Advertisement

Structural and Molecular Biology of Type IV Secretion Systems

  • Célia Bergé
  • Gabriel Waksman
  • Laurent Terradot
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 413)

Abstract

Type IV secretion systems (T4SSs) are nanomachines that Gram-negative, Gram-positive bacteria, and some archaea use to transport macromolecules across their membranes into bacterial or eukaryotic host targets or into the extracellular milieu. They are the most versatile secretion systems, being able to deliver both proteins and nucleoprotein complexes into targeted cells. By mediating conjugation and/or competence, T4SSs play important roles in determining bacterial genome plasticity and diversity; they also play a pivotal role in the spread of antibiotic resistance within bacterial populations. T4SSs are also used by human pathogens such as Legionella pneumophila, Bordetella pertussis, Brucella sp., or Helicobacter pylori to sustain infection. Since they are essential virulence factors for these important pathogens, T4SSs might represent attractive targets for vaccines and therapeutics. The best-characterized conjugative T4SSs of Gram-negative bacteria are composed of twelve components that are conserved across many T4SSs. In this chapter, we will review our current structural knowledge on the T4SSs by describing the structures of the individual components and how they assemble into large macromolecular assemblies. With the combined efforts of X-ray crystallography, nuclear magnetic resonance (NMR), and more recently electron microscopy, structural biology of the T4SS has made spectacular progress during the past fifteen years and has unraveled the properties of unique proteins and complexes that assemble dynamically in a highly sophisticated manner.

Keywords

Bacterial secretion system Membrane transport Virulence factor Nanomachine Bacterial pilus X-ray crystallography Electron microscopy 

Notes

Acknowledgements

LT and CB are supported by the program ANR-13-ISV3-0006-Sintesys and Research program Grant from Agence Recherche contre le Cancer (ARC) foundation.

References

  1. Abajy MY, Kopec J, Schiwon K, Burzynski M, Doring M, Bohn C, Grohmann E (2007) A type IV-secretion-like system is required for conjugative DNA transport of broad-host-range plasmid pIP501 in gram-positive bacteria. J Bacteriol 189(6):2487–2496.  https://doi.org/10.1128/JB.01491-06CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alegria MC, Souza DP, Andrade MO, Docena C, Khater L, Ramos CH, da Silva AC, Farah CS (2005) Identification of new protein-protein interactions involving the products of the chromosome- and plasmid-encoded type IV secretion loci of the phytopathogen Xanthomonas axonopodis pv. citri. J Bacteriol 187(7):2315–2325.  https://doi.org/10.1128/jb.187.7.2315-2325.2005CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alvarez-Martinez CE, Christie PJ (2009) Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 73(4):775–808CrossRefPubMedPubMedCentralGoogle Scholar
  4. Arechaga I, Pena A, Zunzunegui S, del Carmen Fernandez-Alonso M, Rivas G, de la Cruz F (2008) ATPase activity and oligomeric state of TrwK, the VirB4 homologue of the plasmid R388 type IV secretion system. J Bacteriol 190(15):5472–5479CrossRefPubMedPubMedCentralGoogle Scholar
  5. Arends K, Celik EK, Probst I, Goessweiner-Mohr N, Fercher C, Grumet L, Soellue C, Abajy MY, Sakinc T, Broszat M, Schiwon K, Koraimann G, Keller W, Grohmann E (2013) TraG encoded by the pIP501 type IV secretion system is a two-domain peptidoglycan-degrading enzyme essential for conjugative transfer. J Bacteriol 195(19):4436–4444.  https://doi.org/10.1128/JB.02263-12CrossRefPubMedPubMedCentralGoogle Scholar
  6. Backert S, Fronzes R, Waksman G (2008) VirB2 and VirB5 proteins: specialized adhesins in bacterial type-IV secretion systems? Trends Microbiol 16:409–413CrossRefPubMedGoogle Scholar
  7. Backert S, Tegtmeyer N, Fischer W (2015) Composition, structure and function of the Helicobacter pylori cag pathogenicity island encoded type IV secretion system. Future Microbiol 10(6):955–965.  https://doi.org/10.2217/fmb.15.32CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bailey S, Ward D, Middleton R, Grossmann JG, Zambryski PC (2006) Agrobacterium tumefaciens VirB8 structure reveals potential protein-protein interaction sites. Proc Natl Acad Sci U S A 103(8):2582–2587.  https://doi.org/10.1073/pnas.0511216103CrossRefPubMedPubMedCentralGoogle Scholar
  9. Barden S, Lange S, Tegtmeyer N, Conradi J, Sewald N, Backert S, Niemann HH (2013) A helical RGD motif promoting cell adhesion: crystal structures of the Helicobacter pylori type IV secretion system pilus protein CagL. Structure 21(11):1931–1941.  https://doi.org/10.1016/j.str.2013.08.018CrossRefPubMedGoogle Scholar
