Obesity and Osteoporosis: Is the Paradigm Changing?

  • Emanuela A. Greco
  • Rachele Fornari
  • Andrea Lenzi
  • Silvia Migliaccio


During the last decades, obesity and osteoporosis have become important global health problems, and the belief that obesity is protective against osteoporosis has recently come into question. In fact, the latest epidemiologic and clinical studies have shown that a high level of fat mass might be a risk factor for osteoporosis and fragility fractures, and several potential mechanisms have been proposed to explain the complex relationship between the adipose tissue and bone. This chapter considers recent data in the literature to further evaluate the relationship between fat and bone tissue.


Obesity Osteoporosis Fat mass Bone MSCs Bone remodeling 


  1. 1.
    Kado DM, Huang MH, Karlamangla AS, Barrett-Connor E, Greendale GA. Hyperkyphotic posture predicts mortality in older community-dwelling men and women: a prospective study. J Am Geriatr Soc. 2004;52:1662–7.CrossRefPubMedGoogle Scholar
  2. 2.
    Rossner S. Obesity: the disease of the twenty-first century. Int J Obes Relat Metab Disord. 2002;26(Suppl 4):S2–4.CrossRefPubMedGoogle Scholar
  3. 3.
    Hu FB. Overweight and obesity in women: health risks and consequences. J Women Health (Larchmt). 2003;12(2):163–72.CrossRefGoogle Scholar
  4. 4.
    Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser. 2000;894:1–253.Google Scholar
  5. 5.
    Greco EA, Fornari R, Rossi F, Santiemma V, Prossomariti G, Annoscia C, Aversa A, Brama M, Marini M, Donini LM, Spera G, Lenzi A, Lubrano C, Migliaccio S. Is obesity protective for osteoporosis? Evaluation of bone mineral density in individuals with high body mass index. Int J Clin Pract. 2010;64(6):817–20.CrossRefPubMedGoogle Scholar
  6. 6.
    Kim KC, Shin DH, Lee SY, Im JA, Lee DC. Relation between obesity and bone mineral density and vertebral fractures in Korean postmenopausal women. Yonsei Med J. 2010;51(6):857–63.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Greco EA, Francomano D, Fornari R, Marocco C, Lubrano C, Papa V, Wannenes F, Di Luigi L, Donini LM, Lenzi A, Aversa A, Migliaccio S. Negative association between trunk fat, insulin resistance and skeleton in obese women. World J Diabetes. 2013;4(2):31–9.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Compston JE, Flahive J, Hosmer DV, Watts NB, Siris ES, Silverman S, Saag KG, Roux C, Rossini M, Pfeilschiffer J, Nieves JW, Netelenbos JC, March L, LaCroix AZ, Hooven FH, Greenspan SL, Gehlbach SH, Diez-Perez A, Cooper C, Chapurlat RD, Boonen S, Anderson FA Jr, Adami S, Adachi JD, GLOW Investigators. Relationship of weight, height, and body mass index with fracture risk at different sites in postmenopausal women: the Global Longitudinal study of Osteoporosis in Women (GLOW). J Bone Miner Res. 2014;29(2):487–93.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev. 2005;26:439–51.CrossRefPubMedGoogle Scholar
  10. 10.
    Steppan CM, Crawford DT, Chidsey-Frink KL, Ke H, Swick AG. Leptin is a potent stimulator of bone growth in ob/ob mice. Regul Pept. 2000;92:73–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Vendrell J, Broch M, Vilarrasa N, Molina A, Gomez JM, Gutierrez C, Simon I, Soler J, Richart C. Resistin, adiponectin, ghrelin, leptin, and proinflammatory cytokines: relationships in obesity. Obes Res. 2004;12:962–71.CrossRefPubMedGoogle Scholar
  12. 12.
    Magni P, Dozio E, Galliera E, Ruscica M, Corsi MM. Molecular aspects of adipokine-bone interactions. Curr Mol Med. 2010;10(6):522–32.PubMedGoogle Scholar
  13. 13.
