Application of Advanced Cutting Technologies to Micro- and Nano-Manufacturing

  • Rasheedat Modupe Mahamood
  • Esther Titilayo Akinlabi
Part of the Mechanical Engineering Series book series (MES)


In the last two decades, products have been revolutionised by making them smaller, lighter and even more compact. Some of the requirements for making products smaller and lighter were borne out of the necessity to reduce global warming through the reduction of fuel consumption in moving parts (transportation industries). Also, the bulkiness of products in the past was partly as a result of manufacturing limitations, that is, unavailability of suitable manufacturing process to fabricate the smaller product. Miniaturisation has gained popularity in every areas of human endeavour, ranging from laboratory instruments which were once gigantic and can now fit into one’s palm (becoming handheld). The push towards miniaturisation is constantly being pursued in the research community through the development of manufacturing technology that promotes miniaturisation pursuit as well as constant development of these technologies. Advanced cutting technologies take a significant role in achieving miniaturised components since manufacturing these micro- and nano-components relied heavily on effective cutting processes. In this chapter, micro- and nano-machining using various advanced cutting processes that were presented in Chaps.  2 5 in this book is presented. A number of research works have appeared in the literature on these interesting areas of research and some of them are presented in this chapter.


Abrasive jet micromachining Abrasive waterjet micromachining Laser beam micromachining Plasma micromachining Waterjet micromachining 



This work was supported by the University of Johannesburg research council (URC) fund and University of Ilorin.


  1. 1.
    Y. Liu, D. Zhu, Y. Zeng, H. Yu, Development of microelectrodes for electrochemical micromachining. Int. J. Adv. Manuf. Technol. 55, 195–203 (2011)CrossRefGoogle Scholar
  2. 2.
    R. Thanigaivelan, R.M. Arunachalam, P. Drukpa, Drilling of micro-holes on copper using electrochemical micromachining. Int. J. Adv. Manuf. Technol. 61, 1185–1190 (2012)CrossRefGoogle Scholar
  3. 3.
    E.-S. Lee, J.-W. Park, Y.-H. Moon, A study on electrochemical micromachining for fabrication of microgrooves in an air-lubricated hydrodynamic bearing. Int. J. Adv. Manuf. Technol. 20, 720–726 (2002)CrossRefGoogle Scholar
  4. 4.
    X. Zhang, N. Qu, X. Fang, Sandwich-like electrochemical micromachining of micro-dimples using a porous metal cathode. Surf. Coat. Technol. 311, 357–364 (2017)CrossRefGoogle Scholar
  5. 5.
    V.M. Volgin, V.V. Lyubimov, I.V. Gnidina, A.D. Davydov, T.B. Kabanov, Effect of current efficiency on electrochemical micromachining by moving electrode. Procedia CIRP 55, 65–70 (2016)CrossRefGoogle Scholar
  6. 6.
    Y. Ye, H. Lianhuan, H. Di, S. Jian-Jia, T. Zhong-Qun, T. Zhao-Wu, Z. Dongping, Electrochemical micromachining under mechanical motion mode. Electrochim. Acta 183, 3–7 (2015)CrossRefGoogle Scholar
  7. 7.
    W. Liu, S. Ao, Y. Li, Z. Liu, Z. Luo, Z. Wang, R. Song, Modeling and fabrication of microhole by electrochemical micromachining using retracted tip tool. Precis. Eng. 50, 77–84 (2017)CrossRefGoogle Scholar
  8. 8.
    K.M. Cole, D.W. Kirk, C.V. Singh, S.J. Thorpe, Optimizing electrochemical micromachining parameters for Zr-basedbulk metallic glass. J. Manuf. Process. 25, 227–234 (2017)CrossRefGoogle Scholar
  9. 9.
    S.S. Anasane, B. Bhattacharyya, Experimental investigation into micromilling of microgrooves ontitanium by electrochemical micromachining. J. Manuf. Process. 28 (, 285–294 (2017)CrossRefGoogle Scholar
  10. 10.
    K. Wang, Q. Zhang, G. Zhu, Q. Liu, Y. Huang, Experimental study on micro electrical discharge machining with helical electrode. Int. J. Adv. Manuf. Technol. 93, 2639–2645 (2017)CrossRefGoogle Scholar
  11. 11.
