Physics of the Ejectors

  • Giuseppe Grazzini
  • Adriano Milazzo
  • Federico Mazzelli
Chapter

Abstract

The global behavior of the ejector results from a combination of complex flow features including shock trains, turbulent mixing layers bounded by wall regions, shock-induced separations, boundary layers subject to adverse pressure gradients, non-equilibrium phase change, etc. It is because of this complexity that ejector design and performance have thus far been difficult to characterize and optimize.

In what follows, a brief review of the main physical phenomena occurring in a supersonic ejector will be described, and some relations will be introduced. These findings will be further exploited in Chap. 3 when some design tools will be described.

Keywords

Working fluid Expansion and compression Compressible mixing Phase change 

References

  1. Aamir, A., & Watkins, A. (2000). Numerical analysis of depressurization of highly pressurized liquid propane. International Journal of Heat and Fluid Flow, 21, 420–431.CrossRefGoogle Scholar
  2. Angielczyk, W., Bartosiewicz, Y., Butrimowicz, D., & Seynhaeve, J. (2010). 1-D Modeling of supersonic carbon dioxide two-phase flow through ejector motive nozzle. s.l., International Refrigeration and Air Conditioning Conference.Google Scholar
  3. ANSYS Inc. (2016). ANSYS fluent theory guide. Canonsburg, PA: release 18.0.Google Scholar
  4. ASHRAE (2008). Addenda to designation and safety classification of refrigerants, s.l.: ANSI/ASHRAE Standard 34-2007.Google Scholar
  5. Bakhtar, F., Young, J. B., White, A. J., & Simpson, D. A. (2005). Classical nucleation theory and its application to condensing steam flow calculations. s.l., s.n.Google Scholar
  6. Bejan, A. (1988). Advanced engineering thermodynamics. s.l.:John Wiley and Sons.Google Scholar
  7. Biferi, G., et al. (2016). CFD Modeling of high-speed condensationin supersonic nozzle, part II: R134a. Atlanta: Fourth International Conference on Computational Methods for Thermal Problems.Google Scholar
  8. Bird, R., Stewart, W., & Lightfoot, E. (2002). Transport phenomena (2nd ed.) s.l.:John Wiley and Sons.Google Scholar
  9. Brennen, C. (1995). Cavitation and bubble dynamics. s.l.:Oxford University Press.Google Scholar
  10. Brown, G. (1974). The entrainment and large structure in turbulent mixing layers, Proceedings of the 5th Australasian Conf. on Hydraulics and Fluid Mechanics. New Zealand, s.n.Google Scholar
  11. Brown, G., & Roshko, A. (1974). On density effects and large structure in turbulent mixing layers. Journal of Fluid Mechanics, 64, 775–816.CrossRefGoogle Scholar
  12. Calm, J., & Hourahan, G. (2001). Refrigerant data summary. Engineered Systems, 18(11), 4–88.Google Scholar
  13. Carey, V. (1992). Liquid-vapor phase-change phenomena: An introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment. New York: s.l.:Taylor & Francis Series Group, LLC.Google Scholar
  14. Carroll, B., & Dutton, J. (1990). Characteristics of multiple shock wave/turbulent boundary-layer interactions in rectangular ducts. Journal of Propulsion, 6, 186–193.CrossRefGoogle Scholar
  15. Chen, J., Havtun, H., & Palm, B. (2014). Screening of working fluids for the ejector refrigeration system. International Journal of Refrigeration, 47, 1–14.CrossRefGoogle Scholar
  16. Churchill, S. (1977). Friction factor equations spans all fluid-flow regimes. Chemical Engineering Journal, 84, 91–92.Google Scholar
