Substances of Abuse and Hallucinogenic Activity: The Dopaminergic Pathway - Focus on Cocaine and Amphetamine-type Stimulants

  • Matteo Lazzaretti
  • Gian Mario Mandolini
  • Alfredo Carlo Altamura
  • Paolo BrambillaEmail author


The role of the dopaminergic pathway in drug-induced hallucinations is strictly related to the dopaminergic model of psychosis, which represents a useful heuristic model which aims to explain some aspects of the pathophysiology of psychotic disorders. Some drugs of abuse can induce psychotic symptoms such as hallucinations in healthy subjects, thus representing an experimental model of induced psychosis. The clinical aspects, with a special focus on hallucinations, and primarily the specific molecular mechanisms of cocaine and amphetamine-type stimulants are discussed. Their specific actions as competitive substrates of DAT and the reverse action on VMAT and TAAR1 full agonism with a consequent over-activation of D2 brain receptors in the mesocorticolimbic pathway are examined in depth. The role of genetic polymorphisms such as D2D2, SLC6A3, COMT, Dßh, GSTM1, and VNTR are also discussed.



This chapter was supported by a grant from the AIFA (Proposal AIFA-2016-02364852).


  1. 1.
    Fowler JS, Volkow ND, Wang GJ, Gatley SJ, Logan J. ([11])Cocaine: PET studies of cocaine pharmacokinetics, dopamine transporter availability and dopamine transporter occupancy. Nucl Med Biol. 2001;28:561–72.PubMedCrossRefGoogle Scholar
  2. 2.
    Schmidt GW, Jirschitzka J, Porta T, Reichelt M, Luck K, Torre JCP, D’Auria JC. The last step in cocaine biosynthesis is catalyzed by a BAHD acyltransferase. Plant Physiol. 2015;167:89–101.PubMedCrossRefGoogle Scholar
  3. 3.
    European Drug Report. Trends and developments. 2016.
  4. 4.
    United Nations Office on Drugs and Crime, World Drug Report 2016 (United Nations publication, Sales No. E.16.XI.7).Google Scholar
  5. 5.
    Roncero C, Daigre C, Gonzalvo B, Valero S, Castells X, Grau-López L, Casas M. Risk factors for cocaine-induced psychosis in cocaine-dependent patients. Eur Psychiatry. 2013;28:141–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Roncero C, Ros-Cucurull E, Daigre C, Casas M. Prevalence and risk factors of psychotic symptoms in cocaine-dependent patients. Actas Esp Psiquiatr. 2012;40:187–97.PubMedGoogle Scholar
  7. 7.
    Brady KT, Lydiard RB, Malcolm R, Ballenger JC. Cocaine-induced psychosis. J Clin Psychiatry. 1991;52:509–12.PubMedGoogle Scholar
  8. 8.
    Roncero C, Daigre C, Grau-López L, Barral C, Pérez-Pazos J, Martínez-Luna N, Casas M. An international perspective and review of cocaine-induced psychosis: a call to action. Subst Abus. 2014;35:321–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Vergara-Moragues E, Gómez PA, González-Saiz F, Rodríguez-Fonseca F. Cocaine-induced psychotic symptoms in clinical setting. Psychiatry Res. 2014;217:115–20.PubMedCrossRefGoogle Scholar
  10. 10.
    Miller NS, Gold MS, Mahler JC. Violent behaviors associated with cocaine use: possible pharmacological mechanisms. Int J Addict. 1991;26:1077–88.PubMedCrossRefGoogle Scholar
  11. 11.
    Vorspan F, Brousse G, Bloch V, Bellais L, Romo L, Guillem E, Lépine JP. Cocaine-induced psychotic symptoms in French cocaine addicts. Psychiatry Res. 2012;200:1074–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Diagnostic statistical manual of mental disorders. Washington, DC: American Psychiatric Association; 1994. p. 886.Google Scholar
  13. 13.