  10. Bayliss R, Harris R, Coutte L, Monier A, Fronzes R, Christie PJ, Driscoll PC, Waksman G (2007) NMR structure of a complex between the VirB9/VirB7 interaction domains of the pKM101 type IV secretion system. Proc Natl Acad Sci U S A 104(5):1673–1678CrossRefPubMedPubMedCentralGoogle Scholar
  11. Berge C, Terradot L (2017) Structural insights into Helicobacter pylori Cag protein interactions with host cell factors. Curr Top Microbiol Immunol 400:129–147.  https://doi.org/10.1007/978-3-319-50520-6_6CrossRefPubMedGoogle Scholar
  12. Bhatty M, Laverde Gomez JA, Christie PJ (2013) The expanding bacterial type IV secretion lexicon. Res Microbiol 164(6):620–639.  https://doi.org/10.1016/j.resmic.2013.03.012CrossRefPubMedGoogle Scholar
  13. Bonsor DA, Weiss E, Iosub-Amir A, Reingewertz TH, Chen TW, Haas R, Friedler A, Fischer W, Sundberg EJ (2013) Characterization of the translocation-competent complex between the Helicobacter pylori oncogenic protein CagA and the accessory protein CagF. J Biol Chem 288(46):32897–32909.  https://doi.org/10.1074/jbc.M113.507657CrossRefPubMedPubMedCentralGoogle Scholar
  14. Busler VJ, Torres VJ, McClain MS, Tirado O, Friedman DB, Cover TL (2006) Protein-protein interactions among Helicobacter pylori cag proteins. J Bacteriol 188(13):4787–4800CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cambronne ED, Roy CR (2007) The Legionella pneumophila IcmSW complex interacts with multiple Dot/Icm effectors to facilitate type IV translocation. PLoS Pathog 3(12):e188.  https://doi.org/10.1371/journal.ppat.0030188CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cascales E, Christie PJ (2003) The versatile bacterial type IV secretion systems. Nat Rev Microbiol 1(2):137–149CrossRefPubMedGoogle Scholar
  17. Cascales E, Christie PJ (2004a) Agrobacterium tumefaciens VirB10, an ATP energy sensor required for type IV secretion. Proc Natl Acad Sci U S A 101(49):17228–17233CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cascales E, Christie PJ (2004b) Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 304(5674):1170–1173CrossRefPubMedGoogle Scholar
  19. Cascales E, Atmakuri K, Liu Z, Binns AN, Christie PJ (2005) Agrobacterium tumefaciens oncogenic suppressors inhibit T-DNA and VirE2 protein substrate binding to the VirD4 coupling protein. Mol Microbiol 58(2):565–579CrossRefPubMedPubMedCentralGoogle Scholar
  20. Casu B, Smart J, Hancock MA, Smith M, Sygusch J, Baron C (2016) Structural analysis and inhibition of TraE from the pKM101 type IV secretion system. J Biol Chem 291(45):23817–23829.  https://doi.org/10.1074/jbc.M116.753327CrossRefPubMedPubMedCentralGoogle Scholar
  21. Cendron L, Zanotti G (2011) Structural and functional aspects of unique type IV secretory components in the Helicobacter pylori cag-pathogenicity island. FEBS J 278(8):1223–1231.  https://doi.org/10.1111/j.1742-4658.2011.08038.xCrossRefPubMedGoogle Scholar
  22. Chandran Darbari V, Waksman G (2015) Structural biology of bacterial type IV secretion systems. Annu Rev Biochem 84:603–629.  https://doi.org/10.1146/annurev-biochem-062911-102821CrossRefPubMedGoogle Scholar
  23. Chandran V, Fronzes R, Duquerroy S, Cronin N, Navaza J, Waksman G (2009) Structure of the outer membrane complex of a type IV secretion system. Nature 462(7276):1011–1015. doi:nature08588 [pii]10.1038/nature08588Google Scholar
  24. Clarke M, Maddera L, Harris RL, Silverman PM (2008) F-pili dynamics by live-cell imaging. Proc Natl Acad Sci U S A 105(46):17978–17981.  https://doi.org/10.1073/pnas.0806786105CrossRefPubMedPubMedCentralGoogle Scholar
  25. Costa TR, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A, Trokter M, Waksman G (2015) Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol 13(6):343–359.  https://doi.org/10.1038/nrmicro3456CrossRefPubMedGoogle Scholar
  26. Costa TR, Ilangovan A, Ukleja M, Redzej A, Santini JM, Smith TK, Egelman EH, Waksman G (2016) Structure of the bacterial sex F pilus reveals an assembly of a stoichiometric protein-phospholipid complex. Cell 166(6):1436–1444 e1410.  https://doi.org/10.1016/j.cell.2016.08.025CrossRefPubMedPubMedCentralGoogle Scholar
  27. Couturier MR, Tasca E, Montecucco C, Stein M (2006) Interaction with CagF is required for translocation of CagA into the host via the Helicobacter pylori type IV secretion system. Infect Immun 74(1):273–281CrossRefPubMedPubMedCentralGoogle Scholar
