Advertisement

Management of Prehypertension and Hypertension in Women of Childbearing Age

  • Agnieszka Olszanecka
  • Danuta Czarnecka
Chapter
Part of the Updates in Hypertension and Cardiovascular Protection book series (UHCP)

Abstract

Cardiovascular diseases, including hypertension, affect men and women differently, with rapid increase of cardiovascular risk in women with the onset of menopause. Although hypertension prevalence and absolute cardiovascular risk in young females is lower than in males and older women, this group of patients deserves special attention in terms of diagnostics and treatment. Female-specific cardiovascular risk factors like obstetric and gynecological history, use of oral contraceptive pill, polycystic ovaries syndrome, higher prevalence of systemic connective tissue disorders, different frequency and causes of secondary hypertension modify the approach to treatment and diagnostics of blood pressure elevations in women. Hypertensive disorders in pregnancy and during breastfeeding are important medical conditions requiring interdisciplinary and prudent management. Understanding the epidemiology and pathophysiology of hypertension in female of reproductive age may help clinicians to identify important modifiable risk factors, which in turn may improve pregnancy outcomes and prevent cardiovascular disease in the future.

Keywords

Hypertension Prehypertension Women Reproductive age Cardiovascular risk Oral contraceptives Pregnancy-related hypertension 

References

  1. 1.
    Gholizadeh L, Davidson P. More similarities than differences: an international comparison of CVD mortality and risk factors in women. Health Care Women Int. 2008;29:3–22.CrossRefGoogle Scholar
  2. 2.
    Benjami E, Blaha M, Chiuve S, Cushman M, Das S, Deo R, et al. Heart disease and stroke statistics – 2017 update a report from the American Heart Association. Circulation. 2017;135(10):e146–603.Google Scholar
  3. 3.
    dos Santos R, da Silva F, Ribeiro RJ, Stefanon I. Sex hormones in the cardiovascular system. Horm Mol Biol Clin Investig. 2014;18(2):89–103.Google Scholar
  4. 4.
    Bateman BT, Shaw KM, Kuklina EV, Callaghan WM, Seely EW, Herna S. Hypertension in women of reproductive age in the United States: NHANES 1999–2008. PLoS One. 2012;7(4):e36171.CrossRefGoogle Scholar
  5. 5.
    Chobanian A, Bakris G, Black H, Cushman W, Green L, Izzo JJ, et al. The seventh report of the joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA J Am Med Assoc. 2003;289(19):2560–72.CrossRefGoogle Scholar
  6. 6.
    Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Böhm M, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;34(28):2159–219.CrossRefGoogle Scholar
  7. 7.
    Qureshi AI, Suri MFK, Kirmani JF, Divani AA. Prevalence and trends of prehypertension and hypertension in United States: National Health and nutrition examination surveys 1976 to 2000. Med Sci Monit. 2005;11(9):CR403–9. http://www.ncbi.nlm.nih.gov/pubmed/16127357; http://www.medscimonit.com/fulltxt.php?IDMAN=5896.Google Scholar
  8. 8.
    Conen D, Ridker PM, Buring JE, Glynn RJ. Risk of cardiovascular events among women with high normal blood pressure or blood pressure progression: prospective cohort study. BMJ. 2007;335(7617):432. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1962877&tool=pmcentrez&rendertype=abstract.CrossRefGoogle Scholar
  9. 9.
    McManus RJ, Caulfield M, Williams B. NICE hypertension guideline 2011: evidence based evolution. BMJ. 2012;344(jan13 1):e181.  https://doi.org/10.1136/bmj.e181.CrossRefGoogle Scholar
  10. 10.
    Fagard RH, Cornelissen VA. Incidence of cardiovascular events in white-coat, masked and sustained hypertension versus true normotension: a meta-analysis. J Hypertens. 2007;25(11):2193–8. http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00004872-200711000-00002.CrossRefGoogle Scholar
  11. 11.
    Dolan E, Stanton A, Atkins N, Den Hond E, Thijs L, McCormack P, et al. Determinants of white-coat hypertension. Blood Press Monit. 2004;9(6):307–9. http://www.ncbi.nlm.nih.gov/pubmed/18927542.CrossRefGoogle Scholar
  12. 12.
