Advertisement

Depressive Syndromes

  • Heinz Boeker
  • Georg Northoff
Chapter

Abstract

The self is a core dimension in depression. It is attributed to negative emotions (e.g. failure, guilt). The increased inward focus in depression is connected with a decreased environmental focus.

The development of neuropsychodynamic hypotheses of the altered self-reference is based on the investigation of the emotional-cognitive interaction in depressed patients. It may be hypothesized that the increased negative self-attributions—as typical characteristics of an increased self-focus in depression—may result from altered neuronal activity in subcortical-cortical midline structures in the brain (especially from hyperactivity in the cortical-subcortical midline regions and hypoactivity in the lateral regions).

A mechanism-based approach was developed focussing on the psychodynamic, psychological and neuronal mechanisms in healthy and depressed persons.

The increased resting state activity in depression is especially associated with an increased resting state activity in the default mode network (DMN). By means of this, changes in the complete spatiotemporal structure of the intrinsic activity of the brain and the dysbalance between default mode network and executive network (EN) are induced.

It is neither lesions nor disturbances of adaptive neuronal mechanisms which generate depressive symptoms, but rather increasingly dysfunctional mechanisms of compensation on the basis of the increased resting state activity.

Possible therapeutic consequences of the neuropsychodynamic approach to depression involve the necessary emotional attunement in psychotherapy of depressed patients and the adequate timing of therapeutic interventions The hypotheses which have been developed in the context of the neuropsychodynamic model of depression may be used for more specific psychotherapeutic interventions, aiming at specific mechanisms of compensation and defence, which are related to the increased resting state activity and the disturbed resting state-stimulus interaction.

References

  1. Adroer S. Some considerations in the structure of the self and its pathology. Int J Psychoanal. 1998;79:681–96.PubMedGoogle Scholar
  2. Alcaro A, Panksepp J, Witczak J, et al. Is subcortical-cortical midline activity in depression mediated by glutamate and GABA? A cross-species translational approach. Neurosci Biobehav Rev. 2010;34(4):592–605.PubMedCrossRefGoogle Scholar
  3. Bar KJ, Greiner W, Jochum T, et al. The influence of major depression and its treatment on heart rate variability and pupillary light reflex parameters. J Affect Disord. 2004;82(2):245–52.PubMedCrossRefGoogle Scholar
  4. Bechara A, Damasio H, Damasio AR. Emotion, decision making and the orbitofrontal cortex. Cereb Cortex. 2000;10:295–307.PubMedCrossRefGoogle Scholar
  5. Beck A. Thinking and depression. Arch Gen Psychiatry. 1962;9:36–45.Google Scholar
  6. Berman SM, McCann JT. Defense mechanisms and personality disorders: an empirical test of Millon’s theory. J Pers Assess. 1995;64(1):132–44.PubMedCrossRefGoogle Scholar
  7. Blatt SJ. Contributions of psychoanalysis to the understanding and treatment of depression. Am J Psychoanal Assoc. 1998;46:723–52.CrossRefGoogle Scholar
  8. Boeker H. Selbstbild und Objektbeziehungen bei Depressionen: Untersuchungen mit der Repertory Grid-Technik und dem Gießen-Test an 139 PatientInnen mit depressiven Erkrankungen. Monographien aus dem Gesamtgebiete der Psychiatrie. Darmstadt: Steinkopff-Springer; 1999.Google Scholar
  9. Boeker H. Depression, Manie und schizoaffektive Psychosen. Psychodynamische Theorien, einzelfallorientierte Forschung und Psychotherapie. Giessen: Psychosozial Verlag; 2000.Google Scholar
  10. Boeker H. Depression, Manie und schizoaffektive Psychosen: psychodynamische Theorien, einzelfallorientierte Forschung und Psychotherapie. Giessen: Psychosozial-Verlag; 2001.Google Scholar
  11. Boeker H. Depressionen: psychosomatische Erkrankungen des Gehirns? In: Boeker H, Hell D, editors. Therapie der affektiven Störungen. Psychosoziale und neurobiologische Perspektiven. Stuttgart: Schattauer; 2002. p. 183–205.Google Scholar
  12. Boeker H. Sind Depressionen psychosomatische Erkrankungen? Vierteljahresschr Naturforsch Ges Zürich. 2003a;148:1–16.Google Scholar