    K. Wang, Q. Zhang, Q. Liu, G. Zhu, J. Zhang, Experimental study on micro electrical discharge machining of porous stainless steel. Int. J. Adv. Manuf. Technol. 90, 2589–2595 (2017)CrossRefGoogle Scholar
  12. 12.
    H.K. Yoo, W.T. Kwon, S. Kang, Development of a new electrode for micro-electrical discharge machining (EDM) using Ti(C,N)-based cermet. Int. J. Precis. Eng. Manuf. 15(4), 609–616 (2014)CrossRefGoogle Scholar
  13. 13.
    G.S. Prihandana, M. Mahardika, M. Hamdi, Y.S. Wong, K. Mitsui, Accuracy improvement in nanographite powder-suspended dielectric fluid for micro-electrical discharge machining processes. Int. J. Adv. Manuf. Technol. 56, 143–149 (2011)CrossRefGoogle Scholar
  14. 14.
    S. Skoczypiec, A. Ruszaj, A sequential electrochemical–electrodischarge process for micropart manufacturing. Precis. Eng. 38, 680–690 (2014)CrossRefGoogle Scholar
  15. 15.
    L. Raju, S.S. Hiremath, A state-of-the-art review on micro electro-discharge machining. Procedia Technol. 25, 1281–1288 (2016)CrossRefGoogle Scholar
  16. 16.
    K.P. Rajurkar, M.M. Sundaram, A.P. Malshe, Review of electrochemical and electrodischarge machining. Procedia CIRP 6, 13–26 (2013)CrossRefGoogle Scholar
  17. 17.
    J. Forneris, A. Battiato, D. Gatto Monticone, F. Picollo, G. Amato, L. Boarino, G. Brida, I.P. Degiovanni, E. Enrico, M. Genovese, E. Moreva, P. Traina, C. Verona, G. Verona Rinati, P. Olivero, Electroluminescence from a diamond device with ion-beam-micromachined buried graphitic electrodes. Nucl. Inst. Methods Phys. Res. B 348, 187–190 (2015)CrossRefGoogle Scholar
  18. 18.
    L.-C. Chao, C.-C. Ye, Y.-P. Chen, H.-Z. Yu, Facile fabrication of ZnO nanowire-based UV sensors by focused ion beam micromachining and thermal oxidation. Appl. Surf. Sci. 282, 384–389 (2013)CrossRefGoogle Scholar
  19. 19.
    F. Nesprias, M. Venturino, M.E. Debray, J. Davidson, M. Davidson, A.J. Kreiner, D. Minsky, M. Fischer, A. Lamagn, Heavy ion beam micromachining on LiNbO3. Nucl. Inst. Methods Phys. Res. B 267, 69–73 (2009)CrossRefGoogle Scholar
  20. 20.
    F. Yongqi, N.K.A. Bryan, O.N. Shing, H.N.P. Wyan, Influence analysis of dwell time on focused ion beam micromachining in silicon. Sens. Actuators 79, 230–234 (2000)CrossRefGoogle Scholar
  21. 21.
    H. Yang, S. Rachev, Focused Ion Beam Micro Machining and Micro Assembly. IPAS, ed. by S. Ratchev, IFIP AICT 315, 2010, pp. 81–86Google Scholar
  22. 22.
    S.S. Singh, P.K. Baruah, A. Khare, S.N. Joshi, Effect of laser beam conditioning on fabrication of clean micro-channel on stainless steel 316L using second harmonic of Q-switched Nd:YAG laser. Opt. Laser Technol. 99, 107–117 (2018)CrossRefGoogle Scholar
  23. 23.
    J. Lehr, A.-M. Kietzig, Production of homogenous micro-structures by femtosecond laser micro-machining. Opt. Laser Eng. 57, 121–129 (2014)CrossRefGoogle Scholar
  24. 24.
    S.W. Lee, H.S. Shin, C.N. Chu, Fabrication of micro-pin array with high aspect ratio on stainless steel using nanosecond laser beam machining. Appl. Surf. Sci. 264, 653–663 (2013)CrossRefGoogle Scholar
  25. 25.
    K.T. Paula, G. Gaál, G.F.B. Almeida, M.B. Andrade, M.H.M. Facure, D.S. Correa, A. Riul Jr., V. Rodrigues, C.R. Mendonça, Femtosecond laser micromachining of polylactic acid/graphene composites for designing interdigitated microelectrodes for sensor applications. Opt. Laser Technol. 101, 74–79 (2018)CrossRefGoogle Scholar
  26. 26.