    James G, Marion R, Pickering T. White-coat hypertension and sex. Blood Press Monit. 1998;3(5):281–7. http://www.ncbi.nlm.nih.gov/pubmed/10212367.Google Scholar
  13. 13.
    Cobos B, Haskard-Zolnierek K, Howard K. White coat hypertension: improving the patient-health care practitioner relationship. Psychol Res Behav Manag. 2015;8:133–41. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4427265&tool=pmcentrez&rendertype=abstract.Google Scholar
  14. 14.
    Brown MA, Mangos G, Davis G, Homer C. The natural history of white coat hypertension during pregnancy. BJOG. 2005;112(5):601–6.CrossRefGoogle Scholar
  15. 15.
    Hermida RC, Ayala DE. Prognostic value of office and ambulatory blood pressure measurements in pregnancy. Hypertension. 2002;40(3):298–303.CrossRefGoogle Scholar
  16. 16.
    Franklin SS, Thijs L, Asayama K, Li Y, Hansen TW, Boggia J, et al. The cardiovascular risk of white-coat hypertension. J Am Coll Cardiol. 2016;68(19):2033–43.CrossRefGoogle Scholar
  17. 17.
    Pierdomenico SD, Cuccurullo F. Prognostic value of white-coat and masked hypertension diagnosed by ambulatory monitoring in initially untreated subjects: an updated meta analysis. Am J Hypertens. 2011;24(1):52–8. https://academic.oup.com/ajh/article-lookup/doi/10.1038/ajh.2010.203.CrossRefGoogle Scholar
  18. 18.
    Hänninen M-RA, Niiranen TJ, Puukka PJ, Johansson J, Jula AM. Prognostic significance of masked and white-coat hypertension in the general population. J Hypertens. 2012;30(4):705–12. http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00004872-201204000-00016.CrossRefGoogle Scholar
  19. 19.
    Bellamy L, Casas J-P, Hingorani AD, Williams DJ. Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. BMJ. 2007;335(7627):974. http://www.ncbi.nlm.nih.gov/pubmed/17975258; http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2072042.CrossRefGoogle Scholar
  20. 20.
    Hermes W, Tamsma JT, Grootendorst DC, Franx A, van der Post J, van Pampus MG, et al. Cardiovascular risk estimation in women with a history of hypertensive pregnancy disorders at term: a longitudinal follow-up study. BMC Pregnancy Childbirth. 2013;13(1):126. http://bmcpregnancychildbirth.biomedcentral.com/articles/10.1186/1471-2393-13-126.CrossRefGoogle Scholar
  21. 21.
    Mu F, Rich-Edwards J, Rimm EB, Spiegelman D, Forman JP, Missmer SA. Association between endometriosis and hypercholesterolemia or hypertension. Hypertension. 2017;70(1):59–65.CrossRefGoogle Scholar
  22. 22.
    Fairweather D, Frisancho-Kiss S, Rose NR. Sex differences in autoimmune disease from a pathological perspective. Am J Pathol. 2008;173(3):600–9. http://linkinghub.elsevier.com/retrieve/pii/S0002944010616355.CrossRefGoogle Scholar
  23. 23.
    Al Husain A, Bruce IN. Risk factors for coronary heart disease in connective tissue diseases. Ther Adv Musculoskelet Dis. 2010;2(3):145–53. http://tab.sagepub.com/cgi/doi/10.1177/1759720X10365301.CrossRefGoogle Scholar
  24. 24.
    Manzi S, Meilahn E, Rairie J, Conte C, Medsger TJ, Jansen-McWilliams L, et al. Age-specific incidence rates of myocardial infarction and angina in women with systemic lupus erythematosus: comparison with the Framingham study. Am J Epidemiol. 1997;145(5):408–4015.CrossRefGoogle Scholar
  25. 25.
    Bruce IN, Urowitz MB, Gladman DD, Ibanez D, Steiner G. Risk factors for coronary heart disease in women with systemic lupus erythematosus: the Toronto risk factor study. Arthritis Rheum. 2003;48(11):3159–67.CrossRefGoogle Scholar
  26. 26.
