Advertisement

Ensembles of Multiple Models and Architectures for Robust Brain Tumour Segmentation

  • K. KamnitsasEmail author
  • W. Bai
  • E. Ferrante
  • S. McDonagh
  • M. Sinclair
  • N. Pawlowski
  • M. Rajchl
  • M. Lee
  • B. Kainz
  • D. Rueckert
  • B. Glocker
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10670)

Abstract

Deep learning approaches such as convolutional neural nets have consistently outperformed previous methods on challenging tasks such as dense, semantic segmentation. However, the various proposed networks perform differently, with behaviour largely influenced by architectural choices and training settings. This paper explores Ensembles of Multiple Models and Architectures (EMMA) for robust performance through aggregation of predictions from a wide range of methods. The approach reduces the influence of the meta-parameters of individual models and the risk of overfitting the configuration to a particular database. EMMA can be seen as an unbiased, generic deep learning model which is shown to yield excellent performance, winning the first position in the BRATS 2017 competition among 50+ participating teams.

Notes

Acknowledgements

This work is supported by the EPSRC (EP/N023668/1, EP/N024494/1 and EP/P001009/1) and partially funded under the 7th Framework Programme by the European Commission (CENTER-TBI: https://www.center-tbi.eu/). KK is supported by the President’s PhD Scholarship of Imperial College London. EF is beneficiary of an AXA Research Fund postdoctoral grant. NP is supported by Microsoft Research through its PhD Scholarship Programme and the EPSRC Centre for Doctoral Training in High Performance Embedded and Distributed Systems (HiPEDS, Grant Reference EP/L016796/1). We gratefully acknowledge the support of NVIDIA with the donation of GPUs for our research.

References

  1. 1.
    DeAngelis, L.M.: Brain tumors. N. Engl. J. Med. 344(2), 114–123 (2001)CrossRefGoogle Scholar
  2. 2.
    Bauer, S., Wiest, R., Nolte, L.P., Reyes, M.: A survey of MRI-based medical image analysis for brain tumor studies. Phys. Med. Biol. 58(13), R97 (2013)CrossRefGoogle Scholar
  3. 3.
    Louis, D., et al.: The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 131(6), 803–820 (2016)CrossRefGoogle Scholar
  4. 4.
    Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE TMI 34(10), 1993–2024 (2015)Google Scholar
  5. 5.
    Prastawa, M., Bullitt, E., Ho, S., Gerig, G.: A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 8(3), 275–283 (2004)CrossRefGoogle Scholar
  6. 6.
    Gooya, A., Pohl, K.M., Bilello, M., Biros, G., Davatzikos, C.: Joint segmentation and deformable registration of brain scans guided by a tumor growth model. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6892, pp. 532–540. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23629-7_65 CrossRefGoogle Scholar
  7. 7.
    Parisot, S., Duffau, H., Chemouny, S., Paragios, N.: Joint tumor segmentation and dense deformable registration of brain MR images. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7511, pp. 651–658. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33418-4_80 CrossRefGoogle Scholar
  8. 8.
    Bakas, S., et al.: GLISTRboost: combining multimodal MRI segmentation, registration, and biophysical tumor growth modeling with gradient boosting machines for glioma segmentation. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Handels, H. (eds.) BrainLes 2015. LNCS, vol. 9556, pp. 144–155. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-30858-6_13 CrossRefGoogle Scholar
  9. 9.
    Zikic, D., et al.: Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 369–376. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33454-2_46 CrossRefGoogle Scholar
  10. 10.
    Le Folgoc, L., Nori, A.V., Ancha, S., Criminisi, A.: Lifted auto-context forests for brain tumour segmentation. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Winzeck, S., Handels, H. (eds.) BrainLes 2016. LNCS, vol. 10154, pp. 171–183. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-55524-9_17 CrossRefGoogle Scholar
  11. 11.
    Urban, G., Bendszus, M., Hamprecht, F., Kleesiek, J.: Multi-modal brain tumor segmentation using deep convolutional neural networks. In: BRATS-MICCAI (2014)Google Scholar
  12. 12.
    Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE TMI 35(5), 1240–1251 (2016)Google Scholar
  13. 13.
    Kamnitsas, K., Ledig, C., Newcombe, V.F., Simpson, J.P., Kane, A.D., Menon, D.K., Rueckert, D., Glocker, B.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)CrossRefGoogle Scholar
  14. 14.
    Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)CrossRefGoogle Scholar
  15. 15.
    Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance dilemma. Neural Netw. 4(1), 1–58 (2008)Google Scholar
  16. 16.
    Kittler, J., Hatef, M., Duin, R.P., Matas, J.: On combining classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 20(3), 226–239 (1998)CrossRefGoogle Scholar
  17. 17.
    Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Sharkey, A.J., Sharkey, N.E.: Combining diverse neural nets. Knowl. Eng. Rev. 12(3), 231–247 (1997)CrossRefGoogle Scholar
  19. 19.
    Nowozin, S.: Optimal decisions from probabilistic models: the intersection-over-union case. In: CVPR, pp. 548–555 (2014)Google Scholar
  20. 20.
    Kamnitsas, K., Chen, L., Ledig, C., Rueckert, D., Glocker, B.: Multi-scale 3D convolutional neural networks for lesion segmentation in brain MRI. In: Proceedings of ISLES-MICCAI (2015)Google Scholar
  21. 21.
    Alansary, A., et al.: Fast fully automatic segmentation of the human placenta from motion corrupted MRI. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 589–597. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46723-8_68 CrossRefGoogle Scholar
  22. 22.
    Kamnitsas, K., Ferrante, E., Parisot, S., Ledig, C., Nori, A.V., Criminisi, A., Rueckert, D., Glocker, B.: DeepMedic for brain tumor segmentation. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Winzeck, S., Handels, H. (eds.) BrainLes 2016. LNCS, vol. 10154, pp. 138–149. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-55524-9_14 CrossRefGoogle Scholar
  23. 23.
    Long, J., et al.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)Google Scholar
  24. 24.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28 CrossRefGoogle Scholar
  25. 25.
    Guerrero, R., Qin, C., Oktay, O., Bowles, C., Chen, L., Joules, R., Wolz, R., Valdes-Hernandez, M., et al.: White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks. arXiv:1706.00935 (2017)
  26. 26.
    Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., Freymann, J., Farahani, K., Davatzikos, C.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat. Sci. Data 4, 170117 (2017)CrossRefGoogle Scholar
  27. 27.
    Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., Freymann, J., Farahani, K., Davatzikos, C.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. The Cancer Imaging Archive (2017)Google Scholar
  28. 28.
    Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., Freymann, J., Farahani, K., Davatzikos, C.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. The Cancer Imaging Archive (2017)Google Scholar
  29. 29.
    Nyúl, L.G., Udupa, J.K., Zhang, X.: New variants of a method of MRI scale standardization. IEEE TMI 19(2), 143–150 (2000)Google Scholar
  30. 30.
    Kamnitsas, K., et al.: Unsupervised domain adaptation in brain lesion segmentation with adversarial networks. In: Niethammer, M., Styner, M., Aylward, S., Zhu, H., Oguz, I., Yap, P.-T., Shen, D. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 597–609. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59050-9_47 CrossRefGoogle Scholar
  31. 31.
    Bucilu, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: Knowledge Discovery and Data Mining, pp. 535–541. ACM (2006)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Biomedical Image Analysis GroupImperial College LondonLondonUK

Personalised recommendations