    G. Petzold, P. Siebert, J. Mu¨ller. A micromachined electron beam ion source. Sens. Actuators B 67, 101–111 (2000)CrossRefGoogle Scholar
  27. 27.
    L. Wang, J. Tang, Q.-A. Huang, Gamma and electron beam irradiation effects on the resistance of micromachined polycrystalline silicon beams. Sens. Actuators A 177, 99–104 (2012)CrossRefGoogle Scholar
  28. 28.
    R. Malhotra, I. Saxena, K. Ehmann, J. Cao, Laser-induced plasma micro-machining (LIPMM) for enhanced productivity and flexibility in laser-based micro-machining processes. CIRP Ann. Manuf. Technol. 62, 211–214 (2013)CrossRefGoogle Scholar
  29. 29.
    I. Saxena, S. Wolff, J. Cao, Unidirectional magnetic field assisted laser induced plasma micro-machining. Manuf. Lett. 3, 1–4 (2015)CrossRefGoogle Scholar
  30. 30.
    G. Shang, H. Han, Recent advances in micro- and nano-machining technologies. Front. Mech. Eng. 12(1), 18–32 (2017)CrossRefGoogle Scholar
  31. 31.
    W. Wu, W. Li, F. Fang, Z.W. Xu, Micro tools fabrication by focused ion beam technology, in Handbook of Manufacturing Engineering and Technology, ed. by A. Y. C. Nee (Ed), (Springer-Verlag, London, 2015), pp. 1473–1511Google Scholar
  32. 32.
    M. Ganesh, A. Sidpara, S. Deb, Fabrication of micro-cutting tools for mechanical micro-machining, in Advanced Manufacturing Technologies, Materials Forming, Machining and Tribology, ed. by K. Gupta (Ed), (Springer International Publishing AG, Cham, 2017), pp. 3–20Google Scholar
  33. 33.
    K. Das, J.B. Freund, H.T. Johnson, Erosive-thermal transition in high-flux focused ion beam nanomachining of surfaces. Ext. Mech. Lett. 7, 121–125 (2016)CrossRefGoogle Scholar
  34. 34.
    S. Mishra, V. Yadava, Laser beam micromachining (LBMM)—a review. Opt. Laser Eng. 73, 89–122 (2015)CrossRefGoogle Scholar
  35. 35.
    T. Otani, L. Herbst, M. Heglin, S.V. Govorkov, A.O. Wiessner, Microdrilling and micromachining with diode-pumped solid-state lasers. Appl. Phys. A Mater. Sci. Process. 79, 1335–1339 (2004)CrossRefGoogle Scholar
  36. 36.
    M.S. Cheema, A. Dvivedi, A.K. Sharma, Tool wear studies in fabrication of microchannels in ultrasonic micromachining. Ultrasonics 57, 57–64 (2015)CrossRefGoogle Scholar
  37. 37.
    M.S. Cheema, P.K. Singh, O. Tyagi, A. Dvivedi, A.K. Sharma, Tool wear and form accuracy in ultrasonically machined microchannels. Measurement 81, 85–94 (2016)CrossRefGoogle Scholar
  38. 38.
    W. Pei, Z. Yu, J. Li, C. Ma, W. Xu, X. Wang, W. Natsu, Influence of abrasive particle movement in micro USM. Procedia CIRP 6, 551–555 (2013)CrossRefGoogle Scholar
  39. 39.
    Z. Yu, X. Hu, K.P. Rajurkar, Influence of debris accumulation on material removal and surface roughness in micro ultrasonic machining of silicon. Ann. CIRP 55(1), 201–204 (2006)CrossRefGoogle Scholar
  40. 40.
    K. Egashira, T. Masuzawa, Microultrasonic machining by the application of workpiece vibration. CIRP Ann. Manuf. Technol. 48(1), 131–134 (1999)CrossRefGoogle Scholar
  41. 41.
    H. Onikura, O. Ohnishi, Y. Take, Fabrication of micro carbide tools by ultrasonic vibration grinding. Ann. CIRP 49(1), 257–260 (2000)CrossRefGoogle Scholar
  42. 42.