    Huxley RR, Woodward M. Cigarette smoking as a risk factor for coronary heart disease in women compared with men: a systematic review and meta-analysis of prospective cohort studies. Lancet. 2011;378(9799):1297–305.  https://doi.org/10.1016/S0140-6736(11)60781-2.CrossRefGoogle Scholar
  27. 27.
    Jaddoe VWV, Troe E-JWM, Hofman A, Mackenbach JP, Moll HA, Steegers EAP, et al. Active and passive maternal smoking during pregnancy and the risks of low birthweight and preterm birth: the generation R study. Paediatr Perinat Epidemiol. 2008;22(2):162–71.  https://doi.org/10.1111/j.1365-3016.2007.00916.x.CrossRefGoogle Scholar
  28. 28.
    Ko T-J, Tsai L-Y, Chu L-C, Yeh S-J, Leung C, Chen C-Y, et al. Parental smoking during pregnancy and its association with low birth weight, small for gestational age, and preterm birth offspring: a birth cohort study. Pediatr Neonatol. 2014;55(1):20–7.CrossRefGoogle Scholar
  29. 29.
    Dyer AR, Elliott P. The INTERSALT Study: relations of body mass index to blood pressure. INTERSALT co-operative research group. J Hum Hypertens. 1989;3(5):299–308. http://europepmc.org/abstract/MED/2810326.Google Scholar
  30. 30.
    Wakabayashi I. Stronger associations of obesity with prehypertension and hypertension in young women than in young men. J Hypertens. 2012;30(7):1423–9. http://www.ncbi.nlm.nih.gov/pubmed/22573123.CrossRefGoogle Scholar
  31. 31.
    Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX, et al. Obesity and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2006;26(5):968 LP–976. http://atvb.ahajournals.org/content/26/5/968.abstract.CrossRefGoogle Scholar
  32. 32.
    Hubert HB, Feinleib M, McNamara PM, Castelli WP. Obesity as an independent risk factor for cardiovascular disease: a 26- year follow-up of participants in the Framingham heart study. Circulation. 1983;67(5):968–77. http://circ.ahajournals.org/cgi/doi/10.1161/01.CIR.67.5.968.CrossRefGoogle Scholar
  33. 33.
    Romero-Corral A, Montori VM, Somers VK, Korinek J, Thomas RJ, Allison TG, et al. Association of bodyweight with total mortality and with cardiovascular events in coronary artery disease: a systematic review of cohort studies 5. Lancet. 2006;368(1474–547X (Electronic)):666–78.CrossRefGoogle Scholar
  34. 34.
    Kip KE, Marroquin OC, Kelley DE, Johnson BD, Kelsey SF, Shaw LJ, et al. Clinical importance of obesity versus the metabolic syndrome in cardiovascular risk in women: a report from the Women’s ischemia syndrome evaluation (WISE) study. Circulation. 2004;109(6):706–13.CrossRefGoogle Scholar
  35. 35.
    Hunt KJ, Resendez RG, Williams K, Haffner SM, Stern MP. National Cholesterol Education Program versus World Health Organization metabolic syndrome in relation to all-cause and cardiovascular mortality in the San Antonio heart study. Circulation. 2004;110(10):1251–7.CrossRefGoogle Scholar
  36. 36.
    Peters SAE, Huxley RR, Woodward M. Diabetes as risk factor for incident coronary heart disease in women compared with men: a systematic review and meta-analysis of 64 cohorts including 858,507 individuals and 28,203 coronary events. Diabetologia. 2014;57(8):1542–51.CrossRefGoogle Scholar
  37. 37.
    Redón J, Cea-Calvo L, Moreno B, Monereo S, Gil-Guillén V, Lozano JV, et al. Independent impact of obesity and fat distribution in hypertension prevalence and control in the elderly. J Hypertens. 2008;26(9):1757–64.CrossRefGoogle Scholar
  38. 38.
    Wang B, Chandrasekera PC, Pippin JJ. Leptin- and leptin receptor-deficient rodent models: relevance for human type 2 diabetes. Curr Diabetes Rev. 2014;10(2):131–45. http://www.ncbi.nlm.nih.gov/pubmed/24809394; http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4082168.CrossRefGoogle Scholar
  39. 39.
