Advertisement

Blood Pressure and Atherosclerosis: Subclinical Arteriosclerosis as an Early Sign of Organ Damage

  • Raimund Erbel
  • Nils Lehmann
  • Andreas Stang
  • Sofia Churzidse
  • Susanne Moebus
  • Karl-Heinz Jöckel
Chapter
Part of the Updates in Hypertension and Cardiovascular Protection book series (UHCP)

Abstract

Atherosclerosis shows during life a continuous, sometimes rapid or slow, development starting with fatty streaks and intermediate lesions based on small areas of intimal thickening. According to recommendations of the American Heart association these stages are called Stary I, II, and III. Within the eccentric lesions more and more lipid droplets form a lipid core. These lesions are called atheroma (Stary IV), incorporating collagen they are called fibroatheroma (Stary V). Due to a remodeling process these lesions remain asymptomatic until the increase of vessel circumference reaches >60% and plaque size >40–50%. At this point the compensation process is exhausted, so that a further increase of plaque size would result in luminal narrowing. Coronary artery calcification is found first intracellularly, later extracellularly in Stary III lesions, and is thus not a late, but early sign of atherosclerosis already found in lesions Stary III. Computed tomography (CT) is able to visualize arterial calcification and can therefore be used for early detection, localization, and quantification of coronary atherosclerosis, which is a unique feature not available with other methods. In addition CT for CAC scanning is quick and standardized. Even X-ray exposure is not any more a limitation as the new CT generation allows a full cardiac CT scan with <1.0 mSv, even <0.1 mSv.

In healthy subjects no CAC is detected, but CAC reaches values of up to 1000 and more units—quantified with the Agatston score—in high-risk individuals. The amount of CAC is directly related to the risk for coronary and cardiovascular events and even all-cause mortality. Population-based studies have shown that the CAC shows an age- and sex-related exponential distribution. The data of the Heinz Nixdorf Recall (HNR) study were used in order to detect early signs of coronary atherosclerosis as a marker of organ damage going beyond previous studies using endothelial dysfunction, signs of left ventricular hypertrophy or function as well as other signs like renal failure due to risk factor exposure. One of the main causal risk factors is hypertension, however, for many years prehypertension was not accepted due to conflicting results based on treatment with different antihypertensive agents. Systolic blood pressure has been identified as the strongest predictor of CAC in children followed until the young adulthood. The amount of CAC increases depending on the blood pressure level. Between normotensives and stage 2 hypertensives a striking difference was found, which was more obvious in women than men. Even in prehypertensives a higher CAC distribution was found in both men and women. In men a biological bias in the elderly men was found. The degree of CAC was associated with higher coronary and cardiovascular events in each blood pressure category. Compared to the blood pressure categories the CAC values were much more predictive for event rates, even in prehypertensives. This coronary sign of subclinical atherosclerosis may be used in the future to preselect those who would benefit from pharmaceutic intervention and avoid treatment in others. Meanwhile, McEvoy et al. (Circulation 135(2):153–165, 2017) have proposed CAC as a guide for a personalized risk-based approach to initiation and intensification of antihypertensive therapy. Recently, the AHA 2017 lowered the thresholds for indicating hypertension, so that now the values between 130 and 140 mmHg for the systolic blood pressure, previously included in the definition of prehypertension, are part of the definition used for indicating hypertension as a major risk factor for coronary, cardiovascular, and all-cause mortality.

Keywords

Prehypertension Hypertension Organ damage Coronary artery calcification Atherosclerosis 

References

  1. 1.
    Dzau VJ, Antman EM, Black HR, Hayes DL, Manson JE, Plutzky J, Popma JJ, Stevenson W. The cardiovascular disease continuum validated: clinical evidence of improved patient outcomes: part I: pathophysiology and clinical trial evidence (risk factors through stable coronary artery disease). Circulation. 2006;114(25):2850–70.CrossRefPubMedGoogle Scholar
  2. 2.
    Dzau VJ, Antman EM, Black HR, Hayes DL, Manson JE, Plutzky J, Popma JJ, Stevenson W. The cardiovascular disease continuum validated: clinical evidence of improved patient outcomes: part II: clinical trial evidence (acute coronary syndromes through renal disease) and future directions. Circulation. 2006;114(25):2871–91.CrossRefPubMedGoogle Scholar
  3. 3.
    Stary HC, Chandler AB, Glagov S, Guyton JR, Insull W Jr, Rosenfeld ME, Schaffer SA, Schwartz CJ, Wagner WD, Wissler RW. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation. 1994;89(5):2462–78.CrossRefPubMedGoogle Scholar
  4. 4.
    Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W Jr, Rosenfeld ME, Schwartz CJ, Wagner WD, Wissler RW. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation. 1995;92(5):1355–74.CrossRefPubMedGoogle Scholar
  5. 5.
    Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316(22):1371–5.CrossRefPubMedGoogle Scholar
  6. 6.