  28. Dang TA, Christie PJ (1997) The VirB4 ATPase of Agrobacterium tumefaciens is a cytoplasmic membrane protein exposed at the periplasmic surface. J Bacteriol 179(2):453–462CrossRefPubMedPubMedCentralGoogle Scholar
  29. Dang TA, Zhou XR, Graf B, Christie PJ (1999) Dimerization of the Agrobacterium tumefaciens VirB4 ATPase and the effect of ATP-binding cassette mutations on the assembly and function of the T-DNA transporter. Mol Microbiol 32(6):1239–1253CrossRefPubMedPubMedCentralGoogle Scholar
  30. Das A, Xie YH (2000) The agrobacterium T-DNA transport pore proteins VirB8, VirB9, and VirB10 interact with one another. J Bacteriol 182(3):758–763CrossRefPubMedPubMedCentralGoogle Scholar
  31. de Jong MF, Sun YH, den Hartigh AB, van Dijl JM, Tsolis RM (2008) Identification of VceA and VceC, two members of the VjbR regulon that are translocated into macrophages by the Brucella type IV secretion system. Mol Microbiol 70(6):1378–1396.  https://doi.org/10.1111/j.1365-2958.2008.06487.xCrossRefPubMedPubMedCentralGoogle Scholar
  32. de Paz HD, Larrea D, Zunzunegui S, Dehio C, de la Cruz F, Llosa M (2010) Functional dissection of the conjugative coupling protein TrwB. J Bacteriol 192(11):2655–2669CrossRefPubMedPubMedCentralGoogle Scholar
  33. Del Giudice MG, Dohmer PH, Spera JM, Laporte FT, Marchesini MI, Czibener C, Ugalde JE (2016) VirJ is a brucella virulence factor involved in the secretion of type IV secreted substrates. J Biol Chem 291(23):12383–12393.  https://doi.org/10.1074/jbc.M116.730994CrossRefPubMedPubMedCentralGoogle Scholar
  34. Dohmer PH, Valguarnera E, Czibener C, Ugalde JE (2014) Identification of a type IV secretion substrate of Brucella abortus that participates in the early stages of intracellular survival. Cell Microbiol 16(3):396–410.  https://doi.org/10.1111/cmi.12224CrossRefPubMedGoogle Scholar
  35. Durand E, Oomen C, Waksman G (2010) Biochemical dissection of the ATPase TraB, the VirB4 homologue of the Escherichia coli pKM101 conjugation machinery. J Bacteriol 192(9):2315–2323CrossRefPubMedPubMedCentralGoogle Scholar
  36. Fercher C, Probst I, Kohler V, Goessweiner-Mohr N, Arends K, Grohmann E, Zangger K, Meyer NH, Keller W (2016) VirB8-like protein TraH is crucial for DNA transfer in Enterococcus faecalis. Sci Rep 6:24643.  https://doi.org/10.1038/srep24643CrossRefPubMedPubMedCentralGoogle Scholar
  37. Fischer W (2011) Assembly and molecular mode of action of the Helicobacter pylori Cag type IV secretion apparatus. FEBS J 278(8):1203–1212.  https://doi.org/10.1111/j.1742-4658.2011.08036.xCrossRefPubMedGoogle Scholar
  38. Frick-Cheng AE, Pyburn TM, Voss BJ, McDonald WH, Ohi MD, Cover TL (2016) Molecular and structural analysis of the Helicobacter pylori cag type IV secretion system core complex. MBio 7(1).  https://doi.org/10.1128/mbio.02001-15CrossRefPubMedPubMedCentralGoogle Scholar
  39. Fronzes R, Christie PJ, Waksman G (2009a) The structural biology of type IV secretion systems. Nat Rev Microbiol 7(10):703–714.  https://doi.org/10.1038/nrmicro2218CrossRefPubMedGoogle Scholar
  40. Fronzes R, Schafer E, Wang L, Saibil HR, Orlova EV, Waksman G (2009b) Structure of a type IV secretion system core complex. Science 323(5911):266–268CrossRefPubMedGoogle Scholar
  41. Frost LS, Paranchych W (1988) DNA sequence analysis of point mutations in traA, the F pilin gene, reveal two domains involved in F-specific bacteriophage attachment. Mol Gen Genet 213(1):134–139CrossRefPubMedGoogle Scholar
  42. Ghosal D, Chang YW, Jeong KC, Vogel JP, Jensen GJ (2017) In situ structure of the Legionella Dot/Icm type IV secretion system by electron cryotomography. EMBO Rep 18(5):726–732.  https://doi.org/10.15252/embr.201643598CrossRefPubMedPubMedCentralGoogle Scholar
  43. Gillespie JJ, Phan IQ, Scheib H, Subramanian S, Edwards TE, Lehman SS, Piitulainen H, Rahman MS, Rennoll-Bankert KE, Staker BL, Taira S, Stacy R, Myler PJ, Azad AF, Pulliainen AT (2015) Structural insight into how bacteria prevent interference between multiple divergent type IV secretion systems. MBio 6(6):e01867–e01815.  https://doi.org/10.1128/mbio.01867-15CrossRefPubMedPubMedCentralGoogle Scholar
  44. Goessweiner-Mohr N, Arends K, Keller W, Grohmann E (2013a) Conjugative type IV secretion systems in Gram-positive bacteria. Plasmid 70(3):289–302.  https://doi.org/10.1016/j.plasmid.2013.09.005CrossRefPubMedPubMedCentralGoogle Scholar
  45. Goessweiner-Mohr N, Grumet L, Arends K, Pavkov-Keller T, Gruber CC, Gruber K, Birner-Gruenberger R, Kropec-Huebner A, Huebner J, Grohmann E, Keller W (2013b) The 2.5 a structure of the Enterococcus conjugation protein TraM resembles VirB8 type IV secretion proteins. J Biol Chem 288(3):2018–2028.  https://doi.org/10.1074/jbc.M112.428847CrossRefPubMedGoogle Scholar
