Multidimensional Intuitionistic Fuzzy Quantifiers and Level Operators

  • Krassimir Atanassov
  • Ivan Georgiev
  • Eulalia Szmidt
  • Janusz Kacprzyk
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 756)

Abstract

In a series of papers, the authors introduced the concepts of multidimensional intuitionistic fuzzy sets and logic. Here, the concepts of a multidimensional intuitionistic fuzzy quantifier and an intuitionistic fuzzy level operator are introduced. Three groups of these quantifiers are described and some of their basic properties are studied.

Keywords

Intuitionistic fuzzy logic Multidimensional intuitionistic fuzzy logic Multidimensional intuitionistic fuzzy level operator Multidimensional intuitionistic fuzzy quantifier 

Notes

Acknowledgements

The first two authors are thankful for the support provided by the Bulgarian National Science Fund under Grant Ref. No. DFNI-I-02-5 “InterCriteria Analysis: A New Approach to Decision Making”.

References

  1. 1.
    Angelova, N., Stoenchev, M.: Intuitionistic fuzzy conjunctions and disjunctions. Part 1. In: Annual of Section “Informatics” of the Union of Bulgarian Scientists, vol. 8 (2015) (in press)Google Scholar
  2. 2.
    Angelova, N., Stoenchev, M.: Intuitionistic fuzzy conjunctions and disjunctions. Part 2. In: Issues in Intuitionistic Fuzzy Sets and Generalized Nets, vol. 12 (2016) (in press)Google Scholar
  3. 3.
    Atanassov, K.: Two Variants of Intuitonistic Fuzzy Propositional Calculus. Preprint IM-MFAIS-5-88, Sofia (1988)Google Scholar
  4. 4.
    Atanassov K.: Remark on a temporal intuitionistic fuzzy logic. In: Second Scientific Session of the “Mathematical Foundation Artificial Intelligence” Seminar, Sofia, March 30: Preprint IM-MFAIS-1-90. Sofia vol. 1990, pp. 1–5 (1990)Google Scholar
  5. 5.
    Atanassov, K.: Intuitionistic Fuzzy Sets. Springer, Heidelberg (1999)CrossRefMATHGoogle Scholar
  6. 6.
    Atanassov, K.: On Intuitionistic Fuzzy Sets Theory. Springer, Berlin (2012)CrossRefMATHGoogle Scholar
  7. 7.
    Atanassov, K.: On Intuitionistic Fuzzy Logics: Results and Problems. In: Modern Approaches in Fuzzy Sets. In: Atanassov, K., Baczynski, M., Drewniak, J., Kacprzyk, J., Krawczak, M., Szmidt, E., Wygralak, M., Zadrozny, S. (eds.) Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics, Volume 1: Foundations. SRI-PAS, Warsaw, pp. 23–49 (2014)Google Scholar
  8. 8.
    Atanassov, K.: On intuitionistic fuzzy implications. Issues Intuitionistic Fuzzy Sets Gen. Nets 12, 1–19 (2016) (in press)Google Scholar
  9. 9.
    Atanassov, K.: On Intuitionistic fuzzy quantifiers. Notes on Intuitionistic Fuzzy Sets 22(2), 1–8 (2016)Google Scholar
  10. 10.
    Atanassov, K.: Intuitionistic fuzzy logics as tools for evaluation of Data Mining processes. Knowl.-Based Syst. 80, 122–130 (2015)CrossRefGoogle Scholar
  11. 11.
    Atanassov, K., Angelova, N.: On intuitionistic fuzzy negations, law for excluded middle and De Morgan’s Laws. Issues Intuitionistic Fuzzy Sets Gen. Nets 12 (2016) (in press)Google Scholar
  12. 12.
    Atanassov, K., Gargov, G.: Elements of intuitionistic fuzzy logic. I. Fuzzy Sets Syst. 95(1), 39–52 (1998)Google Scholar
  13. 13.
