Advertisement

Cascaded V-Net Using ROI Masks for Brain Tumor Segmentation

  • Adrià Casamitjana
  • Marcel Catà
  • Irina Sánchez
  • Marc Combalia
  • Verónica Vilaplana
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10670)

Abstract

In this work we approach the brain tumor segmentation problem with a cascade of two CNNs inspired in the V-Net architecture [13], reformulating residual connections and making use of ROI masks to constrain the networks to train only on relevant voxels. This architecture allows dense training on problems with highly skewed class distributions, such as brain tumor segmentation, by focusing training only on the vecinity of the tumor area. We report results on BraTS2017 Training and Validation sets.

References

  1. 1.
    Menze, B.H., Jakab, A., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)CrossRefGoogle Scholar
  2. 2.
    Gooya, A., Pohl, K.M., Bilello, M., Biros, G., Davatzikos, C.: Joint segmentation and deformable registration of brain scans guided by a tumor growth model. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6892, pp. 532–540. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23629-7_65 CrossRefGoogle Scholar
  3. 3.
    Zikic, D., et al.: Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 369–376. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33454-2_46 CrossRefGoogle Scholar
  4. 4.
    Parisot, S., Duffau, H., Chemouny, S., Paragios, N.: Joint tumor segmentation and dense deformable registration of brain MR images. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7511, pp. 651–658. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33418-4_80 CrossRefGoogle Scholar
  5. 5.
    Maier, O., Wilms, M., Handels, H.: Image features for brain lesion segmentation using random forests. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Handels, H. (eds.) BrainLes 2015. LNCS, vol. 9556, pp. 119–130. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-30858-6_11 CrossRefGoogle Scholar
  6. 6.
    Tustison, N., Shrinidhi, K., Wintermark, M., et al.: Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsR. Neuroinformatics 13, 209–225 (2015)CrossRefGoogle Scholar
  7. 7.
    Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Deep convolutional neural networks for the segmentation of gliomas in multi-sequence MRI. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Handels, H. (eds.) BrainLes 2015. LNCS, vol. 9556, pp. 131–143. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-30858-6_12 CrossRefGoogle Scholar
  8. 8.
    Havaei, M., Davy, A., et al.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2016)CrossRefGoogle Scholar
  9. 9.
    Kamnitsas, K., Ledig, C., Newcombe, V., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)CrossRefGoogle Scholar
  10. 10.
    Kamnitsas, K., et al.: DeepMedic for brain tumor segmentation. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Winzeck, S., Handels, H. (eds.) MICCAI 2016. LNCS, vol. 10154, pp. 138–149. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-55524-9_14 CrossRefGoogle Scholar
  11. 11.
    Long, J., Shelhamer, E., Darrel, T.: Fully convolutional networks for semantic segmentation. In: CVPR, Boston, USA (2015)Google Scholar
  12. 12.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28 CrossRefGoogle Scholar
  13. 13.
    Milletari, F., Navab, N., Ahmadi, S.-A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV). IEEE (2016)Google Scholar
  14. 14.
    Casamitjana, A., Puch, S., Aduriz, A., Vilaplana, V.: 3D convolutional neural networks for brain tumor segmentation: a comparison of multi-resolution architectures. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Winzeck, S., Handels, H. (eds.) MICCAI 2016. LNCS, vol. 10154, pp. 150–161. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-55524-9_15 CrossRefGoogle Scholar
  15. 15.
    Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., Freymann, J.B., Farahani, K., Davatzikos, C.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat. Sci. Data 4, 170117 (2017)CrossRefGoogle Scholar
  16. 16.
    Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., Freymann, J., Farahani, K., Davatzikos, C.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. The Cancer Imaging Archive (2017).  https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q
  17. 17.
    Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., Freymann, J., Farahani, K., Davatzikos, C.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. The Cancer Imaging Archive (2017).  https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF
  18. 18.
    He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46493-0_38 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Signal Theory and Communications DepartmentUniversitat Politècnica de Catalunya. BarcelonaTechBarcelonaSpain

Personalised recommendations