    Siegel RK. Cocaine hallucinations. Am J Psychiatry. 1978;135:309–14.PubMedCrossRefGoogle Scholar
  14. 14.
    Mitchell J, Vierkant AD. Delusions and hallucinations of cocaine abusers and paranoid schizophrenics: a comparative study. J Psychol. 1991;125:301–10.PubMedCrossRefGoogle Scholar
  15. 15.
    Berrios GE. Tactile hallucinations: conceptual and historical aspects. J Neurol Neurosurg Psychiatry. 1982;45:285–93.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Magnan V, Saury M. Trois cas de cocainisme chronique. C R Séances Mem Soc Biol. 1889:60–3.Google Scholar
  17. 17.
    de Clerambault G. Oeuvre, Tome I. 1909. p. 145–210.Google Scholar
  18. 18.
    Paillet-Loilier M, Cesbron A, Le Boisselier R, Bourgine J, Debruyne D. Emerging drugs of abuse: current perspectives on substituted cathinones. Subst Abuse Rehabil. 2014;5:37.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Meltzer PC, Butler D, Deschamps JR, Madras BK. 1-(4-Methylphenyl)-2-pyrrolidin-1-yl-pentan-1-one (Pyrovalerone) analogues: a promising class of monoamine uptake inhibitors. J Med Chem. 2006;49:1420–32.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Manepalli S, Surratt CK, Madura JD, Nolan TL. Monoamine transporter structure, function, dynamics, and drug discovery: a computational perspective. AAPS J. 2012;14:820–31.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Kristensen AS, Andersen J, Jorgensen TN, Sorensen L, Eriksen J, Loland CJ, et al. SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev. 2011;63:585–640.PubMedCrossRefGoogle Scholar
  22. 22.
    Koob GF. Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci. 1992;13:177–84.PubMedCrossRefGoogle Scholar
  23. 23.
    Vaughan RA, Foster JD. Mechanisms of dopamine transporter regulation in normal and disease states. Trends Pharmacol Sci. 2013;34:489–96.PubMedCrossRefGoogle Scholar
  24. 24.
    Giros B, Caron MG. Molecular characterization of the dopamine transporter. Trends Pharmacol Sci. 1993;14:43–9. Review.PubMedCrossRefGoogle Scholar
  25. 25.
    Volkow ND, Fowler JS, Wang GJ, Baler R, Telang F. Imaging dopamine’s role in drug abuse and addiction. Neuropharmacology. 2009;56:3–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Civelli O, Bunzow JR, Grandy DK. Molecular diversity of the dopamine receptors. Annu Rev Pharmacol Toxicol. 1993;33:281–307. Review.PubMedCrossRefGoogle Scholar
  27. 27.
    Schmitt KC, Reith ME. Regulation of the dopamine transporter. Ann N Y Acad Sci. 2010;1187:316–40.PubMedCrossRefGoogle Scholar
  28. 28.
    Greengard P. The neurobiology of dopamine signaling. Biosci Rep. 2001;21:247–69. Review.PubMedCrossRefGoogle Scholar
  29. 29.
    Bergquist F, Shahabi HN, Nissbrandt H. Somatodendritic dopamine release in rat substantia nigra influences motor performance on the accelerating rod. Brain Res. 2003;973:81–91.PubMedCrossRefGoogle Scholar
  30. 30.
    Bodea GO, Blaess S. Establishing diversity in the dopaminergic system. FEBS Lett. 2015;589:3773–85. Review.PubMedCrossRefGoogle Scholar
  31. 31.
    Massaly N, Morón JA, Al-Hasani R. A trigger for opioid misuse: chronic pain and stress dysregulate the mesolimbic pathway and kappa opioid system. Front Neurosci. 2016;10:480. Review.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Horvitz JC. Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience. 2000;96:651–6. Review.PubMedCrossRefGoogle Scholar
  33. 33.