    Eriksen EF, Colvard DS, Berg NJ, Graham ML, Mann KG, Spelsberg TC, Riggs BL. Evidence of estrogen receptors in normal human osteoblast-like cells. Science. 1988;241(4861):84–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Kim HJ. New understanding of glucocorticoid action in bone cells. BMB Rep. 2010;43(8):524–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Komm BS, Terpening CM, Benz DJ, Graeme KA, Gallegos A, Korc M, Greene GL, O’Malley BW, Haussler MR. Estrogen binding, receptor mRNA, and biologic response in osteoblast-like osteosarcoma cells. Science. 1988;241(4861):81–4.CrossRefPubMedGoogle Scholar
  16. 16.
    Migliaccio S, Davis VL, Gibson MK, Gray TK, Korach KS. Estrogens modulate the responsiveness of osteoblast-like cells (ROS 17/2.8) stably transfected with estrogen receptor. Endocrinology. 1992;130(5):2617–24.CrossRefPubMedGoogle Scholar
  17. 17.
    Gomez-Ambrosi J, Rodrıguez A, Catalan V, Fruhbeck G. The bone-adipose axis in obesity and weight loss. Obes Surg. 2008;18:1134–43.CrossRefPubMedGoogle Scholar
  18. 18.
    Takeda S. Effect of obesity on bone metabolism. Clin Calcium. 2008;18:632–7.PubMedGoogle Scholar
  19. 19.
    Gimble JM, Zvonic S, Floyd ZE, Kassem M, Nuttall ME. Playing with bone and fat. J Cell Biochem. 2006;98:251–66.CrossRefPubMedGoogle Scholar
  20. 20.
    Fukumoto S, Martrin TJ. Bone as an endocrine organ. Trends Endocrinol Metab. 2009;20(5):230–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Akune T, Ohba S, Kamekura S, Yamaguchi M, Chung UI, Kubota N, Terauchi Y, Harada Y, Azuma Y, Nakamura K, Kadowaki T, Kawaguchi H. PPARγ insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest. 2004;113:846–55.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Gimble JM, Robinson CE, Wu X, Kelly KA, Rodriguez BR, Kliewer SA, Lehmann JM, Morris DC. Peroxisome proliferator activated receptor-gamma activation by thiazolidinediones induces adipogenesis in bone marrow stromal cells. Mol Pharmacol. 1996;50:1087–94.PubMedGoogle Scholar
  23. 23.
    Rodriguez JP, Montecinos L, Rios S, Reyes P, Martinez J. Mesenchymal stem cells from osteoporotic patients produce a type I collagen-deficient extracellular matrix favoring adipogenic differentiation. J Cell Biochem. 2000;79:557–65.CrossRefPubMedGoogle Scholar
  24. 24.
    Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL, Caro JF. Serum immunoreactive leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996;34:292–5.CrossRefGoogle Scholar
  25. 25.
    Martin SS, Qasim A, Reilly MP. Leptin resistance: a possible interface of inflammation and metabolism in obesity-related cardiovascular disease. J Am Coll Cardiol. 2008;52:1201–10.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kontogianni MD, Dafni UG, Routsias JG, Skopouli FN. Blood leptin and adiponectin as possible mediators of the relation between fat mass and BMD in perimenopausal women. J Bone Miner Res. 2004;19:546–55.CrossRefPubMedGoogle Scholar
  27. 27.
    Goulding A, Taylor RW. Plasma leptin values in relation to bone mass and density and to dynamic biochemical markers of bone resorption and formation in postmenopausal women. Calcif Tissue Int. 1998;63:456–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 2000;100:197–207.CrossRefPubMedGoogle Scholar
  29. 29.
    Thomas T. The complex effects of leptin on bone metabolism through multiple pathways. Curr Opin Pharmacol. 2004;4:295–300.CrossRefPubMedGoogle Scholar
  30. 30.
    Thomas T, Gori F, Khosla S, Jensen MD, Burguera B, Riggs BL. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology. 1999;140:1630–8.CrossRefGoogle Scholar
  31. 31.