    H. Li, J. Wang, N. Kwok, T. Nguyen, G.H. Yeoh, A study of the micro-hole geometry evolution on glass by abrasive air-jet micromachining. J. Manuf. Proc. 31, 156–161 (2018)CrossRefGoogle Scholar
  43. 43.
    H. Getu, J.K. Spelt, M. Papini, Thermal analysis of cryogenically assisted abrasive jet micromachining of PDMS. Int. J. Mach. Tool. Manuf. 51(9), 721–730 (2011)CrossRefGoogle Scholar
  44. 44.
    M.R. Sookhak Lari, A. Ghazavi, M. Papini, A rotating mask system for sculpting of three-dimensional features using abrasive jet micro-machining. J. Mat. Process. Technol. 243, 62–74 (2017)CrossRefGoogle Scholar
  45. 45.
    R.H.M. Jafar, V. Hadavi, J.K. Spelt, M. Papini, Dust reduction in abrasive jet micro-machining using liquid films. Powder Technol. 301, 1270–1274 (2016)CrossRefGoogle Scholar
  46. 46.
    A. Nouhi, M.R. Sookhak Lari, J.K. Spelt, M. Papini, Implementation of a shadow mask for direct writing in abrasive jetmicro-machining. J. Mater. Process. Technol. 223, 232–239 (2015)CrossRefGoogle Scholar
  47. 47.
    D.S. Miller, Micromachining with abrasive waterjets. J. Mater. Process. Technol. 149(1–3), 37–42 (2004)CrossRefGoogle Scholar
  48. 48.
    H.-T. Liu, Waterjet technology for machining fine features pertaining to micromachining. J. Manuf. Process. 12, 8–18 (2010)CrossRefGoogle Scholar
  49. 49.
    J. Schwartzentruber, M. Papini, Abrasive waterjet micro-piercing of borosilicate glass. J. Mater. Process. Technol. 219, 143–154 (2015)CrossRefGoogle Scholar
  50. 50.
    A. Ghobeity, M. Papini, J.K. Spelt, Computer simulation of particle interference in abrasive jet micromachining. Wear 263(1–6), 265–269 (2007)CrossRefGoogle Scholar
  51. 51.
    A. Ghobeity, D. Ciampini, M. Papini, An analytical model of the effect of particle size distribution on the surface profile evolution in abrasive jet micromachining. J. Mater. Process. Technol. 209(20), 6067–6077 (2009)CrossRefGoogle Scholar
  52. 52.
    H. Getu, A. Ghobeity, J.K. Spelt, M. Papini, Abrasive jet micromachining of polymethylmethacrylate. Wear 263(7–12), 1008–1015 (2007)CrossRefGoogle Scholar
  53. 53.
    A. Ghobeity, T. Krajac, T. Burzynski, M. Papini, J.K. Spelt, Surface evolution models in abrasive jet micromachining. Wear 264(3–4), 185–198 (2008)CrossRefGoogle Scholar
  54. 54.
    V. Tangwarodomnukun, J. Wang, C.Z. Huang, H.T. Zhu, Heating and material removal process in hybrid laser-waterjet ablation of silicon substrates. Int. J. Mach. Tool Manuf. 79, 1–16 (2014)CrossRefGoogle Scholar
  55. 55.
    W. Charee, V. Tangwarodomnukun, C. Dumkum, Ultrasonic-assisted underwater laser micromachining of silicon. J. Mater. Process. Technol. 231, 209–220 (2016)CrossRefGoogle Scholar
  56. 56.
    P. Pawar, R. Ballav, A. Kumar, Micromachining of borosilicate glass: a state of art review. Mater. Today Proceed. 4(2, Part A), 2813–2821 (2017)CrossRefGoogle Scholar
  57. 57.
    A. Schorderet, E. Deghilage, K. Agbeviade, Tool type and hole diameter influence in deep ultrasonic drilling of micro-holes in glass. Procedia CIRP 6, 565–570 (2013)CrossRefGoogle Scholar
  58. 58.
    G. Zhang, J. Guo, W. Ming, Y. Huang, X. Shao, Z. Zhang, Study of the machining process of nano-electrical discharge machining based on combined atomistic-continuum modeling method. Appl. Surf. Sci. 290, 359–367 (2014)CrossRefGoogle Scholar
  59. 59.