    Atanassov, K., Georgiev, I., Szmidt, E., Kacprzyk, J.: Multidimensional intuitionistic fuzzy quantifiers. In: Proceedings of the 8th IEEE Conference Intelligent Systems, Sofia, 46 Sept 2016, pp. 530–534Google Scholar
  14. 14.
    Atanassov, K., Szmidt, E., Kacprzyk, J.: On intuitionistic fuzzy multi-dimensional sets. Issues Intuitionistic Fuzzy Sets Gen. Nets 7, 1–6 (2008)MATHGoogle Scholar
  15. 15.
    Atanassov, K., Szmidt, E., Kacprzyk, J., Rangasamy, P.: On intuitionistic fuzzy multi-dimensional sets. Part 2. In: Advances in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics. Vol. I: Foundations, Academic Publishing House EXIT, Warszawa, pp. 43–51 (2008)Google Scholar
  16. 16.
    Atanassov, K., Szmidt, E., Kacprzyk, J.: On intuitionistic fuzzy multi-dimensional sets. Part 3. In: Developments in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics, Vol. I: Foundations. Warsaw, SRI Polush Academy of Sciences, pp. 19–26 (2010)Google Scholar
  17. 17.
    Atanassov, K., Szmidt, E., Kacprzyk, J.: On intuitionistic fuzzy multi-dimensional sets. Part 4. Notes Intuitionistic Fuzzy Sets 17(2), 1–7 (2011)Google Scholar
  18. 18.
    Barwise, J. (ed.): Studies in logic and the foundations of mathematics. In: Handbook of Mathematical Logic, North Holland (1989)Google Scholar
  19. 19.
    Crossley, J.N., Ash, C.J., Brickhill, C.J., Stillwell, J.C., Williams, N.H.: What is mathematical logic? London, Oxford University Press (1972)Google Scholar
  20. 20.
    van Dalen, D.: Logic and Structure. Springer, Berlin (2013)CrossRefMATHGoogle Scholar
  21. 21.
    Ebbinghaus, H.-D., Flum, J., Thomas, W.: Mathematical Logic 2nd edn. Springer, New York (1994)Google Scholar
  22. 22.
    Gargov, G., Atanassov, K.: Two results in intuitionistic fuzzy logic. Comptes Rendus de l’Academie bulgare des Sciences, Tome 45(12), 29–31 (1992)MathSciNetMATHGoogle Scholar
  23. 23.
    Lindstrm, P.: First-order predicate logic with generalized quantifiers. Theoria 32, 186195 (1966)MathSciNetGoogle Scholar
  24. 24.
    Mendelson, E.: Introduction to Mathematical Logic. Princeton. D. Van Nostrand, NJ (1964)MATHGoogle Scholar
  25. 25.
    Mostowski, A.: On a generalization of quantifiers. Fund. Math. 44, 1236 (1957)MathSciNetMATHGoogle Scholar
  26. 26.
    Mostowski, M.: Computational semantics for monadic quantifiers. J. Appl. Non-Class. Logics 8, 107121 (1998)MathSciNetMATHGoogle Scholar
  27. 27.
    Shoenfield, J.R.: Mathematical Logic, 2nd edn, Natick, MA, A. K. Peters (2001)Google Scholar
  28. 28.
    Zadeh, L.: Fuzzy logics. Computer 83–93 (1988)Google Scholar
  29. 29.
  30. 30.
  31. 31.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Krassimir Atanassov
    • 1
    • 2
  • Ivan Georgiev
    • 2
  • Eulalia Szmidt
    • 3
    • 4
  • Janusz Kacprzyk
    • 3
    • 4
  1. 1.Department of Bioinformatics and Mathematical ModellingInstitute of Biophysics and Biomedical Engineering Bulgarian Academy of SciencesSofiaBulgaria
  2. 2.Prof. Asen Zlatarov UniversityBourgasBulgaria
  3. 3.Systems Research Institute Polish Academy of SciencesWarsawPoland
  4. 4.Warsaw School of Information TechnologyWarsawPoland

Personalised recommendations