    Ge J, Erbel R, Zamorano J, Koch L, Kearney P, Görge G, Gerber T, Meyer J. Coronary artery remodeling in atherosclerotic disease: an intravascular ultrasonic study in vivo. Coron Artery Dis. 1993;4:981–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Gerber TC, Erbel R, Görge G, Ge J, Rupprecht HJ, Meyer J. Extent of atherosclerosis and remodeling of the left main coronary artery determined by intravascular ultrasound. Am J Cardiol. 1994;73:666–71.CrossRefPubMedGoogle Scholar
  8. 8.
    von Birgelen C, Mintz GS, de Vrey EA, Serruys PW, Kimura T, Nobuyoshi M, Popma JJ, Leon MB, Erbel R, de Feyter PJ. Preintervention lesion remodelling affects operative mechanisms of balloon optimised directional coronary atherectomy procedures: a volumetric study with three dimensional intravascular ultrasound. Heart. 2000;83(2):192–7.CrossRefGoogle Scholar
  9. 9.
    Hartmann M, von Birgelen C, Mintz GS, Verhorst PM, Erbel R. Relation between baseline plaque burden and subsequent remodelling of atherosclerotic left main coronary arteries: a serial intravascular ultrasound study with long-term (> or =12 months) follow-up. Eur Heart J. 2006;27(15):1778–84.CrossRefPubMedGoogle Scholar
  10. 10.
    Isner JM, Kishel J, Kent KM, Ronan JA Jr, Ross AM, Roberts WC. Accuracy of angiographic determination of left main coronary arterial narrowing. Angiographic—histologic correlative analysis in 28 patients. Circulation. 1981;63(5):1056–64.CrossRefPubMedGoogle Scholar
  11. 11.
    Erbel R, Ge J, Bockisch A, Kearney P, Görge G, Haude M, Schümann D, Zamorano J, Rupprecht HJ, Meyer J. Value of intracoronary ultrasound and Doppler in the differentiation of angiographically normal coronary arteries: a prospective study in patients with angina pectoris. Eur Heart J. 1996;17(6):880–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Gould KL. Noninvasive assessment of coronary stenoses by myocardial imaging during coronary vasodilation. Part I physiologic principles and experimental validation. Am J Cardiol. 1978;41:267–78.CrossRefPubMedGoogle Scholar
  13. 13.
    Gould KL, Schelbert HR, Phelps ME, Hoffman EJ. Noninvasive assessment of coronary stenoses with myocardial perfusion imaging during pharmacologic coronary vasodilatation. V. Detection of 47 percent diameter coronary stenosis with intravenous nitrogen-13 ammonia and emission-computed tomography in intact dogs. Am J Cardiol. 1979;43(2):200–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Gould KL, Schelbert H, Phelps M, Hoffman E. Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. Part V. Detection of 47% diameter coronary stenosis with intravenous 13NH4+ and emission computed tomography in intact dogs. Am J Cardiol. 1979;43:200–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Gould KL, Kirkeeide RL, Buchi M. Coronary flow reserve as a physiologic measure of stenosis severity. Part I. Relative and absolute coronary flow reserve during changing aortic pressure and cardiac workload and Part II determination from arteriographic stenosis dimensions under standardized conditions. J Am Coll Cardiol. 1990;15:459–74.CrossRefPubMedGoogle Scholar
  16. 16.
    Gould KL, Johnson NP, Bateman TM, Beanlands RS, Bengel FM, Bober R, Camici PG, Cerqueira MD, Chow BJ, Di Carli MF, Dorbala S, Gewirtz H, Gropler RJ, Kaufmann PA, Knaapen P, Knuuti J, Merhige ME, Rentrop KP, Ruddy TD, Schelbert HR, Schindler TH, Schwaiger M, Sdringola S, Vitarello J, Williams KA Sr, Gordon D, Dilsizian V, Narula J. Anatomic versus physiologic assessment of coronary artery disease. Role of coronary flow reserve, fractional flow reserve, and positron emission tomography imaging in revascularization decision-making. J Am Coll Cardiol. 2013;62(18):1639–53.  https://doi.org/10.1016/j.jacc.2013.07.076.CrossRefPubMedGoogle Scholar
  17. 17.
    McMahon MM, Brown BG, Cukingnan R, Rolett EL, Bolson E, Frimer M, Dodge HT. Quantitative coronary angiography: measurement of the “critical” stenosis in patients with unstable angina and single-vessel disease without collaterals. Circulation. 1979;60(1):106–13.CrossRefPubMedGoogle Scholar
  18. 18.
    Wijns W, Serruys PW, Reiber JH, van den Brand M, Simoons ML, Kooijman CJ, Balakumaran K, Hugenholtz PG. Quantitative angiography of the left anterior descending coronary artery: correlations with pressure gradient and results of exercise thallium scintigraphy. Circulation. 1985;71(2):273–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Gerber TC, Erbel R, Görge G, Ge J, Rupprecht HJ, Meyer J. Classification of morphologic effects of percutaneous transluminal coronary angioplasty assessed by intravascular ultrasound. Am J Cardiol. 1992;70(20):1546–54.CrossRefPubMedGoogle Scholar
  20. 20.