    Ma D, Feitosa MF, Wilk JB, Laramie JM, Yu K, Leiendecker-Foster C, et al. Leptin is associated with blood pressure and hypertension in women from the National Heart, Lung, and Blood Institute family heart study. Hypertension. 2009;53(3):473–9.CrossRefGoogle Scholar
  40. 40.
    Esler M, Straznicky N, Eikelis N, Masuo K, Lambert G, Lambert E. Mechanisms of sympathetic activation in obesity-related hypertension. Hypertension. 2006;48(5):787–96.CrossRefGoogle Scholar
  41. 41.
    Lambert E, Straznicky N, Eikelis N, Esler M, Dawood T, Masuo K, et al. Gender differences in sympathetic nervous activity: influence of body mass and blood pressure. J Hypertens. 2007;25(7):1411–9. http://www.ncbi.nlm.nih.gov/pubmed/17563563.CrossRefGoogle Scholar
  42. 42.
    Lambert E, Sari CI, Dawood T, Nguyen J, McGrane M, Eikelis N, et al. Sympathetic nervous system activity is associated with obesity-induced subclinical organ damage in young adults. Hypertension. 2010;56(3):351–8.CrossRefGoogle Scholar
  43. 43.
    Daniels SR, Loggie JM, Khoury P, Kimball TR. Left ventricular geometry and severe left ventricular hypertrophy in children and adolescents with essential hypertension. Circulation. 1998;97(19):1907–11.CrossRefGoogle Scholar
  44. 44.
    Urbina EM, Khoury PR, Mccoy C, Daniels SR, Kimball TR, Dolan LM. Cardiac and vascular consequences of pre-hypertension in youth. J Clin Hypertens. 2011;13(5):332–42.CrossRefGoogle Scholar
  45. 45.
    De Marco M, De Simone G, Roman MJ, Chinali M, Lee ET, Russell M, et al. Cardiovascular and metabolic predictors of progression of prehypertension into hypertension: the strong heart study. Hypertension. 2009;54(5):974–80.CrossRefGoogle Scholar
  46. 46.
    Okin PM, Gerdts E, Kjeldsen SE, Julius S, Edelman JM, Dahlöf B, et al. Gender differences in regression of electrocardiographic left ventricular hypertrophy during antihypertensive therapy. Hypertension. 2008;52(1):100–6.CrossRefGoogle Scholar
  47. 47.
    Porthan K, Niiranen TJ, Varis J, Kantola I, Karanko H, Kähönen M, et al. ECG left ventricular hypertrophy is a stronger risk factor for incident cardiovascular events in women than in men in the general population. J Hypertens. 2015;33(6):1284–90. http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00004872-201506000-00024.CrossRefGoogle Scholar
  48. 48.
    Liebson PR, Grandits G, Prineas R, Dianzumba S, Flack JM, Cutler JA, et al. Echocardiographic correlates of left ventricular structure among 844 mildly hypertensive men and women in the treatment of mild hypertension study (TOMHS). Circulation. 1993;87(2):476–86. http://circ.ahajournals.org/content/87/2/476.abstract.CrossRefGoogle Scholar
  49. 49.
    Antikainen RL, Grodzicki T, Palmer AJ, Beevers DG, Webster J, Bulpitt CJ. Left ventricular hypertrophy determined by Sokolow–Lyon criteria: a different predictor in women than in men? J Hum Hypertens. 2006;20(6):451–9. http://www.nature.com/doifinder/10.1038/sj.jhh.1002006.CrossRefGoogle Scholar
  50. 50.
    Hayward CS, Webb CM, Collins P. Effect of sex hormones on cardiac mass. Lancet. 2001;357(9265):1354–6.CrossRefGoogle Scholar
  51. 51.
    Truong Q, Toepker M, Mahabadi A, Bamberg F, Rogers I, Blankstein R, et al. Relation of left ventricular mass and concentric remodeling to extent of coronary artery disease by computed tomography in patients without left ventricular hypertrophy: ROMICAT study. J Hypertens. 2010;27(12):2472–82.CrossRefGoogle Scholar
  52. 52.