  13. Boeker H. Symbolisierungsstörungen bei schweren Depressionen: Zur Bedeutung psychosomatischer Circuli vitiosi bei depressiv Erkrankten. In: Lahme-Gronostaj H, editor. Symbolisierung und ihre Störungen. Frankfurt: Deutsche Psychoanalytische Vereinigung; 2003b. p. 149–64.Google Scholar
  14. Boeker H. Persons with depression, mania and schizoaffective Psychosis – investigations of cognitive complexity, self-esteem, social perception and object relations by means of the Repertory Grid-Technique. In: Klapp BF, et al., editors. Role repertory grid and body grid – Construct psychological approaches in psychosomatic research. Frankfurt: VAS – Verlag für Akademische Schriften, Reihe Klinische Psycholinguistik; 2004. p. S3–20.Google Scholar
  15. Boeker H. Melancholie, Depression und affektive Störungen: Zur Entwicklung der psychoanalytischen Depressionsmodelle und deren Rezeption in der Klinischen Psychiatrie. In: Boeker H, editor. Psychoanalyse und Psychiatrie – Historische Entwicklung, Krankheitsmodelle und therapeutische Praxis. Berlin: Springer; 2005. p. 115–58.Google Scholar
  16. Boeker H. Selbst und Körper in der Depression: Herausforderungen an die Therapie. Schweiz Arch Neurol Psychiatr. 2009;160(5):188–99.CrossRefGoogle Scholar
  17. Boeker H, Grimm S. Emotion und Kognition bei depressiv Erkrankten. In: Boeker H, Seifritz E, editors. Psychotherapie und Neurowissenschaften. Integration – Kritik – Zukunftsaussichten. Bern: Verlag Hans Huber; 2012. p. 309–51.Google Scholar
  18. Boeker H, Northoff G. Desymbolisierung in der schweren Depression und das Problem der Hemmung: Ein neuropsychoanalytisches Modell der Störung des emotionalen Selbstbezuges Depressiver. Psyche – Z Psychoanal. 2005;59:964–89.Google Scholar
  19. Boeker H, Northoff G. Die Entkopplung des Selbst in der Depression: empirische Befunde und neuropsychodynamische Hypothesen. Psyche – Z Psychoanal. 2010;64:934–76.Google Scholar
  20. Boeker H, Northoff G, Lenz C, et al. Die Rekonstruktion der Sprachlosigkeit: Untersuchungen des subjektiven Erlebens ehemals katatoner PatientInnen mittels modifizierter Landfield-Kategorien. Psychiatr Prax. 2000a;27:389–96.Google Scholar
  21. Boeker H, von Schmeling C, Lenz C, et al. Subjective experience of catatonia: construct-analytical findings by means of modified Landfield categories. In: Scheer JW, editor. The person in society: challenges to a constructivist theory. Giessen: Psychosozial-Verlag; 2000b. p. S303–16.Google Scholar
  22. Boeker H, Hell D, Budischewski K, et al. Personality and object relations in patients with affective disorders: idiographic research by means of the repertory grid-technique. J Affect Disord. 2000c;60:53–60.CrossRefGoogle Scholar
  23. Boeker H, Schulze J, Richter A, Nikisch G, Schuepbach D, Grimm S. Sustained cognitive impairments after clinical recovery of severe depression. J Nerv Ment Dis. 2012;200(9):773–6.PubMedCrossRefGoogle Scholar
  24. Boeker H, Richter A, Himmighoffen H, et al. Essentials of psychoanalytic process and change: how can we investigate the neural effects of psychodynamic psychotherapy in individualised neuro-imaging? Front Hum Neurosci. 2013;7:355.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Brenner C. A psychoanalytic perspective on depression. J Am Psychoanal Assoc. 1991;39(1):25–43.PubMedCrossRefGoogle Scholar
  26. Brody A, Saxena S, Silverman D, et al. Brain metabolic changes in major depressive disorder from pre- to posttreatment with paroxetine. Psychiatry Res Neuroimaging. 1999;91:127–39.CrossRefGoogle Scholar
  27. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1–38.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Canli T, Sivers H, Thomason ME, et al. Brain activation to emotional words in depressed vs healthy subjects. Neuroreport. 2004;15:2585–8.PubMedCrossRefGoogle Scholar
  29. Carhart-Harris RL, Mayberg HS, Malizia AL, et al. Mourning and melancholia revisited: correspondences between principles of Freudian metapsychology and empirical findings in neuropsychiatry. Ann General Psychiatry. 2008;24:7–9.Google Scholar
  30. Carhart-Harris RL, Friston KJ. The default-mode, ego-function and free energy: a neurobiological account of Freudian ideas. Brain. 2010;133:1265–83.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Coyne JC. Depression and response of others. J Abnorm Psychol. 1976a;85:186–93.PubMedCrossRefGoogle Scholar