    Görge G, Haude M, Ge J, Voegele E, Gerber T, Rupprecht HJ, Meyer J, Erbel R. Intravascular ultrasound after low and high inflation pressure coronary artery stent implantation. J Am Coll Cardiol. 1995;26(3):725–30.CrossRefPubMedGoogle Scholar
  21. 21.
    Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation. 1995;92(3):657–71.CrossRefPubMedGoogle Scholar
  22. 22.
    Davies MJ, Bland JM, Hangartner JR, Angelini A, Thomas AC. Factors influencing the presence or absence of acute coronary artery thrombi in sudden ischaemic death. Eur Heart J. 1989;10(3):203–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20(5):1262–75.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Friedewald VE, Ambrose JA, Stone GW, Roberts WC, Willerson JT. The editor’s roundtable: the vulnerable plaque. Am J Cardiol. 2008;102(12):1644–53.  https://doi.org/10.1016/j.amjcard.2008.09.001.CrossRefPubMedGoogle Scholar
  25. 25.
    Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN, Wrenn SP, Narula J. Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol. 2005;25(10):2054–61.CrossRefPubMedGoogle Scholar
  26. 26.
    Burke AP, Kolodgie FD, Farb A, Weber DK, Malcom GT, Smialek J, Virmani R. Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation. 2001;103(7):934–40.CrossRefPubMedGoogle Scholar
  27. 27.
    Stary HC. The development of calcium deposits in atherosclerotic lesions and their persistence after lipid regression. Am J Cardiol. 2001;88:16E–9E.CrossRefPubMedGoogle Scholar
  28. 28.
    Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15(4):827–32.CrossRefPubMedGoogle Scholar
  29. 29.
    Schmermund A, Möhlenkamp S, Stang A, Grönemeyer D, Seibel R, Hirche H, Mann K, Siffert W, Lauterbach K, Siegrist J, Jöckel KH, Erbel R. Assessment of clinically silent atherosclerotic disease and established and novel risk factors for predicting myocardial infarction and cardiac death in healthy middle-aged subjects: rationale and design of the Heinz Nixdorf RECALL Study. Risk factors, evaluation of coronary calcium and lifestyle. Am Heart J. 2002;144(2):212–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Erbel R, Möhlenkamp S, Moebus S, Schmermund A, Lehmann N, Stang A, Dragano N, Grönemeyer D, Seibel R, Kälsch H, Bröcker-Preuss M, Mann K, Siegrist J, Jöckel KH, Heinz Nixdorf Recall Study Investigative Group. Coronary risk stratification, discrimination, and reclassification improvement based on quantification of subclinical coronary atherosclerosis: the Heinz Nixdorf Recall study. J Am Coll Cardiol. 2010;56(17):1397–406.  https://doi.org/10.1016/j.jacc.2010.06.030.CrossRefPubMedGoogle Scholar
  31. 31.
    Erbel R, Lehmann N, Möhlenkamp S, Churzidse S, Bauer M, Kälsch H, Schmermund A, Moebus S, Stang A, Roggenbuck U, Bröcker-Preuss M, Dragano N, Weimar C, Siegrist J, Jöckel KH, Heinz Nixdorf Recall Study Investigators. Subclinical coronary atherosclerosis predicts cardiovascular risk in different stages of hypertension: result of the Heinz Nixdorf Recall Study. Hypertension. 2012;59(1):44–53.  https://doi.org/10.1161/HYPERTENSIONAHA.111.180489.CrossRefPubMedGoogle Scholar
  32. 32.
    Lehmann N, Erbel R, Mahabadi AA, Kälsch H, Möhlenkamp S, Moebus S, Stang A, Roggenbuck U, Strucksberg KH, Führer-Sakel D, Dragano N, Budde T, Seibel R, Grönemeyer D, Jöckel KH, Investigators HNRS. Accelerated progression of coronary artery calcification in hypertension but also prehypertension. J Hypertens. 2016;34(11):2233–42.  https://doi.org/10.1097/HJH.0000000000001080.CrossRefPubMedGoogle Scholar
  33. 33.
    Hunold P, Vogt FM, Schmermund A, Debatin JF, Kerkhoff G, Budde T, Erbel R, Ewen K, Barkhausen J. Radiation exposure during cardiac CT: effective doses at multi-detector row CT and electron-beam CT. Radiology. 2003;226(1):145–52.CrossRefPubMedGoogle Scholar
  34. 34.
    Montenegro MR, Eggen DA. Topography of atherosclerosis in the coronary arteries. Lab Invest. 1968;18:586–93.PubMedGoogle Scholar
  35. 35.