  46. Gomis-Ruth FX, Moncalian G, Perez-Luque R, Gonzalez A, Cabezon E, de la Cruz F, Coll M (2001) The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase. Nature 409(6820):637–641CrossRefPubMedGoogle Scholar
  47. Grohmann E, Goessweiner-Mohr N, Brantl S (2016) DNA-binding proteins regulating pIP501 transfer and replication. Front Mol Biosci 3:42.  https://doi.org/10.3389/fmolb.2016.00042CrossRefPubMedPubMedCentralGoogle Scholar
  48. Grohmann E, Christie PJ, Waksman G, Backert S (2018) Type IV secretion in Gram-negative and Gram-positive bacteria. Mol Microbiol 107:455–471  https://doi.org/10.1111/mmi.13896CrossRefPubMedPubMedCentralGoogle Scholar
  49. Hapfelmeier S, Domke N, Zambryski PC, Baron C (2000) VirB6 is required for stabilization of VirB5 and VirB3 and formation of VirB7 homodimers in Agrobacterium tumefaciens. J Bacteriol 182(16):4505–4511CrossRefPubMedPubMedCentralGoogle Scholar
  50. Hare S, Bayliss R, Baron C, Waksman G (2006) A large domain swap in the VirB11 ATPase of Brucella suis leaves the hexameric assembly intact. J Mol Biol 360(1):56–66CrossRefPubMedGoogle Scholar
  51. Hare S, Fischer W, Williams R, Terradot L, Bayliss R, Haas R, Waksman G (2007) Identification, structure and mode of action of a new regulator of the Helicobacter pylori HP0525 ATPase. EMBO J 126(23):4926–4934 Epub 2007 Nov 4921CrossRefGoogle Scholar
  52. Hilleringmann M, Pansegrau W, Doyle M, Kaufman S, MacKichan ML, Gianfaldoni C, Ruggiero P, Covacci A (2006) Inhibitors of Helicobacter pylori ATPase Cagalpha block CagA transport and cag virulence. Microbiology 152(Pt 10):2919–2930CrossRefPubMedGoogle Scholar
  53. Hohlfeld S, Pattis I, Puls J, Plano GV, Haas R, Fischer W (2006) A C-terminal translocation signal is necessary, but not sufficient for type IV secretion of the Helicobacter pylori CagA protein. Mol Microbiol 59(5):1624–1637CrossRefPubMedGoogle Scholar
  54. Hoppner C, Liu Z, Domke N, Binns AN, Baron C (2004) VirB1 orthologs from Brucella suis and pKM101 complement defects of the lytic transglycosylase required for efficient type IV secretion from Agrobacterium tumefaciens. J Bacteriol 186(5):1415–1422CrossRefPubMedPubMedCentralGoogle Scholar
  55. Hospenthal MK, Costa TRD, Waksman G (2017) A comprehensive guide to pilus biogenesis in Gram-negative bacteria. Nat Rev Microbiol 15(6):365–379.  https://doi.org/10.1038/nrmicro.2017.40CrossRefPubMedGoogle Scholar
  56. Ilangovan A, Connery S, Waksman G (2015) Structural biology of the Gram-negative bacterial conjugation systems. Trends Microbiol 23(5):301–310.  https://doi.org/10.1016/j.tim.2015.02.012CrossRefPubMedGoogle Scholar
  57. Ilangovan A, Kay CWM, Roier S, El Mkami H, Salvadori E, Zechner EL, Zanetti G, Waksman G (2017) Cryo-EM structure of a relaxase reveals the molecular basis of DNA unwinding during bacterial conjugation. Cell 169(4):708–721 e712.  https://doi.org/10.1016/j.cell.2017.04.010CrossRefPubMedPubMedCentralGoogle Scholar
  58. Jakubowski SJ, Krishnamoorthy V, Cascales E, Christie PJ (2004) Agrobacterium tumefaciens VirB6 domains direct the ordered export of a DNA substrate through a type IV secretion System. J Mol Biol 341(4):961–977CrossRefPubMedPubMedCentralGoogle Scholar
  59. Jakubowski SJ, Kerr JE, Garza I, Krishnamoorthy V, Bayliss R, Waksman G, Christie PJ (2009) Agrobacterium tumefaciens VirB10 domain requirements for type IV secretion and T pilus biogenesis. Mol Microbiol 71(3):779–794CrossRefPubMedGoogle Scholar
  60. Jeong KC, Sutherland MC, Vogel JP (2015) Novel export control of a Legionella Dot/Icm substrate is mediated by dual, independent signal sequences. Mol Microbiol 96(1):175–188.  https://doi.org/10.1111/mmi.12928CrossRefPubMedGoogle Scholar
  61. Jimenez-Soto LF, Kutter S, Sewald X, Ertl C, Weiss E, Kapp U, Rohde M, Pirch T, Jung K, Retta SF, Terradot L, Fischer W, Haas R (2009) Helicobacter pylori type IV secretion apparatus exploits beta1 integrin in a novel RGD-independent manner. PLoS Pathog 5(12):e1000684.  https://doi.org/10.1371/journal.ppat.1000684CrossRefPubMedPubMedCentralGoogle Scholar
  62. Johnson EM, Gaddy JA, Voss BJ, Hennig EE, Cover TL (2014) Genes required for assembly of pili associated with the Helicobacter pylori cag type IV secretion system. Infect Immun 82(8):3457–3470.  https://doi.org/10.1128/IAI.01640-14CrossRefPubMedPubMedCentralGoogle Scholar
  63. Jurik A, Hausser E, Kutter S, Pattis I, Prassl S, Weiss E, Fischer W (2010) The coupling protein Cag{beta} and its interaction partner CagZ are required for type IV secretion of the Helicobacter pylori CagA protein. Infect Immun IAI.01640-14 [pii]Google Scholar