  32. Coyne JC. Toward an interactional description of depression. Psychiatry. 1976b;39:28–40.PubMedCrossRefGoogle Scholar
  33. Coyne JC. Studying depressed persons’ interactions with strangers and spouses. J Abnorm Psychol. 1985;94(2):231–2.PubMedCrossRefGoogle Scholar
  34. Coyne JC, Kessler RC, Tal M, et al. Living with a depressed person. J Consult Clin Psychol. 1987;55(3):347–52.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Damasio AR. How the brain creates the mind. Sci Am. 1999;281(6):112–7.CrossRefGoogle Scholar
  36. Davidson RJ. Anxiety and affective style: role of prefrontal cortex and amygdala. Biol Psychiatry. 2002;51(1):68–80.PubMedCrossRefGoogle Scholar
  37. Davidson RJ, Irwin W, Anderle MJ, Kalin NH. The neural substrates of affective processing in depressed patients treated with venlafaxine. Am J Psychiatry. 2003;160:64–75.PubMedCrossRefGoogle Scholar
  38. Deci EL, Eghrari H, Patrick BC, et al. Facilitating internalization: the self-determination theory perspective. J Pers. 1994;62(1):119–42.PubMedCrossRefGoogle Scholar
  39. Deckersbach T, Gershumy B, Otto M. Cognitive-behavioral therapy for depression. Psychiatr Clin North Am. 2000;23(4):795–809.PubMedCrossRefGoogle Scholar
  40. Dennecker FW. Das Selbst-system. Psyche. 1989;43:577–608.Google Scholar
  41. Dichter GS, Felder JN, Petty C, et al. The effects of psychotherapy on neural responses to rewards in major depression. Biol Psychiatry. 2009;66:886–97.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Drevets W. Neuroimaging studies of mood disorders. Biol Psychiatry. 2000;48:813–29.PubMedCrossRefGoogle Scholar
  43. Drevets W. Neuroimaging and neuropathological studies of depression. Curr Opin Neurobiol. 2001;11:240–9.PubMedCrossRefGoogle Scholar
  44. Drevets W, Raichle M. Reciprocal suppression of rCBF during emotional versus higher cognitive processes. Cognit Emot. 1998;12(3):353–835.CrossRefGoogle Scholar
  45. Drevets WC, Price JL, Furey ML. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct. 2008;213(1-2):93–118.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Elliott R, Sahakian BJ, Michael A, et al. Abnormal neural response to feedback on planning and guessing tasks in patients with unipolar depression. Psychol Med. 1998;28:559–71.PubMedCrossRefGoogle Scholar
  47. Elliott R, Rubinzstein JS, Sahakian BJ, et al. Selective attention to emotional stimuli in a verbal go/no-go task: an fMRI study. NeuroReport. 2000;11:1739–44.PubMedCrossRefGoogle Scholar
  48. Elliott R, Rubinsztein JS, Sahakian BJ, et al. The neural basis of mood-congruent processing biases in depression. Arch Gen Psychiatry. 2002;59(7):597–604.PubMedCrossRefGoogle Scholar
  49. Ernst J, Northoff G, Boeker H, et al. Interoceptive awareness enhances neural activity during empathy. Hum Brain Mapp. 2013;34:1615–24.PubMedCrossRefGoogle Scholar
  50. Ernst J, Boeker H, Hättenschwiler J, et al. The association of interoceptive awareness and alexithymia with neurotransmitter concentrations in insula and anterior cingulate. Soc Cogn Affect Neurosci. 2014;9:857–63.PubMedCrossRefGoogle Scholar
  51. Feder A, Nestler EJ, Charney DS. Psychobiology and molecular genetics of resilience. Net Rev Neurosci. 2009;10(6):446–57.CrossRefGoogle Scholar
  52. Feinberg TE. Neuropathologies of the self: clinical and anatomical features. Conscious Cogn. 2011;20:75–81.PubMedCrossRefGoogle Scholar
  53. Fitzgerald PB, Sritharan A, Daskalakis ZJ, et al. A functional magnetic resonance imaging study of the effects of low frequency right prefrontal transcranial magnetic stimulation in depression. J Clin Psychopharmacol. 2007;27:488–92.PubMedCrossRefGoogle Scholar
  54. Freud S. Zur Einführung des Narzissmus. GW 10. 1914.Google Scholar
  55. Freud S. Mourning and melancholia. SE XIV; 1917. pp. 239–60.Google Scholar
  56. Friston KJ. Imaging neuroscience: principles or maps? Proc Natl Acad Sci U S A. 1998;95(3):796–802.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Friston K. Learning and inference in the brain. Neural Netw. 2003;16(9):1325–52.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Friston KJ, Penny W. Posterior probability maps and SPMs. NeuroImage. 2003;19(3):1240–9.PubMedCrossRefGoogle Scholar
