifetime risk factors and arterial pulse wave velocity in adulthood: the Cardiovascular Risk in Young Finns Study. Hypertension. 2010;55(3):806–11.CrossRefGoogle Scholar
  97. 97.
    Koskinen J, Magnussen CG, Taittonen L, Rasanen L, Mikkila V, Laitinen T, Ronnemaa T, Kahonen M, Viikari JS, Raitakari OT, Juonala M. Arterial structure and function after recovery from the metabolic syndrome: the cardiovascular risk in Young Finns Study. Circulation. 2010;121(3):392–400.CrossRefGoogle Scholar
  98. 98.
    Juonala M, Magnussen CG, Berenson GS, Venn A, Burns TL, Sabin MA, Srinivasan SR, Daniels SR, Davis PH, Chen W, Sun C, Cheung M, Viikari JS, Dwyer T, Raitakari OT. Childhood adiposity, adult adiposity, and cardiovascular risk factors. N Engl J Med. 2011;365(20):1876–85.CrossRefGoogle Scholar
  99. 99.
    Laitinen TT, Pahkala K, Magnussen CG, Viikari JS, Oikonen M, Taittonen L, Mikkila V, Jokinen E, Hutri-Kahonen N, Laitinen T, Kahonen M, Lehtimaki T, Raitakari OT, Juonala M. Ideal cardiovascular health in childhood and cardiometabolic outcomes in adulthood: the Cardiovascular Risk in Young Finns Study. Circulation. 2012;125(16):1971–8.CrossRefGoogle Scholar
  100. 100.
    Magnussen CG, Koskinen J, Juonala M, Chen W, Srinivasan SR, Sabin MA, Thomson R, Schmidt MD, Nguyen QM, Xu JH, Skilton MR, Kahonen M, Laitinen T, Taittonen L, Lehtimaki T, Ronnemaa T, Viikari JS, Berenson GS, Raitakari OT. A diagnosis of the metabolic syndrome in youth that resolves by adult life is associated with a normalization of high carotid intima-media thickness and type 2 diabetes mellitus risk: the Bogalusa heart and cardiovascular risk in young Finns studies. J Am Coll Cardiol. 2012;60(17):1631–9.CrossRefGoogle Scholar
  101. 101.
    Oikonen M, Laitinen TT, Magnussen CG, Steinberger J, Sinaiko AR, Dwyer T, Venn A, Smith KJ, Hutri-Kahonen N, Pahkala K, Mikkila V, Prineas R, Viikari JS, Morrison JA, Woo JG, Chen W, Nicklas T, Srinivasan SR, Berenson G, Juonala M, Raitakari OT. Ideal cardiovascular health in young adult populations from the United States, Finland, and Australia and its association with cIMT: the International Childhood Cardiovascular Cohort Consortium. J Am Heart Assoc. 2013;2(3):e000244.CrossRefGoogle Scholar
  102. 102.
    Aatola H, Hutri-Kahonen N, Juonala M, Laitinen TT, Pahkala K, Mikkila V, Telama R, Koivistoinen T, Lehtimaki T, Viikari JS, Raitakari OT, Kahonen M. Prospective relationship of change in ideal cardiovascular health status and arterial stiffness: the Cardiovascular Risk in Young Finns Study. J Am Heart Assoc. 2014;3(2):e000532.CrossRefGoogle Scholar
  103. 103.
    Kelly RK, Thomson R, Smith KJ, Dwyer T, Venn A, Magnussen CG. Factors affecting tracking of blood pressure from childhood to adulthood: the childhood determinants of adult health study. J Pediatr. 2015;167(6):1422–8. e2CrossRefGoogle Scholar
  104. 104.
    Couch SC, Saelens BE, Levin L, Dart K, Falciglia G, Daniels SR. The efficacy of a clinic-based behavioral nutrition intervention emphasizing a DASH-type diet for adolescents with elevated blood pressure. J Pediatr. 2008;152:494–501.CrossRefGoogle Scholar
  105. 105.
    Leary SDNA, Smith GD, Mattocks C, Deere K, Blair SN, Riddoch C. Physical activity and blood pressure in childhood. Findings from a population-based study. Hypertension. 2008;51:92–8.CrossRefGoogle Scholar
  106. 106.
    Koivistoinen T, Hutri-Kähönen N, Juonala M, Aatola H, Kööbi T, Lehtimäki T, Viikari JS, Raitakari OT, Kähönen M. Metabolic syndrome in childhood and increased arterial stiffness in adulthood: the Cardiovascular Risk in Young Finns Study. Ann Med. 2011;43:312–9.CrossRefGoogle Scholar
  107. 107.
    Aatola H, Koivistoinen T, Tuominen H, Juonala M, Lehtimäki T, Viikari JSA, Raitakari OT, Kähönen M, Hutri-Kähönen N. Influence of child and adult elevated blood pressure on adult arterial stiffness: the Cardiovascular Risk in Young Finns Study. Hypertension. 2017;70:531–6.CrossRefGoogle Scholar
  108. 108.
    Pälve KS, Pahkala K, Magnussen CG, Koivistoinen T, Juonala M, Kähönen M, Lehtimäki T, Rönnemaa T, Viikari JS, Raitakari OT. Association of physical activity in childhood and early adulthood with carotid artery elasticity 21 years later: the cardiovascular risk in Young Finns Study. J Am Heart Assoc. 2014;3:e000594.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Paris-Descartes University, Assistance-Publique Hôpitaux de ParisParisFrance
  2. 2.Department of Pharmacology and Hôpital Européen Georges PompidouINSERM U970, Paris-Descartes University, Assistance Publique—Hôpitaux de ParisParisFrance
  3. 3.Center for the Research and Treatment of Arterial Hypertension and Cardiovascular Risk, Serviço de Medicina Interna do Hospital da Senhora da OliveiraUniversity of MinhoGuimarãesPortugal
  4. 4.Life and Health Science Research Institute (ICVS), School of MedicineUniversity of MinhoGuimarãesPortugal

Personalised recommendations