    Strong JP. Atherosclerotic lesions. Natural history, risk factors, and topography. Arch Pathol Lab Med. 1992;116:1268–75.PubMedGoogle Scholar
  36. 36.
    Schmermund A, Schwartz RS, Adamzik M, Sangiorgi G, Pfeifer EA, Rumberger JA, Burke AP, Farb A, Virmani R. Coronary atherosclerosis in unheralded sudden coronary death under age 50: histo-pathologic comparison with ‘healthy’ subjects dying out of hospital. Atherosclerosis. 2001;155(2):499–508.CrossRefPubMedGoogle Scholar
  37. 37.
    Halon ‘DA, Sapoznikov D, Lewis BS, Gotsman MS. Localization of Lesions in the Coronary circulation. Am J Cardiol. 1983;52:921–6.CrossRefPubMedGoogle Scholar
  38. 38.
    Gotsman M, Rosenheck S, Nassar H, Welber S, Sapoznikov D, Mosseri M, Weiss A, Lotan C, Rozenman Y. Angiographic findings in the coronary arteries after thrombolysis in acute myocardial infarction. Am J Cardiol. 1992;70:715–23.CrossRefPubMedGoogle Scholar
  39. 39.
    Schmermund A, Möhlenkamp S, Baumgart D, Kriener P, Pump H, Grönemeyer D, Seibel R, Erbel R. Usefulness of topography of coronary calcium by electron-beam computed tomography in predicting the natural history of coronary atherosclerosis. Am J Cardiol. 2000;86:127–32.CrossRefPubMedGoogle Scholar
  40. 40.
    Schmermund A, Baumgart D, Möhlenkamp S, Kriener P, Pump H, Grönemeyer D, Seibel R, Erbel R. Natural history and topographic pattern of progression of coronary calcification in symptomatic patients: An electron-beam CT study. Arterioscler Thromb Vasc Biol. 2001;21(3):421–6.CrossRefPubMedGoogle Scholar
  41. 41.
    Erbel R, Mahabadi AA, Kälsch HH. The coronary calcium score for risk prediction. Cardiovasc Med. 2015;18(03):75–82.  https://doi.org/10.4414/cvm.2015.00310.CrossRefGoogle Scholar
  42. 42.
    Schmermund A, Möhlenkamp S, Berenbein S, Pump H, Moebus S, Roggenbuck U, Stang A, Seibel R, Grönemeyer D, Jöckel KH, Erbel R. Population-based assessment of subclinical coronary atherosclerosis using electron-beam computed tomography. Atherosclerosis. 2006;185(1):177–82.CrossRefPubMedGoogle Scholar
  43. 43.
    Taylor AJ, Bindeman J, Feuerstein I, Cao F, Brazaitis M, O'Malley PG. Coronary calcium independently predicts incident premature coronary heart disease over measured cardiovascular risk factors: mean three-year outcomes in the Prospective Army Coronary Calcium (PACC) project. J Am Coll Cardiol. 2005;46(5):807–14.CrossRefPubMedGoogle Scholar
  44. 44.
    McClelland R, Chung H, Detrano R, Post W, Kronmal RA. Distribution of coronary artery calcium by race, gender, and age: results from the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation. 2006;113(1):30–7.CrossRefPubMedGoogle Scholar
  45. 45.
    Erbel R, Delaney JA, Lehmann N, McClelland RL, Möhlenkamp S, Kronmal RA, Schmermund A, Moebus S, Dragano N, Stang A, Jöckel KH, Budoff MJ, Multi-Ethnic Study of Atherosclerosis, Investigator Group of the Heinz Nixdorf Recall Study. Signs of subclinical coronary atherosclerosis in relation to risk factor distribution in the Multi-Ethnic Study of Atherosclerosis (MESA) and the Heinz Nixdorf Recall Study (HNR). Eur Heart J. 2008;29(22):2782–91.  https://doi.org/10.1093/eurheartj/ehn439.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Vliegenthart R, Oudkerk M, Hofman A, Oei HH, van Dijck W, van Rooij FJ, Witteman JC. Coronary calcification improves cardiovascular risk prediction in the elderly. Circulation. 2005;112:572–7.CrossRefPubMedGoogle Scholar
  47. 47.
    Erbel R, Budoff M. Improvement of cardiovascular risk prediction using coronary imaging: subclinical atherosclerosis: the memory of lifetime risk factor exposure. Eur Heart J. 2012;33(10):1201–13.  https://doi.org/10.1093/eurheartj/ehs076.CrossRefPubMedGoogle Scholar
  48. 48.
    Budoff M, Yang TP, Shavelle RM, Lamont DH, Brundage BH. Ethnic differences in coronary atherosclerosis. J Am Coll Cardiol. 2002;39(3):408–12.CrossRefPubMedGoogle Scholar
  49. 49.