  59. Friston KJ, Price CJ. Dynamic representations and generative models of brain function. Brain Res Bull. 2001;54(3):275–85.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Friston KJ, Price CJ. Degeneracy and redundancy in cognitive anatomy. Trends Cogn Sci. 2003;7(4):151–2.PubMedCrossRefGoogle Scholar
  61. Friston KJ, Fletcher P, Josephs O, et al. Event-related fMRI: characterizing differential responses. NeuroImage. 1998a;7(1):30–40.PubMedCrossRefGoogle Scholar
  62. Friston KJ, Josephs O, Rees G, et al. Nonlinear event-related responses in fMRI. Magn Reson Med. 1998b;39(1):41–52.PubMedCrossRefGoogle Scholar
  63. Friston KJ, Harrison L, Penny W. Dynamic causal modelling. NeuroImage. 2003;19(4):1273–302.PubMedCrossRefGoogle Scholar
  64. Fu CHY, Williams SCR, Cleare AJ, et al. Attenuation of the neural response to sad faces in major depression by antidepressant treatment: a prospective, event-related functional magnetic resonance imaging study. Arch Gen Psychiatry. 2004;61:877–89.PubMedCrossRefGoogle Scholar
  65. Gabbard G. Psychodynamic psychiatry in clinical practice. Arlington: American Psychiatric Press; 2005.Google Scholar
  66. Gabbard GO. Psychodynamic psychiatry in clinical practice. 5th ed. Washington DC: American Psychiatric Publishing; 2014.Google Scholar
  67. Garcia R, Voulmba R, Baudry M, et al. The amygdala modulates prefrontal cortex activity relative to conditioned fear. Nature. 1999;402:294–6.PubMedCrossRefGoogle Scholar
  68. Gevins A, Smith M, Le J, et al. High resolution evoked potential imaging of the cortical dynamics of human working memory. Electroencephalogr Clin Neurophysiol. 1996;98:327–48.PubMedCrossRefGoogle Scholar
  69. Gevins A, Smith M, McEvoy L, et al. High resolution EEG mapping of cortical activation related to working memory. Cereb Cortex. 1997;7:374–85.PubMedCrossRefGoogle Scholar
  70. Goel V, Dolan RJ. Explaining modulation of reasoning by belief. Cognition. 2003a;87(1):11–22.CrossRefGoogle Scholar
  71. Goel V, Dolan RJ. Reciprocal neural response within lateral and ventral medial prefrontal cortex during hot and cold reasoning. NeuroImage. 2003b;20(4):2314–21.PubMedCrossRefGoogle Scholar
  72. Gotlib IH, Krasnoperova E, Yue DN, et al. Attentional biases for negative interpersonal stimuli in clinical depression. J Abnorm Psychol. 2004;113(1):121–35.PubMedCrossRefGoogle Scholar
  73. Greicius MD, Krasnow B, Reiss AL, et al. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A. 2003;100(1):253–8.PubMedCrossRefGoogle Scholar
  74. Greicius MD, Flores BH, Menon V, et al. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry. 2007;62:429–37.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Grimm S, Schmidt CF, Bermpohl F, et al. Segregated neural representation of distinct emotion dimensions in the prefrontal cortex – an fMRI study. NeuroImage. 2006;30(1):325–40.CrossRefGoogle Scholar
  76. Grimm S, Beck J, Schüpbach D, et al. Imbalance between left and right dorsolateral prefrontal cortex in major depression is linked to negative emotional judgment. An fMRI study in severe major depressive disorder. Biol Psychiatry. 2008;63:369–76.PubMedCrossRefGoogle Scholar
  77. Grimm S, Ernst J, Boesiger P, et al. Increased self-focus in major depressive disorder is related to neural abnormalities in subcortical midline structures. Hum Brain Mapp. 2009;30(8):2617–27.PubMedCrossRefGoogle Scholar
  78. Guinjoan SM, Bernabo JL, Cardinali DP. Cardiovascular tests of autonomic function and sympathetic skin responses in patients with major depression. J Neurol Neurosurg Psychiatry. 1995;59(3):299–302.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Gusnard DA, Raichle ME. Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci. 2001;2(10):685–94.PubMedCrossRefGoogle Scholar
  80. Gusnard DA, Akbudak E, Shulman GL, et al. Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci U S A. 2001;98(7):4259–64.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Gut E. Productive and unproductive depression. London: Tavistock and Routledge; 1989.Google Scholar
  82. Heinzel A, Grimm S, Beck J, et al. Segregated neural representation of psychological and somatic-vegetative symptoms in severe major depression. Neurosci Lett. 2009;456(2):49–53.PubMedCrossRefGoogle Scholar