    Redfield MM, Jacobsen SJ, Borlaug BA, Rodeheffer RJ, Kass DA. Age- and gender-related ventricular-vascular stiffening: a community-based study. Circulation. 2005;112(15):2254–62.CrossRefGoogle Scholar
  53. 53.
    Hausvater A, Giannone T, Sandoval Y-HG, Doonan RJ, Antonopoulos CN, Matsoukis IL, et al. The association between preeclampsia and arterial stiffness. J Hypertens. 2012;30(1):17–33. http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00004872-201201000-00003.CrossRefGoogle Scholar
  54. 54.
    Fernández-Friera L, Peñalvo JL, Fernández-Ortiz A, Ibañez B, López-Melgar B, Laclaustra M, et al. Prevalence, vascular distribution, and multiterritorial extent of subclinical atherosclerosis in a middle-aged cohort the PESA (progression of early subclinical atherosclerosis) study. Circulation. 2015;131(24):2104–13.CrossRefGoogle Scholar
  55. 55.
    Pletcher MJ, Bibbins-Domingo K, Lewis CE, Wei GS, Sidney S, Carr JJ, et al. Prehypertension during young adulthood and coronary calcium later in life. Ann Intern Med. 2008;149(2):91–9.CrossRefGoogle Scholar
  56. 56.
    Tenekecioglu E, Yilmaz M, Yontar OC, Karaagac K, Agca FV, Tutuncu A, et al. Microalbuminuria in untreated prehypertension and hypertension without diabetes. Int J Clin Exp Med. 2014;7(10):3420–9.Google Scholar
  57. 57.
    Lee JE, Kim YG, Choi YH, Huh W, Kim DJ, Oh HY. Serum uric acid is associated with microalbuminuria in prehypertension. Hypertension. 2006;47(5):962–7. http://graphics.tx.ovid.com/ovftpdfs/FPDDNCDCKFHCAH00/fs046/ovft/live/gv023/00004268/00004268-200605000-00027.pdf.CrossRefGoogle Scholar
  58. 58.
    Jayaballa M, Sood S, Alahakoon I, Padmanabhan S, Cheung NW, Lee V. Microalbuminuria is a predictor of adverse pregnancy outcomes including preeclampsia. Pregnancy Hypertens. 2015;5(4):303–7.CrossRefGoogle Scholar
  59. 59.
    Cuspidi C, Meani S, Salerno M, Fusi V, Severgnini B, Valerio C, et al. Retinal microvascular changes and target organ damage in untreated essential hypertensives. J Hypertens. 2004;22(11):2095–102. http://www.ncbi.nlm.nih.gov/pubmed/15480092.CrossRefGoogle Scholar
  60. 60.
    Wong S, Burgess T, Cheung M, Zacharin M. The prevalence of turner syndrome in girls presenting with coarctation of the aorta. J Pediatr. 2014;164(2):259–63.CrossRefGoogle Scholar
  61. 61.
    Noilhan C, Barigou M, Bieler L, Amar J, Chamontin B, Bouhanick B. Causes of secondary hypertension in the young population: a monocentric study. Ann Cardiol Angeiol. 2016;65(3):159–64.CrossRefGoogle Scholar
  62. 62.
    Wang H-S, Wang T-H. Polycystic ovary syndrome (PCOS), insulin resistance and insulin-like growth factors (IGfs)/IGF-binding proteins (IGFBPs). Chang Gung Med J. 2003;26(8):540–53.Google Scholar
  63. 63.
    Bentley-Lewis R, Seely E, Dunaif A. Ovarian hypertension: polycystic ovary syndrome. Endorinol Metab Clin North Am. 2011;40(2):433–49. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2867586&tool=pmcentrez&rendertype=abstract.CrossRefGoogle Scholar
  64. 64.
    Lo JC, Feigenbaum SL, Yang J, Pressman AR, Selby JV, Go AS. Epidemiology and adverse cardiovascular risk profile of diagnosed polycystic ovary syndrome. J Clin Endocrinol Metab. 2006;91(4):1357–63. http://www.ncbi.nlm.nih.gov/pubmed/16434451.CrossRefGoogle Scholar
  65. 65.
