Advertisement

Non-contact Welding Technologies: Fusion Welding

  • Rasheedat Modupe Mahamood
  • Esther Titilayo Akinlabi
Chapter
Part of the Mechanical Engineering Series book series (MES)

Abstract

Non-contact joining technology is an advanced joining method in which there is no contact between the tool and the materials being joined. There are two basic types of welding process namely fusion- and solid-state welding. Laser beam welding and electron beam welding processes are the non-contact fusion-state welding processes that are discussed in this chapter. These non-contact welding techniques have found their applications in different spheres of our lives. Each of these welding techniques with their areas of application is discussed in this chapter. Some of the research works in this field are also presented. Most of these welding technologies are key in the development of miniaturised components. The application of these advanced welding technologies in micro- and nano-fabrication is the focus of Chap.  9.

Keywords

Electron beam welding Fusion-state welding Laser beam welding Processing parameters Tool-less welding 

Notes

Acknowledgment

This work was supported by the University of Johannesburg research council and University of Ilorin.

References

  1. 1.
    P.H.O.M. Alves, M.S.F. Lima, D. Raabe, H.R.Z. Sandim, Laser beam welding of dual-phase DP1000 steel. J. Mater. Process. Technol. 252, 498–510 (2018)CrossRefGoogle Scholar
  2. 2.
    R. Palanivel, I. Dinaharan, R.F. Laubscher, Microstructure evolution and mechanical characterization of Nd:YAG laser beam welded titanium tubes. Mater. Charact. 134, 225–235 (2017)CrossRefGoogle Scholar
  3. 3.
    X. Zhan, Q. Peng, Y. Wei, O. Wenmin, Experimental and simulation study on the microstructure of TA15 titanium alloy laser beam welded joints. Optics Laser Technol. 94, 279–289 (2017)CrossRefGoogle Scholar
  4. 4.
    J. Shen, B. Li, S. Hu, H. Zhang, B. Xianzheng, Comparison of single-beam and dual-beam laser welding of Ti–22Al–25Nb/TA15 dissimilar titanium alloys. Optics Laser Technol. 93, 118–126 (2017)CrossRefGoogle Scholar
  5. 5.
    J. Kim, S. Kim, K. Kim, W. Jung, D. Youn, J. Lee, H. Ki, Effect of beam size in laser welding of ultra-thin stainless steel foils. J. Mater. Process. Technol. 233, 125–134 (2016)CrossRefGoogle Scholar
  6. 6.
    W.A. Ayoola, W.J. Suder, S.W. Williams, Parameters controlling weld bead profile in conduction laser welding. J. Mater. Process. Technol. 249, 522–530 (2017)CrossRefGoogle Scholar
  7. 7.
    N. Kashaev, V. Ventzke, V. Fomichev, F. Fomin, S. Riekehr, Effect of Nd:YAG laser beam welding on weld morphology and mechanical properties of Ti–6Al–4V butt joints and T-joints. Optics Lasers Eng. 86, 172–180 (2016)CrossRefGoogle Scholar
  8. 8.
    G. Hongping, G. Yin, B. Shulkin, Laser beam welding of nitride steel components. Phys. Procedia 12(Part A), 40–45 (2011)Google Scholar
  9. 9.
    R. Chen, C. Wang, P. Jiang, X. Shao, Z. Zhao, Z. Gao, C. Yue, Effect of axial magnetic field in the laser beam welding of stainless steel to aluminum alloy. Mater. Design 109, 146–152 (2016)CrossRefGoogle Scholar
  10. 10.
    X. Zhang, T. Huang, W. Yang, R. Xiao, L. Zhu, L. Lin, Microstructure and mechanical properties of laser beam-welded AA2060 Al-Li alloy. J. Mater. Process. Technol. 237, 301–308 (2016)CrossRefGoogle Scholar
  11. 11.
    F. Hugger, K. Hofmann, S. Stein, M. Schmidt, Laser beam welding of brass. Phys. Procedia 56, 576–581 (2014)CrossRefGoogle Scholar
  12. 12.
    A. Ascari, A. Fortunato, G. Guerrini, E. Liverani, A. Lutey, Long pulse laser micro welding of commercially pure titanium thin sheets. Procedia Eng. 184, 274–283 (2017)CrossRefGoogle Scholar
  13. 13.
    Y. Zhang, D.Q. Sun, X.Y. Gu, H.M. Li, Nd:YAG pulsed laser welding of dissimilar metals of titanium alloy to stainless steel. Int. J. Adv. Manuf. Technol. 94, 1073–1085 (2018).  https://doi.org/10.1007/s00170-017-0997-3 CrossRefGoogle Scholar
  14. 14.
    N. Kashaev, D. Pugachev, V. Ventzke, F. Fomin, I. Burkhardt, J. Enz, S. Riekehr, Microstructure and mechanical performance of autogenously fibre laser beam welded Ti-6242 butt joints. Mater. Sci. Eng. A 694, 110–120 (2017)CrossRefGoogle Scholar