    Lee TC, O’Malley PG, Feuerstein I, Taylor AJ. The prevalence and severity of coronary artery calcification on coronary artery computed tomography in black and white subjects. J Am Coll Cardiol. 2003;41(1):39–44.CrossRefPubMedGoogle Scholar
  50. 50.
    Bild DE, Detrano R, Peterson D, Guerci A, Liu K, Shahar E, Ouyang P, Jackson S, Saad MF. Ethnic differences in coronary calcification: the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation. 2005;111(10):1313–20.CrossRefPubMedGoogle Scholar
  51. 51.
    Shaw LJ, Raggi P, Berman DS, Callister TQ. Coronary artery calcium as a measure of biologic age. Atherosclerosis. 2006;188:112–9.CrossRefPubMedGoogle Scholar
  52. 52.
    Erbel R, Lehmann N, Churzidse S, Rauwolf M, Mahabadi AA, Möhlenkamp S, Moebus S, Bauer M, Kälsch H, Budde T, Montag M, Schmermund A, Stang A, Führer-Sakel D, Weimar C, Roggenbuck U, Dragano N, Jöckel KH, Heinz Nixdorf Recall Study Investigators. Progression of coronary artery calcification seems to be inevitable, but predictable—results of the Heinz Nixdorf Recall (HNR) study. Eur Heart J. 2014;35(42):2960–71.  https://doi.org/10.1093/eurheartj/ehu288.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Lehmann N, Möhlenkamp S, Mahabadi AA, Schmermund A, Roggenbuck U, Seibel R, Grönemeyer D, Budde T, Dragano N, Stang A, Mann K, Moebus S, Erbel R, Jöckel KH. Effect of smoking and other traditional risk factors on the onset of coronary artery calcification: results of the Heinz Nixdorf recall study. Atherosclerosis. 2014;232(2):339–45.  https://doi.org/10.1016/j.atherosclerosis.2013.11.045.CrossRefPubMedGoogle Scholar
  54. 54.
    Jöckel KH, Lehmann N, Jaeger BR, Moebus S, Möhlenkamp S, Schmermund A, Dragano N, Stang A, Grönemeyer D, Seibel R, Mann K, Volbracht L, Siegrist J, Erbel R. Smoking cessation and subclinical atherosclerosis—results from the Heinz Nixdorf Recall Study. Atherosclerosis. 2009;203:221–7.CrossRefPubMedGoogle Scholar
  55. 55.
    Peinemann F, Moebus S, Dragano N, Möhlenkamp S, Lehmann N, Zeeb H, Erbel R, Jöckel K-H, Hoffmann B, On Behalf of the Heinz Nixdorf Recall Study Investigative Group. Second-hand smoke exposure and coronary artery calcification among non-smoking participants of a population-based cohort. Environ Health Perspect. 2011;119:1556–61.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Erbel R, Lehmann N, Churzidse S, Möhlenkamp S, Moebus S, Mahabadi AA, Schmermund A, Stang A, Dragano N, Grönemeyer D, Seibel R, Kälsch H, Bauer M, Bröcker-Preuss M, Mann K, Jöckel KH, Investigators HNRS. Gender-specific association of coronary artery calcium and lipoprotein parameters: the Heinz Nixdorf Recall Study. Atherosclerosis. 2013;229(2):531–40. https://doi.org/10.1016/j.atherosclerosis.2013.04.015.CrossRefPubMedGoogle Scholar
  57. 57.
    Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Böhm M, Christiaens T, Cifkova R, De Backer G, Dominiczak A, Galderisi M, Grobbee DE, Jaarsma T, Kirchhof P, Kjeldsen SE, Laurent S, Manolis AJ, Nilsson PM, Ruilope LM, Schmieder RE, Sirnes PA, Sleight P, Viigimaa M, Waeber B, Zannad F, Redon J, Dominiczak A, Narkiewicz K, Nilsson PM, Burnier M, Viigimaa M, Ambrosioni E, Caufield M, Coca A, Olsen MH, Schmieder RE, Tsioufis C, van de Borne P, Zamorano JL, Achenbach S, Baumgartner H, Bax JJ, Bueno H, Dean V, Deaton C, Erol C, Fagard R, Ferrari R, Hasdai D, Hoes AW, Kirchhof P, Knuuti J, Kolh P, Lancellotti P, Linhart A, Nihoyannopoulos P, Piepoli MF, Ponikowski P, Sirnes PA, Tamargo JL, Tendera M, Torbicki A, Wijns W, Windecker S, Clement DL, Coca A, Gillebert TC, Tendera M, Rosei EA, Ambrosioni E, Anker SD, Bauersachs J, Hitij JB, Caulfield M, De Buyzere M, De Geest S, Derumeaux GA, Erdine S, Farsang C, Funck-Brentano C, Gerc V, Germano G, Gielen S, Haller H, Hoes AW, Jordan J, Kahan T, Komajda M, Lovic D, Mahrholdt H, Olsen MH, Ostergren J, Parati G, Perk J, Polonia J, Popescu BA, Reiner Z, Rydén L, Sirenko Y, Stanton A, Struijker-Boudier H, Tsioufis C, van de Borne P, Vlachopoulos C, Volpe M, Wood DA. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;34(28):2159–219.  https://doi.org/10.1093/eurheartj/eht151.