  64. Kerr JE, Christie PJ (2010) Evidence for VirB4-mediated dislocation of membrane-integrated VirB2 pilin during biogenesis of the Agrobacterium tumefaciens VirB/VirD4 type IV secretion system. J Bacteriol 192(19):4923–4934CrossRefPubMedPubMedCentralGoogle Scholar
  65. Krall L, Wiedemann U, Unsin G, Weiss S, Domke N, Baron C (2002) Detergent extraction identifies different VirB protein subassemblies of the type IV secretion machinery in the membranes of Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 99(17):11405–11410 Epub 12002 Aug 11412CrossRefPubMedPubMedCentralGoogle Scholar
  66. Kubori T, Nagai H (2016) The Type IVB secretion system: an enigmatic chimera. Curr Opin Microbiol 29:22–29.  https://doi.org/10.1016/j.mib.2015.10.001CrossRefPubMedGoogle Scholar
  67. Kubori T, Koike M, Bui XT, Higaki S, Aizawa S, Nagai H (2014) Native structure of a type IV secretion system core complex essential for Legionella pathogenesis. Proc Natl Acad Sci U S A 111(32):11804–11809.  https://doi.org/10.1073/pnas.1404506111CrossRefPubMedPubMedCentralGoogle Scholar
  68. Kuroda T, Kubori T, Thanh Bui X, Hyakutake A, Uchida Y, Imada K, Nagai H (2015) Molecular and structural analysis of Legionella DotI gives insights into an inner membrane complex essential for type IV secretion. Sci Rep 5:10912.  https://doi.org/10.1038/srep10912CrossRefPubMedPubMedCentralGoogle Scholar
  69. Kutter S, Buhrdorf R, Haas J, Schneider-Brachert W, Haas R, Fischer W (2008) Protein subassemblies of the Helicobacter pylori Cag type IV secretion system revealed by localization and interaction studies. J Bacteriol 190(6):2161–2171CrossRefPubMedPubMedCentralGoogle Scholar
  70. Kwok T, Zabler D, Urman S, Rohde M, Hartig R, Wessler S, Misselwitz R, Berger J, Sewald N, König W, Backert S (2007) Helicobacter exploits integrin for type IV secretion and kinase activation. Nature 449(7164):862–866.  https://doi.org/10.1038/nature06187CrossRefPubMedGoogle Scholar
  71. Lacerda TL, Salcedo SP, Gorvel JP (2013) Brucella T4SS: the VIP pass inside host cells. Curr Opin Microbiol 16(1):45–51.  https://doi.org/10.1016/j.mib.2012.11.005CrossRefPubMedGoogle Scholar
  72. Llosa M, Zunzunegui S, de la Cruz F (2003) Conjugative coupling proteins interact with cognate and heterologous VirB10-like proteins while exhibiting specificity for cognate relaxosomes. Proc Natl Acad Sci U S A 100(18):10465–10470CrossRefPubMedPubMedCentralGoogle Scholar
  73. Low HH, Gubellini F, Rivera-Calzada A, Braun N, Connery S, Dujeancourt A, Lu F, Redzej A, Fronzes R, Orlova EV, Waksman G (2014) Structure of a type IV secretion system. Nature 508(7497):550–553.  https://doi.org/10.1038/nature13081CrossRefPubMedPubMedCentralGoogle Scholar
  74. Marchesini MI, Morrone Seijo SM, Guaimas FF, Comerci DJ (2016) A T4SS Effector Targets Host Cell Alpha-Enolase contributing to Brucella abortus intracellular lifestyle. Front Cell Infect Microbiol 6:153.  https://doi.org/10.3389/fcimb.2016.00153CrossRefPubMedPubMedCentralGoogle Scholar
  75. Merino E, Flores-Encarnacion M, Aguilar-Gutierrez GR (2017) Functional interaction and structural characteristics of unique components of Helicobacter pylori T4SS. FEBS J.  https://doi.org/10.1111/febs.14092CrossRefPubMedGoogle Scholar
  76. Mossey P, Hudacek A, Das A (2010) Agrobacterium tumefaciens type IV secretion protein VirB3 is an inner membrane protein and requires VirB4, VirB7, and VirB8 for stabilization. J Bacteriol 192(11):2830–2838.  https://doi.org/10.1128/JB.01331-09CrossRefPubMedPubMedCentralGoogle Scholar
  77. Myeni S, Child R, Ng TW, Kupko JJ 3rd, Wehrly TD, Porcella SF, Knodler LA, Celli J (2013) Brucella modulates secretory trafficking via multiple type IV secretion effector proteins. PLoS Pathog 9(8):e1003556.  https://doi.org/10.1371/journal.ppat.1003556CrossRefPubMedPubMedCentralGoogle Scholar
  78. Nagai H, Kubori T (2011) Type IVB secretion systems of Legionella and other gram-negative bacteria. Front Microbiol 2:136.  https://doi.org/10.3389/fmicb.2011.00136CrossRefPubMedPubMedCentralGoogle Scholar
  79. Nagai H, Cambronne ED, Kagan JC, Amor JC, Kahn RA, Roy CR (2005) A C-terminal translocation signal required for Dot/Icm-dependent delivery of the Legionella RalF protein to host cells. Proc Natl Acad Sci U S A 102(3):826–831.  https://doi.org/10.1073/pnas.0406239101CrossRefPubMedGoogle Scholar
  80. Ninio S, Zuckman-Cholon DM, Cambronne ED, Roy CR (2005) The Legionella IcmS-IcmW protein complex is important for Dot/Icm-mediated protein translocation. Mol Microbiol 55(3):912–926.  https://doi.org/10.1111/j.1365-2958.2004.04435.xCrossRefPubMedGoogle Scholar