  83. Heller AS, Johnstone T, Shackman AJ, et al. Reduced capacity to sustain positive emotion in major depression reflects diminished maintenance of fronto-striatal brain activation. Proc Natl Acad Sci U S A. 2009;106(52):22445–50.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Holsboer-Trachsler E, Vanoni C. Depression in der Praxis. 3rd ed. Wessobrunn: Sozio-medico Verlag; 2007.Google Scholar
  85. Ingram RE. Self-focused attention in clinical disorders: review and a conceptual model. Psychol Bull. 1990;107(2):156–76.PubMedCrossRefGoogle Scholar
  86. Inoue Y, Tonooka Y, Yamada K, et al. Deficiency of theory of mind in patients with remitted mood disorder. J Affect Disord. 2004;82(3):403–9.PubMedGoogle Scholar
  87. Jacobson E. Depression. Comparative studies of normal, neurotic and psychotic conditions. New York: New Intern Universities Press; 1971.Google Scholar
  88. Keedwell PA, Andrew C, Williams SCR, et al. The neural correlates of anhedonia in major depressive disorder. Biol Psychiatry. 2005;58:843–53.PubMedCrossRefGoogle Scholar
  89. Kerr N, Dunbar RI, Bentall RP. Theory of mind deficits in bipolar affective disorder. J Affect Disord. 2003;73(3):253–9.PubMedCrossRefGoogle Scholar
  90. Kohut H. The restoration of the self. International Universities Press, New York; 1977. Deutsch (1979) Die Heilung des Selbst. Frankfurt: Suhrkamp.Google Scholar
  91. Kratzsch S. Depressionen: Erleben und Selbst in der depressiven Erkrankung. In: Milch W, editor. Lehrbuch der Selbstpsychologie. Stuttgart: Kohlhammer; 2001. p. 191–213.Google Scholar
  92. Kumar P, Waiter G, Ahearn T, et al. Abnormal temporal difference reward-learning signals in major depression. Brain. 2008;131:2084–93.PubMedCrossRefGoogle Scholar
  93. Kumari V, Mitterschiffthaler MT, Teasdale JD, et al. Neural abnormalities during cognitive generation of affect in treatment-resistant depression. Biol Psychiatry. 2003;54:777–91.PubMedCrossRefGoogle Scholar
  94. Lamme VA. Blindsight: the role of feedforward and feedback corticocortical connections. Acta Psychol. 2001;107(1-3):209–28.CrossRefGoogle Scholar
  95. Lamme VA. Separate neural definitions of visual consciousness and visual attention; a case for phenomenal awareness. Neural Netw. 2004;17(5-6):861–72.PubMedCrossRefGoogle Scholar
  96. Lawrence NS, Williams AM, Surguladze S, et al. Subcortical and ventral prefrontal cortical neural responses to facial expressions distinguish patients with bipolar disorder and major depression. Biol Psychiatry. 2004;55:578–87.PubMedCrossRefGoogle Scholar
  97. Lichtenberg JD. Psychoanalysis and infant research. Hillsdale: The Analytic Press; 1983.Google Scholar
  98. Liotti M, Mayberg H. The role of functional neuroimaging in the neuropsychology of depression. J Clin Exp Neuropsychol. 2001;23:121–36.PubMedCrossRefGoogle Scholar
  99. Liotti M, Mayberg HS, McGinnis S, et al. Unmasking disease-specific cerebral blood flow abnormalities: mood challenge in patients with remitted unipolar depression. Am J Psychiatry. 2002;159(11):1830–40.PubMedCrossRefGoogle Scholar
  100. Malancharuvil JM. Projection, introjection, and projective identification: a reformulation. Am J Psychoanal. 2004;64(4):375–82.PubMedCrossRefGoogle Scholar
  101. Masterman DL, Cummings JL. Frontal-subcortical circuits: the anatomic basis of executive, social and motivated behaviors. J Psychopharmacol. 1997;11(2):107–14.PubMedCrossRefGoogle Scholar
  102. Mayberg H. Depression, II: localization of pathophysiology. Am J Psychiatry. 2002;159:1979.PubMedCrossRefGoogle Scholar
  103. Mayberg HS. Modulating dysfunctional limbic-cortical circuits in depression: towards development of brain-based algorithms for diagnosis and optimised treatment. Br Med Bull. 2003a;65:193–207.PubMedCrossRefGoogle Scholar
  104. Mayberg HS. Positron emission tomography imaging in depression: a neural systems perspective. Neuroimaging Clin N Am. 2003b;13:805–15.PubMedCrossRefGoogle Scholar
  105. Mayberg HS, Liotti M, Brannan SK, et al. Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry. 1999;156:675–82.PubMedPubMedCentralGoogle Scholar
  106. Mazoyer B, Zago L, Mellet E, et al. Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res Bull. 2001;54(3):287–98.PubMedCrossRefGoogle Scholar