  17. Cizungu, K., Mani, A., & Groll, M. (2001). Performance comparison of vapour jet refrigeration system with environment friendly working fluids. Applied Thermal Engineering, 21, 585–598.CrossRefGoogle Scholar
  18. Crocco, L. (1958). One-dimensional treatment of steady gas dynamics. In: H. Emmons (Ed.), Fundamentals of gas dynamics (pp. 110–130). s.l.:Princeton University Press.Google Scholar
  19. Dimotakis, P. E. (1986). Two-dimensional shear layers. AIAA Journal, 24(11), 1791–1796.CrossRefGoogle Scholar
  20. Dolling, D. S. (2001). Fifty years of shock-wave/boundary-layer interaction research: What’s next? AIAA Journal, 39(8), 1517–1531.CrossRefGoogle Scholar
  21. Dorantes, R., & Lallemand, A. (1995). Prediction of performance of a jet cooling system operating with pure refrigerants or non-azeotropic mixtures. International Journal of Refrigeration, 18, 21–30.CrossRefGoogle Scholar
  22. Eames, I. (2002). A new prescription for the design of supersonic jet-pumps: The constant rate of momentum change method. Applied Thermal Engineering, 22, 121–131.CrossRefGoogle Scholar
  23. Eames, I., Worall, M., & Wu, M. (2013). An experimental investigation into the integration of a jet-pump refrigeration cycle and a novel jet-spay thermal ice storage system. Applied Thermal Engineering, 53, 285–290.CrossRefGoogle Scholar
  24. Elias, E., & Chambre, P. L. (1993). Flashing Inception in water during rapid decompression. Journal of Heat Transfer, 115, 231–238.CrossRefGoogle Scholar
  25. Fang, Y., et al. (2017). Drop-in replacement in a R134 ejector refrigeration cycle by HFO refrigerants. International Journal of Refrigeration, 121, 87–98.CrossRefGoogle Scholar
  26. Fire Science Center (1994). The blowdown of pressurized containers, s.l.: Fire Science Center, University of New Bruswick.Google Scholar
  27. Ford, I. (2004). Statistical mechanics of water droplet nucleation. Journal of Mechanical Engineering Science, 218(C8), 883–899.CrossRefGoogle Scholar
  28. Ford, I. (2013). Statistical physics an entropic approach. s.l.:John Wiley & Sons, Ltd.Google Scholar
  29. Freund, J., Lele, S., & Moin, P. (2000). Compressibility effects in a turbulent annular mixing layer. Part 1: Turbulence and growth rate. Journal of Fluid Mechanics, 421, 229–267.MathSciNetCrossRefMATHGoogle Scholar
  30. Garcia del Valle, J., Saiz Jabardo, J., Castro Ruiz, F., & San Jose Alonso, J. (2014). An experimental investigation of a R-134a ejector refrigeration system. International Journal of Refrigeration, 46, 105–113.CrossRefGoogle Scholar
  31. Gatsky, T., & Bonnet, J.-P. (2013). Compressibility, turbulence and high speed flow (2nd ed.). Oxford: Academic Press.Google Scholar
  32. Giacomelli, F., Mazzelli, F., & Milazzo, A. (2016). Evaporation in supersonic CO2 ejectors: Analysis of theoretical and numerical models. Firenze: International Conference on Multiphase Flow.Google Scholar
  33. Giese, T., & Laurien, E. (2000). A three dimensional numerical model for the analysis of pipe flows with cavitation. Bonn: Proceedings of the Annual meeting on nuclear technology.Google Scholar
  34. Grazzini, G., & D’Albero, M. (1998). A Jet-Pump inverse cycle with water pumping column. June 2–5, Oslo, Norway, Proceedings of Natural Working Fluids ’98.Google Scholar
  35. Grazzini, G., Milazzo, A., & Piazzini, S. (2011). Prediction of condensation in steam ejector for a refrigeration system. International Journal of Refrigeration, 34, 1641–1648.CrossRefGoogle Scholar