  58. 58.
    Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Després JP, Fullerton HJ, Howard VJ, Huffman MD, Isasi CR, Jiménez MC, Judd SE, Kissela BM, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Magid DJ, McGuire DK, Mohler ER 3rd, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Rosamond W, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Woo D, Yeh RW, Turner MB, American Heart Association Statistics Committee, Stroke Statistics Subcommittee. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38–360.  https://doi.org/10.1161/CIR.0000000000000350. Erratum in: Circulation. 2016;133(15):e599.CrossRefPubMedGoogle Scholar
  59. 59.
    Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, Roccella EJ, Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure, National Heart, Lung, and Blood Institute, National High Blood Pressure Education Program Coordinating Committee. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension. 2003;42:1206–52.CrossRefGoogle Scholar
  60. 60.
    James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, Lackland DT, LeFevre ML, MacKenzie TD, Ogedegbe O, Smith SC Jr, Svetkey LP, Taler SJ, Townsend RR, Wright JT Jr, Narva AS, Ortiz E. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311(5):507–20.  https://doi.org/10.1001/jama.2013.284427. Erratum in: JAMA. 2014;311(17):1809.CrossRefGoogle Scholar
  61. 61.
    Goff DC Jr, Lloyd-Jones DM, Bennett G, Coady S, D’Agostino RB Sr, Gibbons R, Greenland P, Lackland DT, Levy D, O'Donnell CJ, Robinson JG, Schwartz JS, Shero ST, Smith SC Jr, Sorlie P, Stone NJ, Wilson PW, American College of Cardiology/American Heart Association Task Force on Practice Guidelines. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63(25 Pt B):2935–59.  https://doi.org/10.1016/j.jacc.2013.11.005. Epub 2013 Nov 12. No abstract available. Erratum in: J Am Coll Cardiol. 2014;63(25 Pt B):3026.CrossRefPubMedGoogle Scholar
  62. 62.
    Ortiz E, Oparil S, James PA. Guidelines for managing high blood pressure--reply. JAMA. 2014;312(3):295–6.  https://doi.org/10.1001/jama.2014.6599.CrossRefPubMedGoogle Scholar
  63. 63.
    Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, Goldberg AC, Gordon D, Levy D, Lloyd-Jones DM, McBride P, Schwartz JS, Shero ST, Smith SC Jr, Watson K, Wilson PW, Eddleman KM, Jarrett NM, LaBresh K, Nevo L, Wnek J, Anderson JL, Halperin JL, Albert NM, Bozkurt B, Brindis RG, Curtis LH, DeMets D, Hochman JS, Kovacs RJ, Ohman EM, Pressler SJ, Sellke FW, Shen WK, Smith SC Jr, Tomaselli GF. American College of Cardiology/American Heart Association Task Force on Practice Guidelines. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129(25 Suppl 2):S1–45.  https://doi.org/10.1161/01.cir.0000437738.63853.7a. Erratum in: Circulation. 2015; 132(25):e396. Circulation. 2014; 129(25 Suppl 2):S46-8.CrossRefPubMedGoogle Scholar
  64. 64.
    Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, Cooney MT, Corrà U, Cosyns B, Deaton C, Graham I, Hall MS, Hobbs FD, Løchen ML, Löllgen H, Marques-Vidal P, Perk J, Prescott E, Redon J, Richter DJ, Sattar N, Smulders Y, Tiberi M, van der Worp HB, van Dis I, Verschuren WM, Authors/Task Force Members. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts). Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J. 2016;37(29):2315–81.  https://doi.org/10.1093/eurheartj/ehw106.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Julius S, Jamerson K, Mejia A, Krause L, Schork N, Jones K. The association of borderline hypertension with target organ changes and higher coronary risk. Tecumseh blood pressure study. JAMA. 1990;264:354–8.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Lloyd-Jones DM, Evans JC, Levy D. Hypertension in adults across the age spectrum: current outcomes and control in the community. JAMA. 2005;294:466–72.CrossRefPubMedGoogle Scholar
  67. 67.
    Miura K, Daviglus ML, Dyer AR, Liu K, Garside DB, Stamler J, Greenland P. Relationship of blood pressure to 25-year mortality due to coronary heart disease, cardiovascular diseases, and all causes in young adult men: the Chicago Heart Association Detection Project in Industry. Arch Intern Med. 2001;161:1501–8.CrossRefPubMedGoogle Scholar
  68. 68.
    Vasan RS, Larson MG, Leip EP, Evans JC, O'Donnell CJ, Kannel WB, Levy D. Impact of high-normal blood pressure on the risk of cardiovascular disease. N Engl J Med. 2001;345:1291–7.CrossRefGoogle Scholar
  69. 69.
