Advertisement

On Structural Parameterizations of Happy Coloring, Empire Coloring and Boxicity

  • Jayesh Choudhari
  • I. Vinod ReddyEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10755)

Abstract

Distance parameters are extensively used to design efficient algorithms for many hard graph problems. They measure how far a graph is from belonging to some class of graphs. If a problem is tractable on a class of graphs Open image in new window , then distances to Open image in new window provide interesting parameterizations to that problem. For example, the parameter vertex cover measures the closeness of a graph to an edgeless graph. Many hard problems are tractable on graphs of small vertex cover. However, the parameter vertex cover is very restrictive in the sense that the class of graphs with bounded vertex cover is small. This significantly limits its usefulness in practical applications. In general, it is desirable to find tractable results for parameters such that the class of graphs with the parameter bounded should be as large as possible. In this spirit, we consider the parameter distance to threshold graphs, which are graphs that are both split graphs and cographs. It is a natural choice of an intermediate parameter between vertex cover and clique-width. In this paper, we give parameterized algorithms for some hard graph problems parameterized by the distance to threshold graphs. We show that Happy Coloring and Empire Coloring problems are fixed-parameter tractable when parameterized by the distance to threshold graphs. We also present an approximation algorithm to compute the Boxicity of a graph parameterized by the distance to threshold graphs.

Keywords

Parameterized complexity Threshold graphs Algorithm 

Notes

Acknowledgements

The authors are grateful to the anonymous referees for their valuable remarks and suggestions that significantly helped them improve the quality of the paper. The first author acknowledges support from Tata Consultancy Services (TCS) Research Fellowship.

References

  1. 1.
    Adiga, A., Chitnis, R., Saurabh, S.: Parameterized algorithms for boxicity. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010. LNCS, vol. 6506, pp. 366–377. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-17517-6_33 CrossRefGoogle Scholar
  2. 2.
    Agrawal, A.: On the parameterized complexity of happy vertex coloring. In: International Workshop on Combinatorial Algorithms. Springer (2017, in press)Google Scholar
  3. 3.
    Aravind, N.R., Kalyanasundaram, S., Kare, A.S.: Linear time algorithms for happy vertex coloring problems for trees. In: Mäkinen, V., Puglisi, S.J., Salmela, L. (eds.) IWOCA 2016. LNCS, vol. 9843, pp. 281–292. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-44543-4_22 CrossRefGoogle Scholar
  4. 4.
    Aravind, N., Kalyanasundaram, S., Kare, A.S., Lauri, J.: Algorithms and hardness results for happy coloring problems. arXiv preprint arXiv:1705.08282 (2017)
  5. 5.
    Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM (1999)Google Scholar
  6. 6.
    Bruhn, H., Chopin, M., Joos, F., Schaudt, O.: Structural parameterizations for boxicity. Algorithmica 74(4), 1453–1472 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bulian, J.: Parameterized complexity of distances to sparse graph classes. Technical report, University of Cambridge, Computer Laboratory (2017)Google Scholar
  8. 8.
    Cai, L.: Parameterized complexity of vertex colouring. Discrete Appl. Math. 127(3), 415–429 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Courcelle, B.: The monadic second-order logic of graphs. I. recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cozzens, M.B.: Higher and multi-dimensional analogues of interval graphs (1982)Google Scholar
  11. 11.
    Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21275-3 CrossRefzbMATHGoogle Scholar
  12. 12.
    Das, B., Enduri, M.K., Misra, N., Reddy, I.V.: On structural parameterizations of graph Motif and Chromatic number. In: Gaur, D., Narayanaswamy, N.S. (eds.) CALDAM 2017. LNCS, vol. 10156, pp. 118–129. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-53007-9_11 CrossRefGoogle Scholar
  13. 13.
    Doucha, M., Kratochvíl, J.: Cluster vertex deletion: a parameterization between vertex cover and clique-width. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 348–359. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32589-2_32 CrossRefGoogle Scholar
  14. 14.
    Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity, vol. 4. Springer, London (2013).  https://doi.org/10.1007/978-1-4471-5559-1 CrossRefzbMATHGoogle Scholar
  15. 15.
    Guo, J., Hüffner, F., Niedermeier, R.: A structural view on parameterizing problems: distance from triviality. In: Downey, R., Fellows, M., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 162–173. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28639-4_15 CrossRefGoogle Scholar
  16. 16.
    Hartung, S., Komusiewicz, C., Nichterlein, A., Suchỳ, O.: On structural parameterizations for the 2-club problem. Discrete Appl. Math. 185, 79–92 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Heawood, P.J.: Map-colour theorem. Proc. London Math. Soc. s2–51(1), 161–175 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lampis, M.: Structural parameterizations of hard graph problems. City University of New York (2011)Google Scholar
  19. 19.
    Mahadev, N.V., Peled, U.N.: Threshold Graphs and Related Topics, vol. 56. Elsevier, Amsterdam (1995)zbMATHGoogle Scholar
  20. 20.
    McGrae, A.R., Zito, M.: The complexity of the empire colouring problem. Algorithmica 68(2), 483–503 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Misra, N., Reddy, I.V.: The parameterized complexity of happy colorings. arXiv preprint arXiv:1708.03853 (2017)
  22. 22.
    Roberts, S.: On the boxicity and cubicity of a graph. In: Recent Progresses in Combinatorics, pp. 301–310 (1969)Google Scholar
  23. 23.
    Zhang, P., Li, A.: Algorithmic aspects of homophyly of networks. Theor. Comput. Sci. 593, 117–131 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.IIT GandhinagarGandhinagarIndia

Personalised recommendations