  107. McGinn L. Cognitive-behavioral therapy for depression. Am J Psychother. 2000;54:257–62.PubMedCrossRefGoogle Scholar
  108. Mentzos S. Depression und Manie; Psychodynamik und Psychotherapie affektiver Störungen. Zürich: Vandenhoeck und Ruprecht; 1995.Google Scholar
  109. Mentzos S. Lehrbuch der Psychodynamik. 5th ed. Göttingen: Vandenhoeck & Ruprecht; 2009.Google Scholar
  110. Miller A. Zeitkurven. Ein Leben. Frankfurt: Fischer; 1987. Englisch: Timebends. New York: Grove Press.Google Scholar
  111. Murphy FC, Sahakian JS, Rubinsztein A, et al. Emotional bias and inhibitory control processes in mania and depression. Psychol Med. 1999;29:1307–21.PubMedCrossRefGoogle Scholar
  112. Murphy FC, Rubinzstein JS, Michael A, et al. Decision-making cognition in mania and depression. Psychol Med. 2001;31:679–93.PubMedCrossRefGoogle Scholar
  113. Murphy FC, Nimmo-Smith I, Lawrence AD. Functional neuroanatomy of emotions: a meta-analysis. Cogn Affect Behav Neurosci. 2003;3(3):207–33.PubMedCrossRefGoogle Scholar
  114. Nagai Y, Critchley HD, Featherstone E, et al. Activity in ventromedial prefrontal cortex covaries with sympathetic skin conductance level: a physiological account of a “default mode” of brain function. NeuroImage. 2004;22(1):243–51.PubMedCrossRefGoogle Scholar
  115. Nemeroff CB, Heim CM, Thase ME, et al. Differential responses to psychotherapy versus pharmacotherapy in patients with chronic forms of major depression and childhood trauma. PNAS. 2003;100:14293–6.PubMedCrossRefGoogle Scholar
  116. Northoff G. Das Gehirn: Eine neurophilosophische Bestandesaufnahme. Paderborn: Mentes-Verlag; 2000.Google Scholar
  117. Northoff G. Catatonia and neuroleptic malignant syndrome: psychopathology and pathophysiology. J Neural Transm. 2002a;109(12):1453–67.PubMedCrossRefGoogle Scholar
  118. Northoff G. What catatonia can tell us about “top-down” modulation: a neuropsychiatric hypothesis. Behav Brain Sci. 2002b;25(5):555–77. discussion 578–604PubMedGoogle Scholar
  119. Northoff G. Philosophy of the brain. The brain problem. Amsterdam: John Benjamin Publishing; 2004.CrossRefGoogle Scholar
  120. Northoff G. Unlocking the brain. Volume 2: consciousness. Oxford: Oxford University Press; 2013.CrossRefGoogle Scholar
  121. Northoff G, Bermpohl F. Cortical midline structures and the self. Trends Cogn Sci. 2004;8(3):102–7.CrossRefGoogle Scholar
  122. Northoff G, Boeker H. Principles of neuronal integration and defense mechanisms: neuropsychoanalytic hypothesis. Neuropsychoanalysis. 2006;8(1):69–84.CrossRefGoogle Scholar
  123. Northoff G, Eckert J, Fritze J. Glutamatergic dysfunction in catatonia? Successful treatment of three acute akinetic catatonic patients with the NMDA antagonist amantadine. J Neurol Neurosurg Psychiatry. 1997;62:404–6.PubMedPubMedCentralCrossRefGoogle Scholar
  124. Northoff G, Richter A, Gessner M, et al. Functional dissociation between medial and lateral spatiotemporal activation in negative and positive emotions: a combined FMRI/MEG study. Cereb Cortex. 2000;10:93–107.PubMedCrossRefGoogle Scholar
  125. Northoff G, Bogerts B, Baumgart F, et al. Orbitofrontal cortical dysfunction and “sensori-motor regression”: a combined study of fMRI and personal constructs in catatonia. Neuro-psychoanalysis. 2002;4:149–75.Google Scholar
  126. Northoff G, et al. Emotional-behavioral disturbances in catatonia: a combined study of psychological self-evaluation and fMRI. Neuropsychoanalysis. 2003;3:151–67.Google Scholar
  127. Northoff G, Heinzel A, Bermpohl F, et al. Reciprocal modulation and attenuation in the prefrontal cortex: an fMRI study on emotional-cognitive interaction. Hum Brain Mapp. 2004;21(3):202–12.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Northoff G, Richter A, Bermpohl F, et al. NMDA hypofunction in the posterior cingulate as a model for schizophrenia: an exploratory ketamine administration study in fMRI. Schizophr Res. 2005;72(2-3):235–48.PubMedCrossRefGoogle Scholar
  129. Northoff G, Walter M, Schulte RF, et al. Gaba concentrations in the human anterior cingulate cortex predict negative BOLD responses in fMRI. Nat Neurosci. 2007;10(12):1515–7.PubMedCrossRefGoogle Scholar
  130. Panksepp J. Affective neuroscience: the foundations of human and animal emotions. New York: Oxford University Press; 1998a.Google Scholar