  36. Gyarmathy, G. (1962). Bases for a theory for wet steam turbines (translated from German: “Grundlagen einer Theorie der Nassdampfturbine”). Doctoral Thesis No. 3221, ed. s.l.:ETH Zurich.Google Scholar
  37. Henry, R., & Fauske, H. (1971). The two-phase critical flow of one-component mixtures in nozzles, orifices, and short tubes. Journal of Heat Transfer, 93(2), 179–187.CrossRefGoogle Scholar
  38. Hill, P. G. (1966). Condensation of water vapour during supersonic expansion in nozzles. Journal of Fluid Mechanics, 25(3), 593–620.CrossRefGoogle Scholar
  39. Huang, B., Chang, J., Wang, C., & Petrenko, V. (1999). A 1-D analysis of ejector performance. International Journal of Refrigeration, 22, 354–364.CrossRefGoogle Scholar
  40. Ikawa, H. (1973). Turbulent mixing layer in supersonic flow. s.l.:Ph.D. thesis, California Institute of Technology.Google Scholar
  41. Johnson III, J., & Wu, B. (1974). Pressure recovery and related properties in supersonic diffusers: A review, s.l.: Report of the National Technical Information Service.Google Scholar
  42. Kantrovitz, A. (1951). Nucleation in very rapid vapour expansions. The Journal of Chemical Physics, 19, 1097–1100.CrossRefGoogle Scholar
  43. Kasperski, J., & Gil, B. (2014). Performance estimation of ejector cycles using heavier hydrocarbon refrigerants. Applied Thermal Engineering, 71, 197–203.CrossRefGoogle Scholar
  44. Lawrence, N., & Elbel, S. (2016). Experimental investigation on the effect of evaporator design and application of work recovery on the performance of two-phase ejector liquid recirculation cycles with R410A. Applied Thermal Engineering, 100, 398–411.CrossRefGoogle Scholar
  45. Lefebvre, A. (1989). Atomization and sprays. USA: s.l.:Emisphere Publishing Corporation.Google Scholar
  46. Lemmon, E., Huber, M., & McLinden, M. (2013). NIST Standard reference database 23: Reference fluid thermodynamic and transport properties-REFPROP, Version 9.1, s.l.: National Institute of Standards and Technology.Google Scholar
  47. Linn, P., & Reitz, R. D. (1998). Drop and spray formation from liquid jet. Annual Review of Fluid Mechanics, 30, 85–105.MathSciNetCrossRefGoogle Scholar
  48. Matsuo, K., Miyazato, Y., & Kim, H. (1999). Shock train and pseudo-shock phenomena in internal gas flows. Progress in Aerospace Sciences, 35, 33–100.CrossRefGoogle Scholar
  49. Milazzo, M., & Rocchetti, A. (2015). Modelling of ejector chillers with steam and other working fluids. International Journal of Refrigeration, 57, 277–287.CrossRefGoogle Scholar
  50. Moore, M. J., Walters, P. T., Crane, P. I., & Davidson, B. J. (1973). Predicting the fog-drop size in wet-steam turbines. s.l., s.n.Google Scholar
  51. Moses, C. A., & Stein, G. D. (1978). On the growth of steam droplets formed in a Laval nozzle using both static pressure and light scattering measurements. Journal of Fluids Engineering, 100, 311–322.CrossRefGoogle Scholar
  52. Nehdi, E., Kairouani, L., & Elakhdar, M. (2008). A solar ejector air-conditioning system using environment-friendly working fluids. International Journal of Energy Research, 32, 1194–1201.CrossRefGoogle Scholar
  53. Palacz, M., et al. (2015). Application range of the HEM approach for CO2 expansion inside two-phase ejectors for supermarket refrigeration systems. International Journal of Refrigeration, 59, 251–258.CrossRefGoogle Scholar
  54. Papamoschou, D. (1993). Model for entropy production and pressure variation in confined turbulent mixing. AIAA Journal, 31(9), 1643–1650.CrossRefMATHGoogle Scholar