    Yetnikoff L, Lavezzi HN, Reichard RA, Zahm DS. An update on the connections of the ventral mesencephalic dopaminergic complex. Neuroscience. 2014;282:23–48.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Buchta WC, Riegel AC. Chronic cocaine disrupts mesocortical learning mechanisms. Brain Res. 2015;1628:88–103.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Li X, Wolf ME. Multiple faces of BDNF in cocaine addiction. Behav Brain Res. 2015;279:240–54.PubMedCrossRefGoogle Scholar
  36. 36.
    Cooper S, Robison AJ, Mazei-Robison MS. Reward circuitry in addiction. Neurotherapeutics. 2017;14(3):687–97.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Donnan GA, Kaczmarczyk SJ, Paxinos G, Chilco PJ, Kalnins RM, Woodhouse DG, Mendelsohn FA. Distribution of catecholamine uptake sites in human brain as determined by quantitative [3H] mazindol autoradiography. J Comp Neurol. 1991;304:419–34.PubMedCrossRefGoogle Scholar
  38. 38.
    Làdavas E, Zeloni G, Farnè A. Visual peripersonal space centered on the face in humans. Brain. 1998;121:2317–26.PubMedCrossRefGoogle Scholar
  39. 39.
    Yoo SS, Freeman DK, McCarthy JJ III, Jolesz FA. Neural substrates of tactile imagery: a functional MRI study. Neuroreport. 2003;14:581–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Broderick PA. Distinguishing effects of cocaine IV and SC on mesoaccumbens dopamine and serotonin release with chloral hydrate anesthesia. Pharmacol Biochem Behav. 1992a;43:929–37.PubMedCrossRefGoogle Scholar
  41. 41.
    Broderick PA. Cocaine’s colocalized effects on synaptic serotonin and dopamine in ventral tegmentum in a reinforcement paradigm. Pharmacol Biochem Behav. 1992b;42:889–98.PubMedCrossRefGoogle Scholar
  42. 42.
    Huber M, Karner M, Kirchler E, Lepping P, Freudenmann RW. Striatal lesions in delusional parasitosis revealed by magnetic resonance imaging. Prog Neuro-Psychopharmacol Biol Psychiatry. 2008;32:1967–71.CrossRefGoogle Scholar
  43. 43.
    Spealman RD, Bergman J, Madras BK, Kamien JB, Melia KF. Role of D 1 and D 2 dopamine receptors in the behavioral effects of cocaine. Neurochem Int. 1992;20:147–52.CrossRefGoogle Scholar
  44. 44.
    Gerfen CR, Engber TM, Mahan LC, Susel ZVI, Chase TN, Monsma FJ, Sibley DR. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science. 1990;250:1429–32.PubMedCrossRefGoogle Scholar
  45. 45.
    Brousse G, Vorspan F, Ksouda K, Bloch V, Peoc’h K, Laplanche JL, et al. Could the inter-individual variability in cocaine-induced psychotic effects influence the development of cocaine addiction?: towards a new pharmacogenetic approach to addictions. Med Hypotheses. 2010;75:600–4.PubMedCrossRefGoogle Scholar
  46. 46.
    Cubells JF, Kranzler HR, McCance-Katz E, Anderson GM, Malison RT, Price LH, Gelernter J. A haplotype at the DBH locus, associated with low plasma dopamine [beta]-hydroxylase activity, also associates with cocaine-induced paranoia. Mol Psychiatry. 2000;5:56.PubMedCrossRefGoogle Scholar
  47. 47.
    Zabetian CP, Anderson GM, Buxbaum SG, Elston RC, Ichinose H, Nagatsu T, et al. A quantitative-trait analysis of human plasma–dopamine β-hydroxylase activity: evidence for a major functional polymorphism at the DBH locus. Am J Hum Genet. 2001;68:515–22.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Tang Y, Anderson GM, Zabetian CP, Köhnke MD, Cubells JF. Haplotype-controlled analysis of the association of a non-synonymous single nucleotide polymorphism at DBH (+1603C→T) with plasma dopamine β-hydroxylase activity. Am J Med Genet B Neuropsychiatr Genet. 2005;139:88–90.CrossRefGoogle Scholar
  49. 49.