    Russell LB, Valiyeva E, Carson JL. Effects of prehypertension on admissions and deaths: a simulation. Arch Intern Med. 2004;164(19):2119–24. Erratum in: Arch Intern Med. 2005;165:1720.CrossRefPubMedGoogle Scholar
  70. 70.
    Grotto I, Grossman E, Huerta M, Sharabi Y. Prevalence of prehypertension and associated cardiovascular risk profiles a young Israeli adults. Hypertension. 2006;48:254–9.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Lloyd-Jones DM. Ischemic heart disease risk. Chapter B77. In: Izzo JL, Sicca DA, Black HR, editors. Hypertension primer. 4th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2008. p. 349–53.Google Scholar
  72. 72.
    Kannel WB, PWF W. Cardiovascular risk factors and hypertension. In: Izzo JL, Sicca DA, Black HR, editors. Hypertension Primer. 4th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2008. p. 244–9.Google Scholar
  73. 73.
    Giannotti G, Doerries C, Mocharla PS, Mueller MF, Bahlmann FH, Horvàth T, Jiang H, Sorrentino SA, Steenken N, Manes C, Marzilli M, Rudolph KL, Lüscher TF, Drexler H, Landmesser U. Impaired endothelial repair capacity of early endothelial progenitor cells in prehypertension: relation to endothelial dysfunction. Hypertension. 2010;55:1389–97.CrossRefGoogle Scholar
  74. 74.
    Ikram MK, Witteman JC, Vingerling JR, Breteler MM, Hofman A, de Jong PT. Retinal vessel diameters and risk of hypertension: the Rotterdam Study. Hypertension. 2006;47:189–94.CrossRefPubMedGoogle Scholar
  75. 75.
    Manios E, Tsivgoulis G, Koroboki E, Stamatelopoulos K, Papamichael C, Toumanidis S, Stamboulis E, Vemmos K, Zakopoulos N. Impact of prehypertension on common carotid artery intima-media thickness and left ventricular mass. Stroke. 2009;40:1515–8.CrossRefGoogle Scholar
  76. 76.
    Mahoney LT, Burns TL, Stanford W, Thompson BH, Witt JD, Rost CA, Lauer RM. Coronary risk factors measured in childhood and young adult life are associated with coronary artery calcification in young adults: the Muscatine Study. J Am Coll Cardiol. 1996;27(2):277–84.CrossRefPubMedGoogle Scholar
  77. 77.
    Peralta CA, Adeney KL, Shlipak MG, Jacobs D Jr, Duprez D, Bluemke D, Polak J, Psaty B, Kestenbaum BR. Structural and functional vascular alterations and incident hypertension in normotensive adults: the Multi-Ethnic Study of Atherosclerosis. Am J Epidemiol. 2010;171:63–71.CrossRefGoogle Scholar
  78. 78.
    Julius S, Nesbitt SD, Egan BM, Weber MA, Michelson EL, Kaciroti N, Black HR, Grimm RH Jr, Messerli FH, Oparil S, Schork MA, Trial of Preventing Hypertension (TROPHY) Study Investigators. Feasibility of treating prehypertension with an angiotensin-receptor blocker. N Engl J Med. 2006;354:1685–897.CrossRefGoogle Scholar
  79. 79.
    Lüders S, Schrader J, Berger J, Unger T, Zidek W, Böhm M, Middeke M, Motz W, Lübcke C, Gansz A, Brokamp L, Schmieder RE, Trenkwalder P, Haller H, Dominiak P, PHARAO Study Group. The PHARAO study: prevention of hypertension with the angiotensin-converting enzyme inhibitor ramipril in patients with high-normal blood pressure: a prospective, randomized, controlled prevention trial of the German Hypertension League. J Hypertens. 2008;26:1487–96.CrossRefGoogle Scholar
  80. 80.
    NAVIGATOR Study Group, McMurray JJ, Holman RR, Haffner SM, Bethel MA, Holzhauer B, Hua TA, Belenkov Y, Boolell M, Buse JB, Buckley BM, Chacra AR, Chiang FT, Charbonnel B, Chow CC, Davies MJ, Deedwania P, Diem P, Einhorn D, Fonseca V, Fulcher GR, Gaciong Z, Gaztambide S, Giles T, Horton E, Ilkova H, Jenssen T, Kahn SE, Krum H, Laakso M, Leiter LA, Levitt NS, Mareev V, Martinez F, Masson C, Mazzone T, Meaney E, Nesto R, Pan C, Prager R, Raptis SA, Rutten GE, Sandstroem H, Schaper F, Scheen A, Schmitz O, Sinay I, Soska V, Stender S, Tamás G, Tognoni G, Tuomilehto J, Villamil AS, Vozár J, Califf RM. Effect of valsartan on the incidence of diabetes and cardiovascular events. N Engl J Med. 2010;362:1477–90.CrossRefGoogle Scholar
  81. 81.