  131. Panksepp J. The periconscious substrates of consciousness: affective states and the evolutionary origins of the self. J Conscious Stud. 1998b;5(5-6):566–82.Google Scholar
  132. Paradiso S, Lamberty G, Garvey M, et al. Cognitive impairment in the euthymic phase of chronic unipolar depression. J Nerv Ment Dis. 1997;185(12):748–54.PubMedCrossRefGoogle Scholar
  133. Pascual-Leone A, Catala M, Pascual-Leone Pascual A. Lateralized effect of rapid rate transcranial magnetic stimulation of the prefrontal cortex on mood. Neurology. 1996;46:499–502.PubMedCrossRefGoogle Scholar
  134. Paulus M, Hozack N, Zauschner B, et al. Prefrontal, parietal, and temporal cortex networks underlie decision-making in the presence of uncertainty. NeuroImage. 2001;13:91–100.PubMedCrossRefGoogle Scholar
  135. Pelosi L, Slade T, Blumhardt LD, et al. Working memory dysfunction in depression: an event-related potential study. Clin Neurophysiol. 2000;111:1531–43.PubMedCrossRefGoogle Scholar
  136. Pessoa L, Ungerleider LG. Neuroimaging studies of attention and the processing of emotion-laden stimuli. Prog Brain Res. 2004;144:171–82.PubMedCrossRefGoogle Scholar
  137. Pessoa L, McKenna M, Gutierrez E, et al. Neural processing of emotional faces requires attention. Proc Natl Acad Sci U S A. 2002;99(17):11458–163.PubMedPubMedCentralCrossRefGoogle Scholar
  138. Phan KL, Wager T, Taylor SF, et al. Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. NeuroImage. 2002;16(2):331–48.PubMedCrossRefGoogle Scholar
  139. Phillips ML, Drevets WC, Rauch SL, et al. Neurobiology of emotion perception II: implications for major psychiatric disorders. Biol Psychiatry. 2003;54:515–28.PubMedCrossRefGoogle Scholar
  140. Pizzagalli DA, Holmes AJ, Dillon DG, et al. Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder. Am J Psychiatry. 2009;166(6):702–10.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Post RM. Transduction of psychosocial stress into the neural biology of recurrent affective disorder. Am J Psychiatry. 1992;149:99–1010.Google Scholar
  142. Price JL, Drevets WC. Neurocircuitry of mood disorders. Neuropsychopharmacology. 2010;35(1):192–216.PubMedCrossRefGoogle Scholar
  143. Price CJ, Friston KJ. Degeneracy and cognitive anatomy. Trends Cogn Sci. 2002;6(10):416–21.PubMedCrossRefGoogle Scholar
  144. Qin P, Northoff G. How is our self related to midline regions and the default-mode network? NeuroImage. 2011;57:1221–33.PubMedCrossRefGoogle Scholar
  145. Raichle ME. Cognitive neuroscience. Bold insights. Nature. 2001;412(6843):128–30.PubMedCrossRefGoogle Scholar
  146. Raichle ME. Functional brain imaging and human brain function. J Neurosci. 2003;23(10):3959–62.PubMedCrossRefGoogle Scholar
  147. Raichle ME, MacLeod AM, Snyder AZ, et al. A default mode of brain function. Proc Natl Acad Sci U S A. 2001;98(2):676–82.PubMedPubMedCentralCrossRefGoogle Scholar
  148. Rajkowska G. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry. 1999;45:1085–98.PubMedCrossRefGoogle Scholar
  149. Rajkowska G. Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol Psychiatry. 2000;48:766–77.PubMedCrossRefGoogle Scholar
  150. Rauch S, Whalen P, Sin L, et al. Exaggerated amygdala response to masked facial stimuli in posttraumatic stress disorder: a functional MRI study. Biol Psychiatry. 2000;47:769–76.PubMedCrossRefGoogle Scholar
  151. Rimes KA, Watkins E. The effects of self-focused rumination on global negative self-judgments in depression. Behav Res Ther. 2005;43:1673–81.PubMedCrossRefGoogle Scholar
  152. Rogers R, Oweb A, Williams E, et al. Choosing between small, likely rewards and large, unlikely rewards activates inferior and orbital prefrontal cortex. J Neurosci. 1999;20(19):9029–38.CrossRefGoogle Scholar
  153. Sajonz B, Kahnt T, Margulies DS, et al. Delineating self-referential processing from episodic memory retrieval: common and dissociable networks. NeuroImage. 2010;50(4):1606–17.PubMedCrossRefGoogle Scholar
  154. Salvadore G, Cornwell BR, Colon-Rosario V, et al. Increased anterior cingulate cortical activity in response to fearful faces: a neurophysiological biomarker that predicts rapid antidepressant response to ketamine. Biol Psychiatry. 2009;65:289–95.PubMedCrossRefPubMedCentralGoogle Scholar