  81. O’Callaghan D, Cazevieille C, Allardet-Servent A, Boschiroli ML, Bourg G, Foulongne V, Frutos P, Kulakov Y, Ramuz M (1999) A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptl type IV secretion systems is essential for intracellular survival of Brucella suis. Mol Microbiol 33(6):1210–1220CrossRefPubMedGoogle Scholar
  82. Oliveira LC, Souza DP, Oka GU, Lima FD, Oliveira RJ, Favaro DC, Wienk H, Boelens R, Farah CS, Salinas RK (2016) VirB7 and VirB9 interactions are required for the assembly and antibacterial activity of a type IV secretion system. Structure 24(10):1707–1718.  https://doi.org/10.1016/j.str.2016.07.015CrossRefPubMedGoogle Scholar
  83. Paiva WD, Grossman T, Silverman PM (1992) Characterization of F-pilin as an inner membrane component of Escherichia coli K12. J Biol Chem 267(36):26191–26197PubMedGoogle Scholar
  84. Pantoja M, Chen L, Chen Y, Nester EW (2002) Agrobacterium type IV secretion is a two-step process in which export substrates associate with the virulence protein VirJ in the periplasm. Mol Microbiol 45(5):1325–1335CrossRefPubMedGoogle Scholar
  85. Paschos A, den Hartigh A, Smith MA, Atluri VL, Sivanesan D, Tsolis RM, Baron C (2011) An in vivo high-throughput screening approach targeting the type IV secretion system component VirB8 identified inhibitors of Brucella abortus 2308 proliferation. Infect Immun 79(3):1033–1043.  https://doi.org/10.1128/IAI.00993-10CrossRefPubMedGoogle Scholar
  86. Pattis I, Weiss E, Laugks R, Haas R, Fischer W (2007) The Helicobacter pylori CagF protein is a type IV secretion chaperone-like molecule that binds close to the C-terminal secretion signal of the CagA effector protein. Microbiology 153(Pt 9):2896–2909CrossRefPubMedGoogle Scholar
  87. Pinto-Santini DM, Salama NR (2009) Cag3 is a novel essential component of the Helicobacter pylori Cag type IV secretion system outer membrane subcomplex. J Bacteriol 191(23):7343–7352CrossRefPubMedPubMedCentralGoogle Scholar
  88. Planet PJ, Kachlany SC, DeSalle R, Figurski DH (2001) Phylogeny of genes for secretion NTPases: identification of the widespread tadA subfamily and development of a diagnostic key for gene classification. Proc Natl Acad Sci U S A 98(5):2503–2508.  https://doi.org/10.1073/pnas.051436598CrossRefPubMedPubMedCentralGoogle Scholar
  89. Porter CJ, Bantwal R, Bannam TL, Rosado CJ, Pearce MC, Adams V, Lyras D, Whisstock JC, Rood JI (2012) The conjugation protein TcpC from Clostridium perfringens is structurally related to the type IV secretion system protein VirB8 from Gram-negative bacteria. Mol Microbiol 83(2):275–288.  https://doi.org/10.1111/j.1365-2958.2011.07930.xCrossRefPubMedGoogle Scholar
  90. Rashkova S, Spudich GM, Christie PJ (1997) Characterization of membrane and protein interaction determinants of the Agrobacterium tumefaciens VirB11 ATPase. J Bacteriol 179(3):583–591CrossRefPubMedPubMedCentralGoogle Scholar
  91. Redzej A, Ilangovan A, Lang S, Gruber CJ, Topf M, Zangger K, Zechner EL, Waksman G (2013) Structure of a translocation signal domain mediating conjugative transfer by type IV secretion systems. Mol Microbiol 89(2):324–333.  https://doi.org/10.1111/mmi.12275CrossRefPubMedPubMedCentralGoogle Scholar
  92. Redzej A, Ukleja M, Connery S, Trokter M, Felisberto-Rodrigues C, Cryar A, Thalassinos K, Hayward RD, Orlova EV, Waksman G (2017) Structure of a VirD4 coupling protein bound to a VirB type IV secretion machinery. EMBO J.  https://doi.org/10.15252/embj.201796629CrossRefPubMedPubMedCentralGoogle Scholar
  93. Ripoll-Rozada J, Zunzunegui S, de la Cruz F, Arechaga I, Cabezon E (2013) Functional interactions of VirB11 traffic ATPases with VirB4 and VirD4 molecular motors in type IV secretion systems. J Bacteriol 195(18):4195–4201.  https://doi.org/10.1128/JB.00437-13CrossRefPubMedPubMedCentralGoogle Scholar
  94. Rivera-Calzada A, Fronzes R, Savva CG, Chandran V, Lian PW, Laeremans T, Pardon E, Steyaert J, Remaut H, Waksman G, Orlova EV (2013) Structure of a bacterial type IV secretion core complex at subnanometre resolution. EMBO J 32(8):1195–1204.  https://doi.org/10.1038/emboj.2013.58CrossRefPubMedPubMedCentralGoogle Scholar
  95. Rohde M, Puls J, Buhrdorf R, Fischer W, Haas R (2003) A novel sheathed surface organelle of the Helicobacter pylori cag type IV secretion system. Mol Microbiol 49(1):219–234CrossRefPubMedGoogle Scholar
  96. Ruer S, Pinotsis N, Steadman D, Waksman G, Remaut H (2015) Virulence-targeted antibacterials: concept, promise, and susceptibility to resistance mechanisms. Chem Biol Drug Des 86(4):379–399.  https://doi.org/10.1111/cbdd.12517CrossRefPubMedGoogle Scholar