  55. Papamoschou, D. (1996). Analysis of partially mixed supersonic ejector. Journal of Propulsion and Power, 12(4), 736–741.CrossRefGoogle Scholar
  56. Papamoschou, D., & Roshko, A. (1988). The compressible turbulent shear layer: An experimental study. Journal of Fluid Mechanics, 197, 453–477.CrossRefGoogle Scholar
  57. Petrenko, V. (2009). Application of innovative ejector chillers and air conditioners operating with low boiling refrigerants in trigeneration systems. Louvain-la-Neuve: International Seminar on ejector/jet-pump technology and application.Google Scholar
  58. Plesset, M. (1949). The dynamics of cavitation bubbles. Journal of Applied Mechanics, 9, 277–282.Google Scholar
  59. Polanco, G., Holdøb, A., & Munday, G. (2010). General review of flashing jet studies. Journal of Hazardous Materials, 173, 2–18.CrossRefGoogle Scholar
  60. Pope, A., & Goin, K. (1978). High-speed wind tunnel testing. s.l.:Wiley.Google Scholar
  61. Selvaraju, A., & Mani, A. (2004). Analysis of an ejector with environment friendly refrigerants. Applied Thermal Engineering, 24, 827–838.CrossRefGoogle Scholar
  62. Shapiro, A. H. (1953). The dynamics and thermodynamics of compressible fluid flow (Vol. II). New York: Ronald Press.Google Scholar
  63. Singhal, A., Athavale, M., Li, H., & Jiang, Y. (2002). Mathematical basis and validation of the full cavitation model. Journal of Fluids Engineering, 124, 617–624.CrossRefGoogle Scholar
  64. Smits, A., & Dussauge, J.-P. (2006). Turbulent shear layers in supersonic flow (2nd ed.). New York: Springer.Google Scholar
  65. Starzmann, J., et al. (2016). Results of the International Wet Steam Modelling Project, Wet Steam Conference. Prague, s.n.Google Scholar
  66. Stodola, A. (1927). Steam and gas turbines. s.l.:McGraw-Hill.Google Scholar
  67. Sun, D.-W. (1999). Comparative study of the performance of an ejector refrigeration cycle operating with various refrigerants. Energy Conversion and Management, 40, 873–884.CrossRefGoogle Scholar
  68. Tolman, R. (1949). Effects of droplet size on surface tension. The Journal of Chemical Physics, 17, 333.CrossRefGoogle Scholar
  69. Varga, S., Lebre, P., & Oliveira, A. (2013). Readdressing working fluid selection with a view to designing a variable geometry ejector. International Journal of Low Carbon Technologies, 10, 1–11.Google Scholar
  70. Wang, F., Shen, S., & Li, D. (2015). Evaluation on environment friendly refrigerants with similar normal boiling points in ejector refrigeration system. Heat and Mass Transfer, 51(7), 965–972.CrossRefGoogle Scholar
  71. Wegener, P., & Mack, L. (1958). Condensation in supersonic and hypersonic wind tunnels. New York: Academic Press Inc..CrossRefMATHGoogle Scholar
  72. Wygnanski, I., & Fiedler, H. (1970). The two-dimensional mixing region. Journal of Fluid Mechanics, 41, 327–362.CrossRefGoogle Scholar
  73. Young, J. (1991). The condensation and evaporation of liquid droplets in a pure vapour at arbitrary Knudsen number. International Journal of Heat and Mass Transfer, 34, 1649–1661.CrossRefGoogle Scholar
  74. Young, J. B. (1982). The spontaneous condensation in supersonic nozzles. Physico Chemical Hydrodynamics, 3(1), 57–82.Google Scholar
  75. Zucker, R., & Biblarz, O. (2002). Fundamentals of gas dynamics (2nd ed.). Hoboken: John Wiley & Sons, Inc..Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Giuseppe Grazzini
    • 1
  • Adriano Milazzo
    • 1
  • Federico Mazzelli
    • 1
  1. 1.Department of Industrial EngineeringUniversity of FlorenceFlorenceItaly

Personalised recommendations