    Baldock PA, Sainsbury A, Couzens M, Enriquez RF, Thomas GP, Gardiner EM, Herzog H. Hypothalamic Y2 receptors regulate bone formation. J Clin Invest. 2002;109:915–21.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Sainsbury A, Schwarzer C, Couzens M, Fetissov S, Furtinger S, Jenkins A, cox HM, Sperk G, Hokfelt T, Herzog H. Important role of hypothalamic Y2 receptors in body weight regulation revealed in conditional knockout mice. Proc Natl Acad Sci U S A. 2002;99:8938–43.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Pajvani UB, Du X, Combs TP, Berg AH, Rajala MW, Schulthess T, Engel J, Brownlee M, Scherer PE. Structure-function studies of the adipocytes-secreted hormone Acrp30/adiponectin. Implications for metabolic regulation and bioactivity. J Biol Chem. 2003;278:9073–85.CrossRefPubMedGoogle Scholar
  34. 34.
    Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudio K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T. The fat-derived hormone adiponectin reverses insulin resistance associated with body lipoatrophy and obesity. Nat Med. 2001;7:941–6.CrossRefPubMedGoogle Scholar
  35. 35.
    Fasshauer M, Klein J, Neumann S, Eszlinger M, Paschke R. Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 2002;290:1084–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Jurimae J, Rembel K, Jurimae T, Rehand M. Adiponectin is associated with bone mineral density in perimenopausal women. Horm Metab Res. 2005;37:297–302.CrossRefPubMedGoogle Scholar
  37. 37.
    Ukkola O. Resistin–a mediator of obesity-associated insulin resistance or an innocent bystander? Eur J Endocrinol. 2002;147:571–4.CrossRefPubMedGoogle Scholar
  38. 38.
    Thommesen L, Stunes AK, Monjo M, Grosvik K, Tamburstuen MV, Kjobli E, Lyngstadaas SP, Reseland JE, Syversen U. Expression and regulation of resistin in osteoblasts and osteoclasts indicate a role in bone metabolism. J Cell Biochem. 2006;99(3):824–34.CrossRefPubMedGoogle Scholar
  39. 39.
    Fasshauer M, Klein J, Krahlisch S, Lossner U, Klier M, Bluher M, Paschke R. GH is a positive regulator of tumor necrosis factor-alpha-induced adipose related protein in 3T3-L1 adipocytes. J Endocrinol. 2003;178:523–31.CrossRefPubMedGoogle Scholar
  40. 40.
    Hotamisligil G, Arner P, Caro J, Atkinson R, Spiegelman B. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest. 1995;95:2409–15.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Pacifici R, Brown C, Puscheck E, Friedrich E, Slatopolsky E, Maggio D, McCracken R, Avioli LV. Effect of surgical menopause and estrogen replacement on cytokine release from human blood mononuclear cells. Proc Natl Acad Sci U S A. 1991;88(12):5134–8.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennet L, Boone T, Shimamoto G, DeRose M, Elliot R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89(2):309–19.CrossRefGoogle Scholar
  43. 43.
    Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D, Galibert L. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature. 1997;390(6656):175–9.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Wei S, Kitaura H, Zhou P, Ross P, Teitelbaum SL. IL-1 mediates TNFα-induce osteoclastogenesis. J Clin Invest. 2005;115(2):282–90.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Cenci S, Weitzmann MN, Roggia C, Namba N, Novack D, Woodring J, Pacifici R. Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-α. J Clin Invest. 2000;106(10):1229–37.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Vozarova B, Weyer C, Hanson K, Tataranni PA, Bogardus C, Pratley RE. Circulating IL-6 in relation to adiposity, insulin action and insulin secretion. Obes Res. 2001;9:414–7.CrossRefPubMedGoogle Scholar
  47. 47.
    Dodds A, Merry K, Littlewood A, Gowen M. Expression of mRNA for IL1 beta, IL6 and TGF beta 1 in developing human bone and cartilage. J Histochem Cytochem. 1994;42:733–44.CrossRefPubMedGoogle Scholar
  48. 48.