  155. Sanacora G. Cortical inhibition, gamma-aminobutyric acid, and major depression: there is plenty of smoke but is there fire? Biol Psychiatry. 2010;67:397–8.PubMedCrossRefPubMedCentralGoogle Scholar
  156. Sarazin M, Pillon B, Giannakopoulos P, et al. Clinicometabolic dissociation of cognitive functions and social behavior in frontal lobe lesions. Neurology. 1998;51(1):142–8.PubMedCrossRefGoogle Scholar
  157. Schutter D, Honk J, Postma A, et al. Effects of slow rTMS at the right DLPFC on EEG asymmetry and mood. Neuroreport. 2001;12:445–7.PubMedCrossRefGoogle Scholar
  158. Segal H. Bemerkungen zur Symbolbildung. In: Both-Spillius E, editor. Melanie Klein heute (Bd 1). München: Verlag Internat Psychoanalyse; 1956.Google Scholar
  159. Sheline YI, Barch DM, Price JL, et al. The default mode network and self-referential processes in depression. Proc Natl Acad Sci U S A. 2009;106(6):1942–7.PubMedPubMedCentralCrossRefGoogle Scholar
  160. Sheppard LC. How does dysfunctional thinking decrease during recovery from major depression? J Abnorm Psychol. 2004;113(1):64–71.PubMedCrossRefGoogle Scholar
  161. Shin LM, et al. A functional magnetic resonance imaging study of amygdala and medial prefrontal cortex responses to overtly presented fearful faces in posttraumatic stress disorder. Arch Gen Psychiatry. 2005;62(3):273–81.PubMedCrossRefGoogle Scholar
  162. Smoski MJ, Felder J, Bizzell J, et al. fMRI of alterations in reward selection, anticipation, and feedback in major depressive disorder. J Affect Disord. 2009;118(1-3):69–78.PubMedPubMedCentralCrossRefGoogle Scholar
  163. Stern DN. The interpersonal world of the infant. New York: Basic Books; 1985. Deutsch. Die Lebenserfahrung des Säuglings. Stuttgart: Klett-Cotta; 1992.Google Scholar
  164. Stern C, Owen A, Tracey I, et al. Activity in ventrolateral and mid-dorsolateral prefrontal cortex during nonspatial working memory. NeuroImage. 2000;11:392–9.PubMedCrossRefGoogle Scholar
  165. Surguladze SA, Young AW, Senior C, et al. Recognition accuracy and response bias to happy and sad facial expressions in patients with major depression. Neuropsychology. 2005;18:212–8.CrossRefGoogle Scholar
  166. Tang T, DeRubeis R. Sudden gains and critical sessions in cognitive-behavioral therapy for depression. J Consult Clin Psychol. 1999;67:894–904.PubMedCrossRefGoogle Scholar
  167. Tononi G, Edelman GM. Schizophrenia and the mechanisms of conscious integration. Brain Res Rev. 2000;31(2-3):391–400.PubMedCrossRefGoogle Scholar
  168. Tormos J, Canete C, Tarazona F, et al. Lateralized effects of self-induced sadness and happiness on corticospinal excitability. Neurology. 1997;49:487–91.PubMedCrossRefGoogle Scholar
  169. Treynor W, Gonzalez R, Nolen-Hoeksema S. Rumination reconsidered: a psychometric analysis. Cogn Ther Res. 2003;27:247–59.CrossRefGoogle Scholar
  170. Walter M, Henning A, Grimm S, et al. The relationship between aberrant neuronal activation in the pregenual anterior cingulate, altered glutamatergic metabolism and anhedonia in major depression. Arch Gen Psychiatry. 2009;66(5):478–86.PubMedCrossRefGoogle Scholar
  171. Wicker B, Keysers C, Plailly J, et al. Both of us disgusted in My insula: the common neural basis of seeing and feeling disgust. Neuron. 2003a;40(3):655–64.PubMedCrossRefGoogle Scholar
  172. Wicker B, Perrett DI, Baron-Cohen S, et al. Being the target of another’s emotion: a PET study. Neuropsychologia. 2003b;41(2):139–46.PubMedCrossRefGoogle Scholar
  173. Wicker B, Ruby P, Royet J-P, et al. A relation between rest and the self in the brain? Brain Res Rev. 2003c;43(2):224–30.PubMedCrossRefGoogle Scholar
  174. Wiebking C, Bauer A, de Greck M, et al. Abnormal body perception and neural activity in the insula in depression: an fMRI study of the depressed material me. World J Biol Psychiatry. 2010;11(3):538–49.PubMedCrossRefGoogle Scholar
  175. Wiesel TN. Genetics and behaviour. Science. 1994;264:16–47.CrossRefGoogle Scholar
  176. Zarate CA Jr, Singh JB, Carlson PJ, et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry. 2006;63:856–64.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Psychiatry, Psychotherapy, and PsychosomaticsPsychiatric University Hospital Zurich, University of ZurichZurichSwitzerland
  2. 2.Mind, Brain Imaging, and Neuroethics, Institute of Mental Health ResearchUniversity of OttawaOttawaCanada

Personalised recommendations