    Kalayasiri R, Sughondhabirom A, Gueorguieva R, Coric V, Lynch WJ, Lappalainen J, et al. Dopamine β-hydroxylase gene (DβH)-1021C→T influences self-reported paranoia during cocaine self-administration. Biol Psychiatry. 2007;61:1310–3.PubMedCrossRefGoogle Scholar
  50. 50.
    Gelernter J, Kranzler HR, Satel SL, Rao PA. Genetic association between dopamine transporter protein alleles and cocaine-induced paranoia. Neuropsychopharmacology. 1994;11:195–200.PubMedCrossRefGoogle Scholar
  51. 51.
    Ujike H, Katsu T, Okahisa Y, et al. Genetic variants of D2 but not D3 or D4 dopamine receptor gene are associated with rapid onset and poor prognosis of methamphetamine psychosis. Prog Neuro-Psychopharmacol Biol Psychiatry. 2009;33(4):625–9.CrossRefGoogle Scholar
  52. 52.
    Morton WA. Cocaine and psychiatric symptoms. Prim Care Companion J Clin Psychiatry. 1999;1(4):109.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Willi TS, Barr AM, Gicas K, Lang DJ, Vila-Rodriguez F, Su W, et al. Characterization of white matter integrity deficits in cocaine-dependent individuals with substance-induced psychosis compared with non-psychotic cocaine users. Addict Biol. 2016;22:873–81.PubMedCrossRefGoogle Scholar
  54. 54.
    Edeleano L. Uebereinige Derivate der Phenylmethacrylsäure und der Phenylisobuttersäure. Eur J Inorg Chem. 1887;20:616–22.Google Scholar
  55. 55.
    Sulzer D, Sonders MS, Poulsen NW, Galli A. Mechanisms of neurotransmitter release by amphetamines: a review. Prog Neurobiol. 2005;75:406–33.PubMedCrossRefGoogle Scholar
  56. 56.
    Berman SM, Kuczenski R, McCracken JT, London ED. Potential adverse effects of amphetamine treatment on brain and behavior: a review. Mol Psychiatry. 2009;14:123.PubMedCrossRefGoogle Scholar
  57. 57.
    Biel JH, Bopp BA. Amphetamines: structure-activity relationships. In: Stimulants. Boston, MA: Springer; 1978. p. 1–39.Google Scholar
  58. 58.
    Weissensteiner R, Steinkellner T, Jurik A, Bulling S, Sandtner W, Kudlacek O, Sitte HH. Towards an understanding of the psychostimulant action of amphetamine and cocaine. In: Sensory perception. Vienna: Springer; 2012. p. 183–203.Google Scholar
  59. 59.
    Schifano F, Corkery J, Naidoo V, Oyefeso A, Ghodse H. Overview of amphetamine-type stimulant mortality data–UK, 1997–2007. Neuropsychobiology. 2010;61:122–30.PubMedCrossRefGoogle Scholar
  60. 60.
    World Health Organization (WHO) Disease Control Priorities Related to Mental, Neurological, Developmental and Substance Abuse Disorders. Disease control priorities project. Geneva: Department of Mental Health and Substance Abuse; 2006.Google Scholar
  61. 61.
    Clauwaert KM, Van Bocxlaer JF, Els A, VanCalenbergh S, Lambert WE, De Leenheer AP. Determination of the designer drugs 3,4-methylenedioxymethamphetamine, 3,4-methylenedioxyethylamphetamine, and 3,4-methylenedioxyamphetamine with HPLC and fluorescence detection in whole blood, serum, vitreous humor, and urine. Clin Chem. 2000;46:1968–77.PubMedGoogle Scholar
  62. 62.
    Nichols DE. Differences between the mechanism of action of MDMA, MBDB, and the classic hallucinogens. Identification of a new therapeutic class: entactogens. J Psychoactive Drugs. 1986;18:305–13.PubMedCrossRefGoogle Scholar
  63. 63.
