Learning Systems: From Theory to Practice pp 267-280 | Cite as
Multidimensional Intuitionistic Fuzzy Quantifiers and Level Operators
Chapter
First Online:
Abstract
In a series of papers, the authors introduced the concepts of multidimensional intuitionistic fuzzy sets and logic. Here, the concepts of a multidimensional intuitionistic fuzzy quantifier and an intuitionistic fuzzy level operator are introduced. Three groups of these quantifiers are described and some of their basic properties are studied.
Keywords
Intuitionistic fuzzy logic Multidimensional intuitionistic fuzzy logic Multidimensional intuitionistic fuzzy level operator Multidimensional intuitionistic fuzzy quantifierNotes
Acknowledgements
The first two authors are thankful for the support provided by the Bulgarian National Science Fund under Grant Ref. No. DFNI-I-02-5 “InterCriteria Analysis: A New Approach to Decision Making”.
References
- 1.Angelova, N., Stoenchev, M.: Intuitionistic fuzzy conjunctions and disjunctions. Part 1. In: Annual of Section “Informatics” of the Union of Bulgarian Scientists, vol. 8 (2015) (in press)Google Scholar
- 2.Angelova, N., Stoenchev, M.: Intuitionistic fuzzy conjunctions and disjunctions. Part 2. In: Issues in Intuitionistic Fuzzy Sets and Generalized Nets, vol. 12 (2016) (in press)Google Scholar
- 3.Atanassov, K.: Two Variants of Intuitonistic Fuzzy Propositional Calculus. Preprint IM-MFAIS-5-88, Sofia (1988)Google Scholar
- 4.Atanassov K.: Remark on a temporal intuitionistic fuzzy logic. In: Second Scientific Session of the “Mathematical Foundation Artificial Intelligence” Seminar, Sofia, March 30: Preprint IM-MFAIS-1-90. Sofia vol. 1990, pp. 1–5 (1990)Google Scholar
- 5.Atanassov, K.: Intuitionistic Fuzzy Sets. Springer, Heidelberg (1999)CrossRefMATHGoogle Scholar
- 6.Atanassov, K.: On Intuitionistic Fuzzy Sets Theory. Springer, Berlin (2012)CrossRefMATHGoogle Scholar
- 7.Atanassov, K.: On Intuitionistic Fuzzy Logics: Results and Problems. In: Modern Approaches in Fuzzy Sets. In: Atanassov, K., Baczynski, M., Drewniak, J., Kacprzyk, J., Krawczak, M., Szmidt, E., Wygralak, M., Zadrozny, S. (eds.) Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics, Volume 1: Foundations. SRI-PAS, Warsaw, pp. 23–49 (2014)Google Scholar
- 8.Atanassov, K.: On intuitionistic fuzzy implications. Issues Intuitionistic Fuzzy Sets Gen. Nets 12, 1–19 (2016) (in press)Google Scholar
- 9.Atanassov, K.: On Intuitionistic fuzzy quantifiers. Notes on Intuitionistic Fuzzy Sets 22(2), 1–8 (2016)Google Scholar
- 10.Atanassov, K.: Intuitionistic fuzzy logics as tools for evaluation of Data Mining processes. Knowl.-Based Syst. 80, 122–130 (2015)CrossRefGoogle Scholar
- 11.Atanassov, K., Angelova, N.: On intuitionistic fuzzy negations, law for excluded middle and De Morgan’s Laws. Issues Intuitionistic Fuzzy Sets Gen. Nets 12 (2016) (in press)Google Scholar
- 12.Atanassov, K., Gargov, G.: Elements of intuitionistic fuzzy logic. I. Fuzzy Sets Syst. 95(1), 39–52 (1998)Google Scholar
- 13.Atanassov, K., Georgiev, I., Szmidt, E., Kacprzyk, J.: Multidimensional intuitionistic fuzzy quantifiers. In: Proceedings of the 8th IEEE Conference Intelligent Systems, Sofia, 46 Sept 2016, pp. 530–534Google Scholar
- 14.Atanassov, K., Szmidt, E., Kacprzyk, J.: On intuitionistic fuzzy multi-dimensional sets. Issues Intuitionistic Fuzzy Sets Gen. Nets 7, 1–6 (2008)MATHGoogle Scholar
- 15.Atanassov, K., Szmidt, E., Kacprzyk, J., Rangasamy, P.: On intuitionistic fuzzy multi-dimensional sets. Part 2. In: Advances in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics. Vol. I: Foundations, Academic Publishing House EXIT, Warszawa, pp. 43–51 (2008)Google Scholar
- 16.Atanassov, K., Szmidt, E., Kacprzyk, J.: On intuitionistic fuzzy multi-dimensional sets. Part 3. In: Developments in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics, Vol. I: Foundations. Warsaw, SRI Polush Academy of Sciences, pp. 19–26 (2010)Google Scholar
- 17.Atanassov, K., Szmidt, E., Kacprzyk, J.: On intuitionistic fuzzy multi-dimensional sets. Part 4. Notes Intuitionistic Fuzzy Sets 17(2), 1–7 (2011)Google Scholar
- 18.Barwise, J. (ed.): Studies in logic and the foundations of mathematics. In: Handbook of Mathematical Logic, North Holland (1989)Google Scholar
- 19.Crossley, J.N., Ash, C.J., Brickhill, C.J., Stillwell, J.C., Williams, N.H.: What is mathematical logic? London, Oxford University Press (1972)Google Scholar
- 20.van Dalen, D.: Logic and Structure. Springer, Berlin (2013)CrossRefMATHGoogle Scholar
- 21.Ebbinghaus, H.-D., Flum, J., Thomas, W.: Mathematical Logic 2nd edn. Springer, New York (1994)Google Scholar
- 22.Gargov, G., Atanassov, K.: Two results in intuitionistic fuzzy logic. Comptes Rendus de l’Academie bulgare des Sciences, Tome 45(12), 29–31 (1992)MathSciNetMATHGoogle Scholar
- 23.Lindstrm, P.: First-order predicate logic with generalized quantifiers. Theoria 32, 186195 (1966)MathSciNetGoogle Scholar
- 24.Mendelson, E.: Introduction to Mathematical Logic. Princeton. D. Van Nostrand, NJ (1964)MATHGoogle Scholar
- 25.Mostowski, A.: On a generalization of quantifiers. Fund. Math. 44, 1236 (1957)MathSciNetMATHGoogle Scholar
- 26.Mostowski, M.: Computational semantics for monadic quantifiers. J. Appl. Non-Class. Logics 8, 107121 (1998)MathSciNetMATHGoogle Scholar
- 27.Shoenfield, J.R.: Mathematical Logic, 2nd edn, Natick, MA, A. K. Peters (2001)Google Scholar
- 28.Zadeh, L.: Fuzzy logics. Computer 83–93 (1988)Google Scholar
- 29.
- 30.
- 31.
Copyright information
© Springer International Publishing AG, part of Springer Nature 2018