  15. 15.
    J. Enz, M. Kumar, S. Riekehr, V. Ventzke, N. Huber, N. Kashaev, Mechanical properties of laser beam welded similar and dissimilar aluminum alloys. J. Manuf. Process. 29, 272–280 (2017)CrossRefGoogle Scholar
  16. 16.
    J. Chen, Y. Wei, X. Zhan, Y. Li, O. Wenmin, T. Zhang, Melt flow and thermal transfer during magnetically supported laser beam welding of thick aluminum alloy plates. J. Mater. Process. Technol. 254, 325–337 (2018)CrossRefGoogle Scholar
  17. 17.
    S.V. Kuryntsev, A.K. Gilmutdinov, Welding of stainless steel using defocused laser beam. J. Constr. Steel Res. 114, 305–313 (2015)CrossRefGoogle Scholar
  18. 18.
    C. Hagenlocher, P. Stritt, R. Weber, T. Graf, Strain signatures associated to the formation of hot cracks during laser beam welding of aluminum alloys. Optics Lasers Eng. 100, 131–140 (2018)CrossRefGoogle Scholar
  19. 19.
    B. Acherjee, Hybrid laser arc welding: State-of-art review. Optics Laser Technol. 99, 60–71 (2018)CrossRefGoogle Scholar
  20. 20.
    M. Dahmen, V. Janzen, S. Lindner, R. Wagener, Laser beam welding of ultra-high strength chromium steel with martensitic microstructure. Phys. Procedia 56, 525–534 (2014)CrossRefGoogle Scholar
  21. 21.
    T. Wang, Y. Zhang, X. Li, B. Zhang, J. Feng, Influence of beam current on microstructures and mechanical properties of electron beam welding-brazed aluminum-steel joints with an Al5Si filler wire. Vacuum 141, 281–287 (2017)CrossRefGoogle Scholar
  22. 22.
    M.K. Keshavarz, S. Turenne, A. Bonakdar, Solidification behavior of inconel 713LC gas turbine blades during electron beam welding. J Manuf. Process. 31, 232–239 (2018)CrossRefGoogle Scholar
  23. 23.
    M. Chiumenti, M. Cervera, N. Dialami, B. Wu, L. Jinwei, C. Agelet de Saracibar, Numerical modeling of the electron beam welding and its experimental validation. Finite Elements Anal. Design 121, 118–133 (2016)CrossRefGoogle Scholar
  24. 24.
    J.S. Yoon, S.-K. Kim, E.H. Lee, H.G. Jin, D.W. Lee, S. Cho, Mechanical properties of ARAA steel after electron beam welding. Fusion Eng. Design 124, 774–778 (2017)CrossRefGoogle Scholar
  25. 25.
    C.J. Parga, I.J. van Rooyen, B.D. Coryell, W.R. Lloyd, L.N. Valenti, H. Usman, Room temperature mechanical properties of electron beam welded zircaloy-4 sheet. J. Mater. Process. Technol. 241, 73–85 (2017)CrossRefGoogle Scholar
  26. 26.
    Y. Li, H. Wang, K. Han, X. Li, B. Zhang, Microstructure of Ti-45Al-8.5Nb-0.2W-0.03Y electron beam welding joints. J. Mater. Process. Technol. 250, 401–409 (2017)CrossRefGoogle Scholar
  27. 27.
    B.P. Badgujar, S. Kumar, M.N. Jha, I. Samajdar, M. Mascarenhas, R. Tewari, G.K. Dey, An investigation of electron beam welding of Nb-1Zr-0.1C alloy: process parameters and microstructural analysis. J. Manuf. Process. 28(Part 1), 326–335 (2017)CrossRefGoogle Scholar
  28. 28.
    S.K. Sharma, P. Agarwal, J. Dutta Majumdar, Studies on electron beam welded inconel 718 similar joints. Procedia Manuf. 7, 654–659 (2017)CrossRefGoogle Scholar
  29. 29.
    M.N. Jha, D.K. Pratihar, A.V. Bapat, V. Dey, M. Ali, A.C. Bagchi, Knowledge-based systems using neural networks for electron beam welding process of reactive material (Zircaloy-4). J. Intell. Manuf. 25, 1315–1333 (2014)CrossRefGoogle Scholar
  30. 30.
    B. Huang, X. Chen, S. Pang, R. Hu, A three-dimensional model of coupling dynamics of keyhole and weld pool during electron beam welding. Int. J. Heat Mass Transfer 115(Part B), 159–173 (2017)CrossRefGoogle Scholar
  31. 31.
    M.S. Węglowski, S. Błacha, A. Phillips, Electron beam welding—techniques and trends—review. Vacuum 130, 72–92 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Rasheedat Modupe Mahamood
    • 1
    • 2
  • Esther Titilayo Akinlabi
    • 1
  1. 1.Department of Mechanical Engineering Science, Faculty of Engineering and the Built EnvironmentUniversity of Johannesburg, Auckland Park Kingsway Campus, Auckland ParkJohannesburgSouth Africa
  2. 2.Department of Mechanical EngineeringFaculty of Engineering, University of IlorinIlorinNigeria

Personalised recommendations