  97. Sagulenko E, Sagulenko V, Chen J, Christie PJ (2001) Role of agrobacterium VirB11 ATPase in T-Pilus assembly and substrate selection. J Bacteriol 183(20):5813–5825CrossRefPubMedPubMedCentralGoogle Scholar
  98. Savvides SN, Yeo HJ, Beck MR, Blaesing F, Lurz R, Lanka E, Buhrdorf R, Fischer W, Haas R, Waksman G (2003) VirB11 ATPases are dynamic hexameric assemblies: new insights into bacterial type IV secretion. EMBO J 22(9):1969–1980CrossRefPubMedPubMedCentralGoogle Scholar
  99. Sayer JR, Wallden K, Pesnot T, Campbell F, Gane PJ, Simone M, Koss H, Buelens F, Boyle TP, Selwood DL, Waksman G, Tabor AB (2014) 2- and 3-substituted imidazo[1,2-a]pyrazines as inhibitors of bacterial type IV secretion. Bioorg Med Chem 22(22):6459–6470.  https://doi.org/10.1016/j.bmc.2014.09.036CrossRefPubMedPubMedCentralGoogle Scholar
  100. Schindele F, Weiss E, Haas R, Fischer W (2016) Quantitative analysis of CagA type IV secretion by Helicobacter pylori reveals substrate recognition and translocation requirements. Mol Microbiol 100(1):188–203.  https://doi.org/10.1111/mmi.13309CrossRefPubMedGoogle Scholar
  101. Schulein R, Guye P, Rhomberg TA, Schmid MC, Schroder G, Vergunst AC, Carena I, Dehio C (2005) A bipartite signal mediates the transfer of type IV secretion substrates of Bartonella henselae into human cells. Proc Natl Acad Sci U S A 102(3):856–861.  https://doi.org/10.1073/pnas.0406796102CrossRefPubMedPubMedCentralGoogle Scholar
  102. Shaffer CL, Gaddy JA, Loh JT, Johnson EM, Hill S, Hennig EE, McClain MS, McDonald WH, Cover TL (2011) Helicobacter pylori exploits a unique repertoire of type IV secretion system components for pilus assembly at the bacteria-host cell interface. PLoS Pathog 7(9):e1002237.  https://doi.org/10.1371/journal.ppat.1002237 (PPATHOGENS-D-11-00533 [pii])CrossRefPubMedPubMedCentralGoogle Scholar
  103. Sharifahmadian M, Arya T, Bessette B, Lecoq L, Ruediger E, Omichinski JG, Baron C (2017) Monomer-to-dimer transition of Brucella suis type IV secretion system component VirB8 induces conformational changes. FEBS J 284(8):1218–1232.  https://doi.org/10.1111/febs.14049CrossRefPubMedGoogle Scholar
  104. Shrivastava R, Miller JF (2009) Virulence factor secretion and translocation by Bordetella species. Curr Opin Microbiol 12(1):88–93.  https://doi.org/10.1016/j.mib.2009.01.001CrossRefPubMedPubMedCentralGoogle Scholar
  105. Silverman PM (1997) Towards a structural biology of bacterial conjugation. Mol Microbiol 23(3):423–429CrossRefPubMedGoogle Scholar
  106. Smith MA, Coincon M, Paschos A, Jolicoeur B, Lavallee P, Sygusch J, Baron C (2012) Identification of the binding site of Brucella VirB8 interaction inhibitors. Chem Biol 19(8):1041–1048.  https://doi.org/10.1016/j.chembiol.2012.07.007CrossRefPubMedGoogle Scholar
  107. Souza DP, Andrade MO, Alvarez-Martinez CE, Arantes GM, Farah CS, Salinas RK (2011) A component of the Xanthomonadaceae type IV secretion system combines a VirB7 motif with a N0 domain found in outer membrane transport proteins. PLoS Pathog 7(5):e1002031.  https://doi.org/10.1371/journal.ppat.1002031CrossRefPubMedPubMedCentralGoogle Scholar
  108. Souza DP, Oka GU, Alvarez-Martinez CE, Bisson-Filho AW, Dunger G, Hobeika L, Cavalcante NS, Alegria MC, Barbosa LR, Salinas RK, Guzzo CR, Farah CS (2015) Bacterial killing via a type IV secretion system. Nat Commun 6:6453.  https://doi.org/10.1038/ncomms7453CrossRefPubMedGoogle Scholar
  109. Steen JA, Bannam TL, Teng WL, Devenish RJ, Rood JI (2009) The putative coupling protein TcpA interacts with other pCW3-encoded proteins to form an essential part of the conjugation complex. J Bacteriol 191(9):2926–2933.  https://doi.org/10.1128/JB.00032-09CrossRefPubMedPubMedCentralGoogle Scholar
  110. Sun YH, Rolan HG, den Hartigh AB, Sondervan D, Tsolis RM (2005) Brucella abortus virB12 is expressed during infection but is not an essential component of the type IV secretion system. Infect Immun 73(9):6048–6054.  https://doi.org/10.1128/IAI.73.9.6048-6054.2005CrossRefPubMedPubMedCentralGoogle Scholar
  111. Tanaka J, Suzuki T, Mimuro H, Sasakawa C (2003) Structural definition on the surface of Helicobacter pylori type IV secretion apparatus. Cell Microbiol 5(6):395–404CrossRefPubMedGoogle Scholar
  112. Tegtmeyer N, Wessler S, Necchi V, Rohde M, Harrer A, Rau TT, Asche CI, Boehm M, Loessner M, Figueiredo C, Naumann M, Palmisano R, Solcia E, Ricci V, Backert S (2017) A unique basolateral type IV secretion model for the CagA oncoprotein of Helicobacter pylori. Cell Host Microbe 22(4):552–560.e5.  https://doi.org/10.1016/j.chom.2017.09.005