    Stang A, Moebus S, Möhlenkamp S, Dragano N, Schmermund A, Beck M, Siegrist J, Erbel R, Jöckel KH, Heinz Nixdorf Recall Study Investigative Group. Algorithms for converting random-zero to automated oscillometric blood pressure values, and vice versa. Am J Epidemiol. 2006;164:85–94.CrossRefPubMedGoogle Scholar
  82. 82.
    National Center for Health Statistics. Health, United States. With chartbook on trends in the health of Americans. Hyattsville, MD: National Center for Health Statistics; 2007.Google Scholar
  83. 83.
    Westheim A, Klemetsrud T, Tretli S, Stokke HP, Olsen H. Blood pressure levels in treated hypertensive patients in general practice in Norway. Blood Press. 2001;10:37–42.CrossRefPubMedGoogle Scholar
  84. 84.
    Ong KL, Tso AW, Lam KS, Cheung BM. Gender difference in blood pressure control and cardiovascular risk factors in Americans with diagnosed hypertension. Hypertension. 2008;51:1142–8.CrossRefPubMedGoogle Scholar
  85. 85.
    Halimi JM, Giraudeau B, Vol S, Cacès E, Nivet H, Tichet J. The risk of hypertension in men: direct and indirect effects of chronic smoking. J Hypertens. 2002;20:187–93.CrossRefPubMedGoogle Scholar
  86. 86.
    Detrano R, Guerci AD, Carr JJ, Bild DE, Burke G, Folsom AR, Liu K, Shea S, Szklo M, Bluemke DA, O'Leary DH, Tracy R, Watson K, Wong ND, Kronmal RA. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358:1336–45.CrossRefPubMedGoogle Scholar
  87. 87.
    Elias-Smale SE, Proença RV, Koller MT, Kavousi M, van Rooij FJ, Hunink MG, Steyerberg EW, Hofman A, Oudkerk M, Witteman JC. Coronary calcium score improves classification of coronary heart disease risk in the elderly: the Rotterdam study. J Am Coll Cardiol. 2010;56:1407–14.CrossRefPubMedGoogle Scholar
  88. 88.
    Lloyd-Jones D, Adams R, Carnethon M, De Simone G, Ferguson TB, Flegal K, Ford E, Furie K, Go A, Greenlund K, Haase N, Hailpern S, Ho M, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott M, Meigs J, Mozaffarian D, Nichol G, O’Donnell C, Roger V, Rosamond W, Sacco R, Sorlie P, Stafford R, Steinberger J, Thom T, Wasserthiel-Smoller S, Wong N, Wylie-Rosett J, Hong Y, American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics—2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2009;119:e21–181.PubMedGoogle Scholar
  89. 89.
    Aronow WS, Fleg JL, Pepine CJ, Artinian NT, Bakris G, Brown AS, Ferdinand KC, Forciea MA, Frishman WH, Jaigobin C, Kostis JB, Mancia G, Oparil S, Ortiz E, Reisin E, Rich MW, Schocken DD, Weber MA, Wesley DJ. ACCF/AHA 2011 Expert Consensus Document on Hypertension in the Elderly: a report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents. Circulation. 2011;123:2434–506.CrossRefPubMedGoogle Scholar
  90. 90.
    Reboldi G, Gentile G, Angeli F, Ambrosio G, Mancia G, Verdecchia P. Effects of intensive blood pressure reduction on myocardial infarction and stroke in diabetes: a meta-analysis in 73,913 patients. J Hypertens. 2011;29:1253–69.CrossRefGoogle Scholar
  91. 91.
    Rumberger JA, Simons DB, Fitzpatrick LA, Sheedy PF, Schwartz RS. Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation. 1995;92:2157–62.CrossRefPubMedGoogle Scholar
  92. 92.
    McEvoy JW, Martin SS, Dardari ZA, Miedema MD, Sandfort V, Yeboah J, Budoff MJ, Goff DC Jr, Psaty BM, Post WS, Nasir K, Blumenthal RS, Blaha MJ. Coronary artery calcium to guide a personalized risk-based approach to initiation and intensification of antihypertensive therapy. Circulation. 2017;135(2):153–65.  https://doi.org/10.1161/CIRCULATIONAHA.116.025471.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Raimund Erbel
    • 1
  • Nils Lehmann
    • 1
  • Andreas Stang
    • 1
  • Sofia Churzidse
    • 2
  • Susanne Moebus
    • 1
  • Karl-Heinz Jöckel
    • 1
  1. 1.Institute for Medical Informatics, Biometry and EpidemiologyUniversity Hospital Essen, University Duisburg-EssenEssenGermany
  2. 2.Medizinische Klinik I, Herzzentrum NiederrheinHelios Hospital KrefeldEssenGermany

Personalised recommendations