Advertisement

Computing Periods\(\ldots \)

  • Junhee Cho
  • Sewon Park
  • Martin Ziegler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10755)

Abstract

A period is the difference between the volumes of two semi-algebraic sets. Recent research has located their worst-case complexity in low levels of the Grzegorczyk Hierarchy. The present work introduces, analyzes, and evaluates three rigorous algorithms for rigorously computing periods: a deterministic, a randomized, and a ‘transcendental’ one.

Keywords

Exact Real Computation Reliable numerics Computational algebraic geometry Randomized algorithms 

References

  1. [Bai17]
    Bailey, D.H.: Jonathan Borwein: experimental mathematician. Exp. Math. 26(2), 125–129 (2017)MathSciNetCrossRefMATHGoogle Scholar
  2. [BCSV06]
    Berenbrink, P., Czumaj, A., Steger, A., Vöcking, B.: Balanced allocations: the heavily loaded case. SIAM J. Comput. 35(6), 1350–1385 (2006)MathSciNetCrossRefMATHGoogle Scholar
  3. [BDC01]
    Becher, V., Daicz, S., Chaitin, G.: A highly random number. In: Calude, C.S., Dinneen, M.J., Sburlan, S. (eds.) Combinatorics, Computability and Logic. Discrete Mathematics and Theoretical Computer Science, pp. 55–68. Springer, London (2001).  https://doi.org/10.1007/978-1-4471-0717-0_6 CrossRefGoogle Scholar
  4. [BGH15]
    Brattka, V., Gherardi, G., Hölzl, R.: Las Vegas computability and algorithmic randomness. In: Mayr, E.W., Ollinger, N. (eds.) 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015). Leibniz International Proceedings in Informatics (LIPIcs), vol. 30, pp. 130–142. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl (2015)Google Scholar
  5. [FG06]
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2006).  https://doi.org/10.1007/3-540-29953-X MATHGoogle Scholar
  6. [HRR90]
    Heintz, J., Recio, T., Roy, M.-F.: Algorithms in real algebraic geometry and applications to computational geometry. In: Goodman, J.E., Pollack, R., Steiger, W. (eds.) Discrete and Computational Geometry: Papers from the DIMACS Special Year. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 6, pp. 137–164. DIMACS/AMS (1990)Google Scholar
  7. [Kan03]
    Kanada, Y.: Open image in new window. J. Math. Cult. 1(1), 72–83 (2003)Google Scholar
  8. [KF10]
    Kratsch, D., Fomin, F.V.: Exact Exponential Algorithms. Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-16533-7 MATHGoogle Scholar
  9. [Ko91]
    Ko, K.-I.: Complexity Theory of Real Functions. Progress in Theoretical Computer Science. Birkhäuser, Boston (1991).  https://doi.org/10.1007/978-1-4684-6802-1 CrossRefMATHGoogle Scholar
  10. [Koi99]
    Koiran, P.: The real dimension problem is NPR-complete. J. Complex. 15(2), 227–238 (1999)CrossRefMATHGoogle Scholar
  11. [Kut87]
    Kutylowski, M.: Small Grzegorczyk classes. J. Lond. Math. Soc. 36(2), 193–210 (1987)MathSciNetCrossRefMATHGoogle Scholar
  12. [KZ01]
    Kontsevich, M., Zagier, D.: Periods. In: Engquist, B., Schmid, W. (eds.) Mathematics Unlimited – 2001 and Beyond, pp. 771–808. Springer, Heidelberg (2001).  https://doi.org/10.1007/978-3-319-50926-6_12 CrossRefGoogle Scholar
  13. [Mee06]
    Meer, K.: Optimization and approximation problems related to polynomial system solving. In: Proceedings of the 2nd Conference on Computability in Europe (CiE 2006), pp. 360–367 (2006)Google Scholar
  14. [MU05]
    Mitzenmacher, M., Upfal, E.: Probability and Computing - Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, New York (2005)CrossRefMATHGoogle Scholar
  15. [Mül01]
    Müller, N.T.: The iRRAM: exact arithmetic in C++. In: Blanck, J., Brattka, V., Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 222–252. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45335-0_14 CrossRefGoogle Scholar
  16. [MZ14]
    Müller, N.T., Ziegler, M.: From calculus to algorithms without errors. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 718–724. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44199-2_107 Google Scholar
  17. [Pap94]
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Boston (1994)MATHGoogle Scholar
  18. [PP16]
    Popescu-Pampu, P.: What is the Genus?. LNM, vol. 2162. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-42312-8 MATHGoogle Scholar
  19. [Rit63]
    Ritchie, R.W.: Classes of predictably computable functions. Trans. Am. Math. Soc. 106(1), 139–173 (1963)MathSciNetCrossRefMATHGoogle Scholar
  20. [Sko08]
    Skordev, D.: On the subrecursive computability of several famous constants. J. Univers. Comput. Sci. 14(6), 861–875 (2008)MathSciNetMATHGoogle Scholar
  21. [SWG12]
    Skordev, D., Weiermann, A., Georgiev, I.: \(M^2\)-computable real numbers. J. Logic Comput. 22(4), 899–925 (2012)MathSciNetCrossRefMATHGoogle Scholar
  22. [Tur37]
    Turing, A.M.: On computable numbers, with an application to the “Entscheidungsproblem”. Proc. Lond. Math. Soc. 42(2), 230–265 (1937)MathSciNetCrossRefMATHGoogle Scholar
  23. [TZ10]
    Tent, K., Ziegler, M.: Computable functions of reals. Münster J. Math. 3, 43–65 (2010)MathSciNetMATHGoogle Scholar
  24. [VS17]
    Viu-Sos, J.: A semi-canonical reduction for periods of Kontsevich-Zagier. arXiv:1509.01097 (2017)
  25. [Wei00]
    Weihrauch, K.: Computable Analysis. Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2000).  https://doi.org/10.1007/978-3-642-56999-9 CrossRefMATHGoogle Scholar
  26. [Yos08]
    Yoshinaka, M.: Periods and elementary real numbers. arXiv:0805.0349 (2008)

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.KAIST School of ComputingDaejeonRepublic of Korea

Personalised recommendations