    Wild S, Pierpoint T, McKeigue P, Jacobs H. Cardiovascular disease in women with polycystic ovary syndrome at long-term follow-up: a retrospective cohort study. Clin Endocrinol. 2000;52(5):595–600.CrossRefGoogle Scholar
  66. 66.
    Pearce EN, Yang Q, Benjamin EJ, Aragam J, Vasan RS. Thyroid function and left ventricular structure and function in the Framingham heart study. Thyroid. 2010;20(4):369–73. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2867586&tool=pmcentrez&rendertype=abstract.CrossRefGoogle Scholar
  67. 67.
    Olin JW, Froehlich J, Gu X, Michael Bacharach J, Eagle K, Gray BH, et al. The United States registry for fibromuscular dysplasia: results in the first 447 patients. Circulation. 2012;125(25):3182–90.CrossRefGoogle Scholar
  68. 68.
    Persu A, Giavarini A, Touzé E, Januszewicz A, Sapoval M, Azizi M, et al. European consensus on the diagnosis and management of fibromuscular dysplasia. J Hypertens. 2014;32(7):1367–78. http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00004872-201407000-00003.CrossRefGoogle Scholar
  69. 69.
    Dong W, Colhoun HM, Poulter NR. Blood pressure in women using oral contraceptives: results from the health survey for England 1994. J Hypertens. 1997;15(10):1063–8. http://www.ncbi.nlm.nih.gov/pubmed/9350579.CrossRefGoogle Scholar
  70. 70.
    Chasan-Taber L, Willett W, Manson J, Spiegelman D, Hunter D, Curhan G, et al. Prospective study of oral contraceptives and hypertension among women in the United States [Internet]. Circulation. 1996;94:483–9. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed7&NEWS=N&AN=26266136.CrossRefGoogle Scholar
  71. 71.
    Williamson PM, Buddle ML, Brown MA, Whitworth JA. Ambulatory blood pressure monitoring (ABPM) in the normal menstrual cycle and in women using oral contraceptives. Comparison with conventional blood pressure measurement. Am J Hypertens. 1996;9(10 Pt 1):953–8.CrossRefGoogle Scholar
  72. 72.
    Lidegaard Ø, Løkkegaard E, Jensen A, Skovlund CW, Keiding N. Thrombotic stroke and myocardial infarction with hormonal contraception. N Engl J Med. 2012;366(24):2257–66. http://www.ncbi.nlm.nih.gov/pubmed/22693997.CrossRefGoogle Scholar
  73. 73.
    Cagnacci A, Ferrari S, Napolitano A, Piacenti I, Arangino S, Volpe A. Combined oral contraceptive containing drospirenone does not modify 24-h ambulatory blood pressure but increases heart rate in healthy young women: prospective study. Contraception. 2013;88(3):413–7.CrossRefGoogle Scholar
  74. 74.
    Magee LA, Von Dadelszen P, Chan S, Gafni A, Gruslin A, Helewa M, et al. The control of hypertension in pregnancy study pilot trial. BJOG. 2007;114(6):770.CrossRefGoogle Scholar
  75. 75.
    Visintin C, Mugglestone MA, Almerie MQ, Nherera LM, James D, Walkinshaw S. Management of hypertensive disorders during pregnancy: summary of NICE guidance. BMJ. 2010;341(September):c2207.CrossRefGoogle Scholar
  76. 76.
    Abalos E, Duley L, Steyn D. Antihypertensive drug therapy for mild to moderate hypertension during pregnancy. Cochrane Database Syst Rev. 2014;2:CD002252.  https://doi.org/10.1002/14651858. PREG.CrossRefGoogle Scholar
  77. 77.
    American College of Obstetricians and Gynecologists, Task Force on Hypertension in Pregnancy. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet Gynecol. 2013;122(5):1122–31. http://www.ncbi.nlm.nih.gov/pubmed/24150027, http://linkinghub.elsevier.com/retrieve/pii/S0733865112000562%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/24150027.CrossRefGoogle Scholar
  78. 78.