    Vollenweider FX, Geyer MA. A systems model of altered consciousness: integrating natural and drug-induced psychoses. Brain Res Bull. 2001;56:495–507.PubMedCrossRefGoogle Scholar
  64. 64.
    De la Torre R, Farré M, Roset PN, Pizarro N, Abanades S, Segura M, et al. Human pharmacology of MDMA: pharmacokinetics, metabolism, and disposition. Ther Drug Monit. 2004;26:137–44.PubMedCrossRefGoogle Scholar
  65. 65.
    Kalant H. The pharmacology and toxicology of “ecstasy” (MDMA) and related drugs. Can Med Assoc J. 2001;165:917–28.Google Scholar
  66. 66.
    Cao DN, Shi JJ, Hao W, Wu N, Li J. Advances and challenges in pharmacotherapeutics for amphetamine-type stimulants addiction. Eur J Pharmacol. 2016;780:129–35.PubMedCrossRefGoogle Scholar
  67. 67.
    Heal DJ, Smith SL, Gosden J, Nutt DJ. Amphetamine, past and present—a pharmacological and clinical perspective. J Psychopharmacol. 2013;27:479–96.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Bramness JG, Gundersen ØH, Guterstam J, Rognli EB, Konstenius M, Løberg EM, Franck J. Amphetamine-induced psychosis-a separate diagnostic entity or primary psychosis triggered in the vulnerable? BMC Psychiatry. 2012;12:221.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Carvalho M, Carmo H, Costa VM, Capela JP, Pontes H, Remião F, de Lourdes Bastos M. Toxicity of amphetamines: an update. Arch Toxicol. 2012;86:1167–231.PubMedCrossRefGoogle Scholar
  70. 70.
    Young D, Scoville WB. Paranoid psychosis in narcolepsy and the possible danger of benzedrine treatment. Med Clin North Am. 1938;22:637–46.CrossRefGoogle Scholar
  71. 71.
    Connell PH. Amphetamine psychosis. Maudsley Monographs Number Five. London: Oxford University Press; 1958.Google Scholar
  72. 72.
    Ellinwood EH Jr. Amphetamine psychosis. Description of the individuals and process. J Nerv Ment Dis. 1967;144:273–83.CrossRefGoogle Scholar
  73. 73.
    Grant KM, LeVan TD, Wells SM, Li M, Stoltenberg SF, Gendelman HE, Bevins RA. Methamphetamine-associated psychosis. J Neuroimmune Pharmacol. 2012;7:113–39.PubMedCrossRefGoogle Scholar
  74. 74.
    Kokkinidis L, Anisman H. Amphetamine psychosis and schizophrenia: a dual model. Neurosci Biobehav Rev. 1982;5:449–61.CrossRefGoogle Scholar
  75. 75.
    Dore G, Sweeting M. Drug-induced psychosis associated with crystalline methamphetamine. Australas Psychiatry. 2006;14:86–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Srisurapanont M, Ali R, Marsden J, Sunga A, Wada K, Monteiro M. Psychotic symptoms in methamphetamine psychotic in-patients. Int J Neuropsychopharmacol. 2003;6:347–52.PubMedCrossRefGoogle Scholar
  77. 77.
    Zweben JE, Cohen JB, Christian D, Galloway GP, Salinardi M, Parent D, Iguchi M. Psychiatric symptoms in methamphetamine users. Am J Addict. 2004;13:181–90.PubMedCrossRefGoogle Scholar
  78. 78.
    Martin I, Lampinen TM, McGhee D. Methamphetamine use among marginalized youth in British Columbia. Can J Public Health. 2006;97(4):320–4.PubMedGoogle Scholar
  79. 79.
    McKetin R, McLaren J, Lubman DI, Hides L. The prevalence of psychotic symptoms among methamphetamine users. Addiction. 2006;101:1473–8.PubMedCrossRefGoogle Scholar
  80. 80.