  113. Terradot L, Waksman G (2011) Architecture of the Helicobacter pylori Cag-type IV secretion system. FEBS J 278(8):1213–1222.  https://doi.org/10.1111/j.1742-4658.2011.08037.xCrossRefPubMedGoogle Scholar
  114. Terradot L, Bayliss R, Oomen C, Leonard GA, Baron C, Waksman G (2005) Structures of two core subunits of the bacterial type IV secretion system, VirB8 from Brucella suis and ComB10 from Helicobacter pylori. Proc Natl Acad Sci U S A 102(12):4596–4601CrossRefPubMedPubMedCentralGoogle Scholar
  115. Vergunst AC, Schrammeijer B, den Dulk-Ras A, de Vlaam CM, Regensburg-Tuink TJ, Hooykaas PJ (2000) VirB/VirD4-dependent protein translocation from Agrobacterium into plant cells. Science 290(5493):979–982CrossRefPubMedGoogle Scholar
  116. Vergunst AC, van Lier MC, den Dulk-Ras A, Stuve TA, Ouwehand A, Hooykaas PJ (2005) Positive charge is an important feature of the C-terminal transport signal of the VirB/VirD4-translocated proteins of Agrobacterium. Proc Natl Acad Sci U S A 102(3):832–837.  https://doi.org/10.1073/pnas.0406241102CrossRefPubMedPubMedCentralGoogle Scholar
  117. Villamil Giraldo AM, Sivanesan D, Carle A, Paschos A, Smith MA, Plesa M, Coulton J, Baron C (2012) Type IV secretion system core component VirB8 from Brucella binds to the globular domain of VirB5 and to a periplasmic domain of VirB6. Biochemistry 51(18):3881–3890.  https://doi.org/10.1021/bi300298vCrossRefPubMedGoogle Scholar
  118. Villamil Giraldo AM, Mary C, Sivanesan D, Baron C (2015) VirB6 and VirB10 from the Brucella type IV secretion system interact via the N-terminal periplasmic domain of VirB6. FEBS Lett 589(15):1883–1889.  https://doi.org/10.1016/j.febslet.2015.05.051CrossRefPubMedGoogle Scholar
  119. Voth DE, Broederdorf LJ, Graham JG (2012) Bacterial type IV secretion systems: versatile virulence machines. Future Microbiol 7(2):241–257.  https://doi.org/10.2217/fmb.11.150CrossRefPubMedPubMedCentralGoogle Scholar
  120. Wallden K, Rivera-Calzada A, Waksman G (2010) Type IV secretion systems: versatility and diversity in function. Cell Microbiol 12(9):1203–1212CrossRefPubMedPubMedCentralGoogle Scholar
  121. Wallden K, Williams R, Yan J, Lian PW, Wang L, Thalassinos K, Orlova EV, Waksman G (2012) Structure of the VirB4 ATPase, alone and bound to the core complex of a type IV secretion system. Proc Natl Acad Sci U S A 109(28):11348–11353.  https://doi.org/10.1073/pnas.12014281091201428109 [pii]CrossRefGoogle Scholar
  122. Ward DV, Draper O, Zupan JR, Zambryski PC (2002) Peptide linkage mapping of the Agrobacterium tumefaciens vir-encoded type IV secretion system reveals protein subassemblies. Proc Natl Acad Sci U S A 99(17):11493–11500.  https://doi.org/10.1073/pnas.172390299CrossRefPubMedPubMedCentralGoogle Scholar
  123. Wisniewski JA, Rood JI (2017) The Tcp conjugation system of Clostridium perfringens. Plasmid 91:28–36.  https://doi.org/10.1016/j.plasmid.2017.03.001CrossRefPubMedGoogle Scholar
  124. Yeo HJ, Savvides SN, Herr AB, Lanka E, Waksman G (2000) Crystal structure of the hexameric traffic ATPase of the Helicobacter pylori type IV secretion system. Mol Cell 6(6):1461–1472CrossRefPubMedGoogle Scholar
  125. Yeo HJ, Yuan Q, Beck MR, Baron C, Waksman G (2003) Structural and functional characterization of the VirB5 protein from the type IV secretion system encoded by the conjugative plasmid pKM101. Proc Natl Acad Sci U S A 100(26):15947–15952.  https://doi.org/10.1073/pnas.2535211100CrossRefPubMedPubMedCentralGoogle Scholar
  126. Zhang W, Rong C, Chen C, Gao GF (2012) Type-IVC secretion system: a novel subclass of type IV secretion system (T4SS) common existing in gram-positive genus Streptococcus. PLoS ONE 7(10):e46390.  https://doi.org/10.1371/journal.pone.0046390CrossRefPubMedPubMedCentralGoogle Scholar
  127. Zhang J, Fan F, Zhao Y, Sun L, Liu Y, Keegan RM, Isupov MN, Wu Y (2017) Crystal structure of the type IV secretion system component CagX from Helicobacter pylori. Acta Crystallogr F Struct Biol Commun 73(Pt 3):167–173.  https://doi.org/10.1107/S2053230X17001376CrossRefPubMedPubMedCentralGoogle Scholar
  128. Zupan J, Hackworth CA, Aguilar J, Ward D, Zambryski P (2007) VirB1* promotes T-pilus formation in the vir-Type IV secretion system of Agrobacterium tumefaciens. J Bacteriol 189(18):6551–6563.  https://doi.org/10.1128/JB.00480-07CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Célia Bergé
    • 1
  • Gabriel Waksman
    • 2
  • Laurent Terradot
    • 1
  1. 1.UMR 5086 Molecular Microbiology and Structural Biochemistry CNRS-Université de Lyon 1Institut de Biologie et Chimie des ProtéinesLyon Cedex 07France
  2. 2.Institute of Structural and Molecular Biology, Birkbeck College, University College LondonLondonUK

Personalised recommendations