    Taguchi Y, Yamamoto M, Yamate T, Lin SC, Mocharla H, DeTogni P, Nakayama N, Boyce BF, Abe E, Manolagas SC. Interleukin-6-type cytokines stimulate mesenchymal progenitor differentiation toward the osteoblastic lineage. Proc Assoc Am Physicians. 1998;110:559–74.PubMedGoogle Scholar
  49. 49.
    Sims NA, Jenkins BJ, Quinn JM, Nakamura A, Glatt M, Gillespie MT, Ernst M, Martin TJ. Glycoprotein 130 regulates bone turnover and bone size by distinct downstream signaling pathways. J Clin Invest. 2004;113:379–89.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130:456–69.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Ferron M, Hinoi E, Karsenty G, Ducy P. Osteocalcin differentially regulates beta cell and dipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci U S A. 2008;105:5266–70.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Hinoi E, Gao N, Jung DY, Yadav V, Yoshizawa T, Myers MG Jr, Chua SC Jr, Kim JK, Kaestner KH, Karsenty G. The sympathetic tone mediates leptin’s inhibition of insulin secretion by modulating osteocalcin bioactivity. J Cell Biol. 2008;183:1235–42.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Covey SD, Wideman RD, McDonald C, Unniappan S, Huynh F, Asadi A, Speck M, Webber T, Chua SC, Kieffer TJ. The pancreatic beta cell is a key site for mediating the effects of leptin on glucose homeostasis. Cell Metab. 2006;4:291–302.CrossRefPubMedGoogle Scholar
  54. 54.
    Scatena M, Liaw L, Giachelli CM. Osteopontin: a multifunctional molecule regulating chronic inflammation and vascular disease. Arterioscler Thromb Vasc Biol. 2007;27:2302–9.CrossRefPubMedGoogle Scholar
  55. 55.
    Kiefer FW, Zeyda M, Todoric J, Huber J, Geyeregger R, Weichhart T, Aszmann O, Ludvik B, Silberhumer GR, Prager G, Stulnig TM. Osteopontin expression in human and murine obesity: extensive local up-regulation in adipose tissue but minimal systemic alterations. Endocrinology. 2008;149:1350–7.CrossRefPubMedGoogle Scholar
  56. 56.
    Sarac F, Basoglu OK, Gunduz C, Bayrak H, Biray Avci C, Akcicek F. Association of osteopontin and tumor necrosis factor-alpha levels with insulin resistance in obese patients with obstructive sleep apnea syndrome. J Endocrinol Invest. 2011;34:528–33.PubMedGoogle Scholar
  57. 57.
    You JS, Ji HI, Chang KJ, Yoo MC, Yang HI, Jeong IK, Kim KS. Serum osteopontin concentration is decreased by exercise-induced fat loss but is not correlated with body fat percentage in obese humans. Mol Med Rep. 2013;8:579–84.CrossRefPubMedGoogle Scholar
  58. 58.
    Sekiya I, Larson BL, Vuoristo JT, Cui JG, Prockop DJ. Adipogenic differentiation of human adult stem cells from bone marrow stroma (MSCs). J Bone Miner Res. 2004;19:256–64.CrossRefPubMedGoogle Scholar
  59. 59.
    Martin RB, Zissimos SL. Relationships between marrow fat and bone turnover in ovariectomized and intact rats. Bone. 1991;12:123–31.CrossRefPubMedGoogle Scholar
  60. 60.
    Burke ZD, Tosh D. Therapeutic potential of transdifferentiated cells. Clin Sci (Lond). 2005;108:309–21.CrossRefGoogle Scholar
  61. 61.
    Schilling T, Kuffner R, Klein-Hitpass L, Zimmer R, Jakob F, Schutze N. Microarray analyses of transdifferentiated mesenchymal stem cells. J Cell Biochem. 2008;103:413–33.CrossRefPubMedGoogle Scholar
  62. 62.
    Menagh PJ, Turner RT, Jump DB, Wong CP, Lowry MB, Yakar S, Rosen CJ, Iwaniec UT. Growth hormone regulates the balance between bone formation and bone marrow adiposity. J Bone Miner Res. 2010;25:757–68.PubMedGoogle Scholar
  63. 63.