    M. Kunieda, A. Hayasaka, X.D. Yang, S. Sano, I. Araie, Study on nano EDM using capacity coupled pulse generator. CIRP Ann. Manuf. Technol. 56, 213–216 (2007)CrossRefGoogle Scholar
  60. 60.
    K. Egashira, Y. Morita, Y. Hattori, Electrical discharge machining of submicron holes using ultrasmall-diameter electrodes. Precis. Eng. 34, 139–144 (2010)CrossRefGoogle Scholar
  61. 61.
    A.P. Malshe, K. Virwani, K.P. Rajurkar, D. Deshpande, Investigation of nanoscale electro machining (nano-EM) in dielectric oil. CIRP Ann. Manuf. Technol. 54, 175–178 (2005)CrossRefGoogle Scholar
  62. 62.
    J.-C. Huang, C.-M. Chen, The study on the atomic force microscopy base nanoscale electrical discharge machining. Scanning 34, 191–199 (2012)CrossRefGoogle Scholar
  63. 63.
    K.R. Virwani, A.P. Malshe, K.P. Rajurkar, Understanding sub-20 nm breakdown behavior of liquid dielectrics. Phys. Rev. Lett. 99, 017601 (2007)CrossRefGoogle Scholar
  64. 64.
    K.R. Virwani, A.P. Malshe, K.P. Rajurkar, Understanding dielectric breakdown and related tool wear characteristics in nanoscale electro-machining process. CIRP Ann. Manuf. Technol. 56, 217–220 (2007)CrossRefGoogle Scholar
  65. 65.
    V.K. Jain, Magnetic field assisted abrasive based micro-/nano-finishing. J. Mater. Process. Technol. 209(20), 6022–6038 (2009)CrossRefGoogle Scholar
  66. 66.
    L. Xu, C. Zhao, Nanometer-scale accuracy electrochemical micromachining with adjustable inductance. Electrochim. Acta 248, 75–78 (2017)CrossRefGoogle Scholar
  67. 67.
    Y. Wen, F. Wang, H. Yu, P. Li, L. Liu, W.J. Li, Laser-nanomachining by microsphere induced photonic nanojet. Sens. Actuators A Phys. 258, 115–122 (2017)CrossRefGoogle Scholar
  68. 68.
    Jia Deng, Li Zhang, Jingyan Dong, Paul H. Cohen, AFM-based 3D nanofabrication using ultrasonic vibration assisted nanomachining, In J. Manuf. Process. , 24, (Part 1), 2016, 195-202Google Scholar
  69. 69.
    J. Deng, J. Dong, P. Cohen, High rate 3D nanofabrication by AFM-based ultrasonic vibration assisted nanomachining. Procedia Manuf. 5, 1283–1294 (2016)CrossRefGoogle Scholar
  70. 70.
    J. Deng, L. Zhang, J. Dong, P.H. Cohen, AFM-based 3D nanofabrication using ultrasonic vibration assisted nanomachining. Procedia Manuf. 1, 584–592 (2015)CrossRefGoogle Scholar
  71. 71.
    J. Shi, L. Liu, P. Yu, Y. Cong, G. Li, Phase shifting-based debris effect detection in USV-assisted AFM nanomachining. Appl. Surf. Sci. 413, 317–326 (2017)CrossRefGoogle Scholar
  72. 72.
    A. Rodríguez, M.C. Morant-Miñana, A. Dias-Ponte, M. Martínez-Calderón, M. Gómez-Aranzadi, S.M. Olaizola, Femtosecond laser-induced periodic surface nanostructuring of sputtered platinum thin films. Appl. Surf. Sci. 351, 135–139 (2015)CrossRefGoogle Scholar
  73. 73.
    J. Wood, Nanomachining with fast laser pulses: fabrication and processing. Mater. Today 7(7–8), 21 (2004)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Rasheedat Modupe Mahamood
    • 1
    • 2
  • Esther Titilayo Akinlabi
    • 1
  1. 1.Department of Mechanical Engineering Science, Faculty of Engineering and the Built EnvironmentUniversity of Johannesburg, Auckland Park Kingsway Campus, Auckland ParkJohannesburgSouth Africa
  2. 2.Department of Mechanical EngineeringFaculty of Engineering, University of IlorinIlorinNigeria

Personalised recommendations