    Magee LA, Bc V, Helewa M, Mb W, Rey E, Qc M, et al., Sogc Clinical Practice Guideline. Diagnosis, evaluation, and management of the hypertensive disorders of pregnancy: executive summary. J Obstet Gynaecol Can. 2014;36(5):416–38.CrossRefGoogle Scholar
  79. 79.
    Regitz-Zagrosek V, Blomstrom Lundqvist C, Borghi C, Cifkova R, Ferreira R, Foidart JM, et al. ESC Guidelines on the management of cardiovascular diseases during pregnancy. Eur Heart J. 2011;32(24):3147–97.CrossRefGoogle Scholar
  80. 80.
    Magee LA, Von Dadelszen P, Rey E, Ross S, Asztalos E, Murphy KE, et al. Less-tight versus tight control of hypertension in pregnancy. N Engl J Med. 2015;372(24):2367–8.Google Scholar
  81. 81.
    Committee on Obstetric Practice. Emergent therapy for acute-onset, severe hypertension during pregnancy and the postpartum period. Obstet Gynecol. 2013;122(5):1122–31.CrossRefGoogle Scholar
  82. 82.
    Fisher S, Van Zutphen A, Werler M, Lin A, Romitti P, Druschel C, et al. Maternal antihypertensive medication use and congenital heart defects. Updated results from the National Birth Defects Prevention Study. Hypertension. 2017;69(5):798–805.CrossRefGoogle Scholar
  83. 83.
    Harrington JM, Fitzgerald AP, Kearney PM, McCarthy VJC, Madden J, Browne G, et al. DASH diet score and distribution of blood pressure in middle-aged men and women. Am J Hypertens. 2013;26(11):1311–20.CrossRefGoogle Scholar
  84. 84.
    Maruthur NM, Wang N-Y, Appel LJ. Lifestyle interventions reduce coronary heart disease risk: results from the PREMIER trial. Circulation. 2009;119(15):2026–31.CrossRefGoogle Scholar
  85. 85.
    Cook NR, Cutler JA, Obarzanek E, Buring JE, Rexrode KM, Kumanyika SK, et al. Long term effects of dietary sodium reduction on cardiovascular disease outcomes: observational follow-up of the trials of hypertension prevention (TOHP). BMJ. 2007;334(7599):885. http://www.bmj.com/cgi/doi/10.1136/bmj.39147.604896.55.CrossRefGoogle Scholar
  86. 86.
    Rodenburg EM, Stricker BH, Visser LE. Sex differences in cardiovascular drug-induced adverse reactions causing hospital admissions. Br J Clin Pharmacol. 2012;74(6):1045–52.CrossRefGoogle Scholar
  87. 87.
    Julius S, Nesbitt SD, Egan BM, Weber MA, Michelson EL, Kaciroti N, et al. Feasibility of treating prehypertension with an angiotensin-receptor blocker. N Engl J Med. 2006;354(16):1685–97. http://www.ncbi.nlm.nih.gov/pubmed/16537662.CrossRefGoogle Scholar
  88. 88.
    Luders S, Schrader J, Berger J, Unger T, Zidek W, Bohm M, et al. The PHARAO study: prevention of hypertension with angiotensin-converting enyme inhibitor ramipril in patients with high normal blood pressure: a prospective, randomized, controlled prevention trial of the German Hypertension League. J Hypertens. 2008;26(7):1487–96.CrossRefGoogle Scholar
  89. 89.
    Fuchs SC, Poli-de-Figueiredo CE, Figueiredo Neto JA, Scala LCN, Whelton PK, Mosele F, et al. Effectiveness of chlorthalidone plus amiloride for the prevention of hypertension: The PREVER-prevention randomized clinical trial. J Am Heart Assoc. 2016;5(12):e004248.CrossRefGoogle Scholar
  90. 90.
    Boggia J, Thijs L, Hansen TW, Li Y, Kikuya M, Björklund-Bodegård K, et al. Ambulatory blood pressure monitoring in 9357 subjects from 11 populations highlights missed opportunities for cardiovascular prevention in women. Hypertension. 2011;57(3):397–405.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.First Department of Cardiology, Interventional Electrocardiology and HypertensionJagiellonian University Medical CollegeCracowPoland

Personalised recommendations