    McKetin R, Lubman DI, Baker AL, Dawe S, Ali RL. Dose-related psychotic symptoms in chronic methamphetamine users: evidence from a prospective longitudinal study. JAMA Psychiat. 2013;70:319–24.CrossRefGoogle Scholar
  81. 81.
    Bousman CA, McKetin R, Burns R, Woods SP, Morgan EE, Atkinson JH, Grant I. Typologies of positive psychotic symptoms in methamphetamine dependence. Am J Addict. 2014;24:94.CrossRefGoogle Scholar
  82. 82.
    Nakamura M, Koo J. Drug-induced tactile hallucinations beyond recreational drugs. Am J Clin Dermatol. 2016;17:643–52.PubMedCrossRefGoogle Scholar
  83. 83.
    Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, Partilla JS. Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse. 2001;39:32–41.PubMedCrossRefGoogle Scholar
  84. 84.
    Kahlig KM, Binda F, Khoshbouei H, Blakely RD, McMahon DG, Javitch JA, Galli A. Amphetamine induces dopamine efflux through a dopamine transporter channel. Proc Natl Acad Sci U S A. 2005;102:3495–500.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Pérez-Mañá C, Castells X, Torrens M, Capellà D, Farre M. Efficacy of psychostimulant drugs for amphetamine abuse or dependence. The Cochrane Library. 2013.Google Scholar
  86. 86.
    Partilla JS, Dempsey AG, Nagpal AS, Blough BE, Baumann MH, Rothman RB. Interaction of amphetamines and related compounds at the vesicular monoamine transporter. J Pharmacol Exp Ther. 2006;319:237–46.PubMedCrossRefGoogle Scholar
  87. 87.
    Boutrel B, Koob GF. What keeps us awake: the neuropharmacology of stimulants and wakefulness-promoting medications. Sleep. 2004;27:1181–94.PubMedCrossRefGoogle Scholar
  88. 88.
    Sulzer D, Rayport S. Amphetamine and other psychostimulants reduce pH gradients in midbrain dopaminergic neurons and chromaffin granules: a mechanism of action. Neuron. 1990;5:797–808.PubMedCrossRefGoogle Scholar
  89. 89.
    Tucker KR, Block ER, Levitan ES. Action potentials and amphetamine release antipsychotic drug from dopamine neuron synaptic VMAT vesicles. Proc Natl Acad Sci. 2015;112:4485–94.CrossRefGoogle Scholar
  90. 90.
    Sitte HH, Freissmuth M. The reverse operation of Na+/Cl−-coupled neurotransmitter transporters–why amphetamines take two to tango. J Neurochem. 2010;112:340–55.PubMedCrossRefGoogle Scholar
  91. 91.
    Ramamoorthy S, Blakely RD. Phosphorylation and sequestration of serotonin transporters differentially modulated by psychostimulants. Science. 1999;285:763–6.PubMedCrossRefGoogle Scholar
  92. 92.
    Cervinski MA, Foster JD, Vaughan RA. Psychoactive substrates stimulate dopamine transporter phosphorylation and down-regulation by cocaine-sensitive and protein kinase C-dependent mechanisms. J Biol Chem. 2005;280(49):40442–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Green AR, Mechan AO, Elliott JM, O’Shea E, Colado MI. The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacol Rev. 2003;55:463–508.PubMedCrossRefGoogle Scholar
  94. 94.
    Capela JP, Carmo H, Remião F, Bastos ML, Meisel A, Carvalho F. Molecular and cellular mechanisms of ecstasy-induced neurotoxicity: an overview. Mol Neurobiol. 2009;39(3):210–71.PubMedCrossRefGoogle Scholar
  95. 95.
