Introduction

  • Giuseppe Grazzini
  • Adriano Milazzo
  • Federico Mazzelli
Chapter

Abstract

Ejectors are part of a vast family of equipment that may collectively be named “jet devices.” These devices may convey gases, liquids, or even solids (fine particles), but all share two main features:
  • Have no moving parts

  • Use a relatively high-pressure stream to convey a low-pressure stream toward an intermediate pressure receiver

Jet devices have a long history and may be used for a wide range of applications. They are produced on custom specification or in small series by a relatively small number of companies in Europe and the USA. Their use as fluid-driven compressors in refrigeration systems is known since the early twentieth century but has received increased attention from the scientific community in the last two decades, due to the potential as a simple and effective option for heat-powered cooling. When compared to absorption or adsorption cooling, the use of ejectors is competitive only in niche markets, but the situation could change if significant performance increase was registered.

This chapter gives a brief explanation of the ejector working principle and shows how a refrigeration system can be built on it. A short history of the ejector follows. Finally, some applications within and outside of the refrigeration field are reviewed.

Keywords

Ejectors Injectors Two-phase ejectors Ejector applications Ejector chillers 

References

  1. Abdulateef, J., Sopian, K., Alghoul, M., & Sulaiman, M. (2009). Review on solar-driven ejector refrigeration technologies. Renewable and Sustainable Energy Reviews, 13, 1338–1349.CrossRefGoogle Scholar
  2. Al-Khalidy, N. (1997). Experimental investigation of solar concentrators in a refrigerant ejector refrigeration machine. International Journal of Energy Research, 21, 1123–1131.CrossRefGoogle Scholar
  3. Arora, C. (2003). Refrigeration and air conditioning. s.l.:Tata-McGraw-Hill.Google Scholar
  4. Besagni, G., Mereu, R., & Inzoli, F. (2016). Ejector refrigeration: A comprehensive review. Renewable and Sustainable Energy Reviews, 53, 373–407.CrossRefGoogle Scholar
  5. Chen, L. (1998). A new ejector-absorber cycle to improve the COP of an absorption system. Applied Energy, 30, 37–41.CrossRefGoogle Scholar
  6. Chung, H., Hum, M. H., Prevost, M., & Bugarel, R. (1984). Domestic heating application of an absorption heat pump, directly fired heat pump. In Proceedings International Conference University of Bristol. s.l., s.n.Google Scholar
  7. Chunnanond, K., & Aphornratana, S. (2004). Ejectors: Applications in refrigeration technology. Renewable and Sustainable Energy Reviews, 8, 129–155.CrossRefGoogle Scholar
  8. Croll Reynolds. (2017). [Online] Available at: www.croll.com. [Accessed 28 02 2017].
  9. DIN 24290:1981-08. (1981). Jet pumps (ejectors); terms, classification. s.l.: s.n.Google Scholar
  10. Dorantes, R., & Lallemand, A. (1995). Prediction of performance of a jet cooling system operating with pure refrigerants or non-azeotropic mixtures. International Journal of Refrigeration, 18, 21–30.CrossRefGoogle Scholar
  11. Encyclopædia Britannica. (1911). Brake (Vol. 4). s.l.: s.n.Google Scholar
  12. Gay, N. (1931). Refrigerating system. US Patent, Patent No. 1,836,318.Google Scholar
  13. GEA Wiegand GmbH. (2017). [Online]. Available at: http://produkte.gea-wiegand.de/GEA/index_en.html. [Accessed 28 02 2017].
  14. Graham. (2017). [Online]. Available at: http://www.graham-mfg.com/. [Accessed 28 02 2017].
  15. Hafner, A., Försterling, S., & Banasiak, K. (2014). Multi-ejector concept for R-744 supermarket refrigeration. International Journal of Refrigeration, 43, 1–13.CrossRefGoogle Scholar
  16. Huang, B., Petrenko, V., Samofatov, I., & Shchetinina, N. (2001). Collector selection for solar ejector cooling system. Solar Energy, 7, 269–274.CrossRefGoogle Scholar
  17. Ishizaka, N., et al. (2009). Next generation ejector cycle for car air conditioning systems. ATZ Autotechnology, 111, 34–38.Google Scholar
  18. Kranakis, E. (1982). The French connection: Giffard’s injector and the nature of heat. Technology and Culture, 23, 3–38.CrossRefGoogle Scholar
  19. Leblanc, M. (1911). Notice sur lesMachines frigorifiques à vapeur d'eau et à éjecteur du système Westinghouse-Leblanc et sur leur application à la marine. Gauthier-Villars, Paris: s.n.Google Scholar
  20. Nguyen, V., Riffat, S., & Doherty, P. (2001). Development of a solar-powered passive ejector cooling system. Applied Thermal Engineering, 21, 157–168.CrossRefGoogle Scholar
  21. Power, R. (1993). Steam jet ejectors for the process industries (1st ed.). s.l: McGraw-Hill.Google Scholar
  22. Routledge, R. (1876). Discoveries and inventions of the nineteenth century. London: George Routledge & Sons.Google Scholar
  23. Shutte Koerting. (2017). [Online]. Available at: http://www.s-k.com/index.tpl. [Accessed 28 02 2017].
  24. Sokolov, E., & Zinger, N. (1989). Jet devices (in Russian). Moscow: Energoatomizdat.Google Scholar
  25. Stoecker, W. (1958). Steam-jet refrigeration. Boston: McGraw-Hill.Google Scholar
  26. Sӧzen, A., & Ӧzalp, M. (2005). Solar-driven ejector-absorption cooling system. Applied Energy, 80, 97–113.CrossRefGoogle Scholar
  27. Transvac. (2017). [Online]. Available at: http://www.transvac.co.uk/. [Accessed 28 02 2017].
  28. Zhang, B., & Shen, S. (2002). Development of solar ejector refrigeration system. 1st International Conference on Sustainable Energy Technologies, s.l.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Giuseppe Grazzini
    • 1
  • Adriano Milazzo
    • 1
  • Federico Mazzelli
    • 1
  1. 1.Department of Industrial EngineeringUniversity of FlorenceFlorenceItaly

Personalised recommendations