    Yamamoto BK, Moszczynska A, Gudelsky GA. Amphetamine toxicities: classical and emerging mechanisms. Ann N Y Acad Sci. 2010;1187:101–21.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Robertson SD, Matthies HJG, Galli A. A closer look at amphetamine-induced reverse transport and trafficking of the dopamine and norepinephrine transporters. Mol Neurobiol. 2009;39:73–80.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Howell LL, Kimmel HL. Monoamine transporters and psychostimulant addiction. Biochem Pharmacol. 2008;75:196–217.PubMedCrossRefGoogle Scholar
  98. 98.
    Zahniser NR, Sorkin A. Trafficking of dopamine transporters in psychostimulant actions. Semin Cell Dev Biol. 2009;20(4):411–7.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Mantle TJ, Tipton KF, Garrett NJ. Inhibition of monoamine oxidase by amphetamine and related compounds. Biochem Pharmacol. 1976;25:2073–7.PubMedCrossRefGoogle Scholar
  100. 100.
    Mattay VS, Goldberg TE, Fera F, Hariri AR, Tessitore A, Egan MF, Kolachana B, Callicott JH, Weinberger DR. Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci U S A. 2003;100:6186–91.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Hashimoto T, Hashimoto K, Matsuzawa D, et al. A functional glutathione S-transferase P1 gene polymorphism is associated with methamphetamine-induced psychosis in Japanese population. Am J Med Genet B Neuropsychiatr Genet. 2005;135(1):5–9.CrossRefGoogle Scholar
  102. 102.
    Ujike H, Harano M, Inada T, et al. Nine- or fewer repeat alleles in VNTR polymorphism of the dopamine transporter gene is a strong risk factor for prolonged methamphetamine psychosis. Pharmacogenomics J. 2003;3:242–7.PubMedCrossRefGoogle Scholar
  103. 103.
    Hsieh JH, Stein DJ, Howells FM. The neurobiology of methamphetamine induced psychosis. Front Hum Neurosci. 2014;8:537.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Lloyd SA, Corkill B, Bruster MC, Roberts RL, Shanks RA. Chronic methamphetamine exposure significantly decreases microglia activation in the arcuate nucleus. J Chem Neuroanat. 2017;82:5–11.PubMedCrossRefGoogle Scholar
  105. 105.
    Laruelle M, Abi-Dargham A, van Dyck CH, Rosenblatt W, Zea-Ponce Y, Zoghbi SS, et al. SPECT imaging of striatal dopamine release after amphetamine challenge. J Nucl Med. 1995;36:1182–90.PubMedGoogle Scholar
  106. 106.
    Drevets WC, Gautier C, Price JC, Kupfer DJ, Kinahan PE, Grace AA, et al. Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biol Psychiatry. 2001;49:81–96.PubMedCrossRefGoogle Scholar
  107. 107.
    Aoki Y, Orikabe L, Takayanagi Y, Yahata N, Mozue Y, Sudo Y, Ishii T, Itokawa M, Suzuki M, Kurachi M, Okazaki Y. Volume reductions in frontopolar and left perisylvian cortices in methamphetamine induced psychosis. Schizophr Res. 2013;147:355–61.PubMedCrossRefGoogle Scholar
  108. 108.
    Orikabe L, Yamasue H, Inoue H, Takayanagi Y, Mozue Y, Sudo Y, Okazaki Y. Reduced amygdala and hippocampal volumes in patients with methamphetamine psychosis. Schizophr Res. 2011;132:183–9.PubMedCrossRefGoogle Scholar
  109. 109.
    Uhlmann A, Fouche JP, Koen N, Meintjes EM, Wilson D, Stein DJ. Fronto-temporal alterations and affect regulation in methamphetamine dependence with and without a history of psychosis. Psychiatry Res Neuroimaging. 2016;248:30–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Matteo Lazzaretti
    • 1
  • Gian Mario Mandolini
    • 1
  • Alfredo Carlo Altamura
    • 1
  • Paolo Brambilla
    • 1
    • 2
    Email author
  1. 1.Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoUniversity of MilanMilanItaly
  2. 2.Department of Psychiatry and Behavioural NeurosciencesUniversity of Texas at HoustonHoustonUSA

Personalised recommendations