    Gao B, Huang Q, Lin Y-S, Wei B-Y, Guo Y-S, Sun Z, Wang L, Fan J, Zhang H-Y, Han Y-H, Li X-J, Shi J, Liu J, Yang L, Luo Z-J. Dose-dependent effect of estrogen suppresses the osteo-adipogenic transdifferentiation of osteoblasts via canonical wnt signaling pathway. PLoS One. 2014;9(6):e-99137.CrossRefGoogle Scholar
  64. 64.
    Song L, Tuan RS. Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. FASEB J. 2004;18:980–2.CrossRefPubMedGoogle Scholar
  65. 65.
    Abdallah BM, Ditzel N, Mahmood A, Isa A, Traustadottir GA, Schilling AF, ruiz-hidalgo MJ, Laborda J, Amling M, Kassem M. DLK1 is a novel regulator of bone mass that mediates estrogen deficiency induced bone loss in mice. J Bone Miner Res. 2011;26:1457–71.CrossRefPubMedGoogle Scholar
  66. 66.
    Kamiya Y, Chen J, Xu M, Utreja A, Choi T, Drissi H, Wadhwa S. Increased mandibular condylar growth in mice with estrogen receptor beta deficiency. J Bone Miner Res. 2013;28:1127–34.CrossRefPubMedGoogle Scholar
  67. 67.
    Song L, Zhao J, Zhang X, Li H, Zhou Y. Icariin induces osteoblast proliferation, differentiation and mineralization through estrogen receptor mediated ERK and JNK signal activation. Eur J Pharmacol. 2013;714:15–22.CrossRefPubMedGoogle Scholar
  68. 68.
    Pierroz DD, Rufo A, Bianchi EN, Glatt V, Capulli M, Rucci N, Cavat F, Rizzoli R, Teti A, Bouxsein ML, Ferrari SL. Beta Arrestin2 regulates RANKL and ephrins gene expression in response to bone remodeling in mice. J Bone Miner Res. 2009;24:775–84.CrossRefPubMedGoogle Scholar
  69. 69.
    Justesen J, Stenderup K, Ebbesen EN, Mosekilde L, Steiniche T, Kassem M. Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology. 2001;2:165–71.CrossRefPubMedGoogle Scholar
  70. 70.
    Gambacciani M, Ciaponi M, Cappagli B, Piaggesi L, De Simone L, Orlandi R, genazzani AR. Body weight, body fat distribution, and hormonal replacement therapy in early postmenopausal women. J Clin Endocrinol Metab. 1997;82:414–7.CrossRefPubMedGoogle Scholar
  71. 71.
    Guo YF, Xiong DH, Shen H, Zhao LJ, Xiao P, guo Y, Wang W, Yang TL, Recker RR, Deng HW. Polymorphisms of the low-density lipoprotein receptor-related protein 5 (LRP5) gene are associated with obesity phenotypes in a large family-based association study. J Med Genet. 2006;43:798–803.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Mani A, Radhakrishnan J, Wang H, Mani A, Mani MA, Nelson-William C, Carew KS, Mane S, Najmabadi H, Wu D, Lifton RP. LRP6 mutation in a family with early coronary disease and metabolic risk factors. Science. 2007;315:1278–82.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, Helgason A, Stefansson H, Emilsson V, Helgadottir A, Styrkarsdottir U, Magnusson KP, walters GB, Palsdottir E, Jonsdottir T, Gudmundsdottir T, Gylfason A, Saemundsdottir J, Wilensky RL, Reilly MP, Rader DJ, Bagger Y, Christiansen C, Gudnason V, Sigurdsson G, Thorsteinsdottir U, Gulcher JR, Kong A, Stefansson K. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006;38:320–3.CrossRefPubMedGoogle Scholar
  74. 74.
    Colaianni G, Brunetti G, Faienza MF, Colucci S, Grano M. Osteoporosis and obesity: role of Wnt pathway in human and murine models. World J Orthop. 2014;5(3):242–6.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Krishnan V, Bryant HU, Macdougald OA. Regulation of bone mass by Wnt signaling. J Clin Invest. 2006;116:1202–9.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Qiu W, Chen L, Kassem M. Activation of non-canonical Wnt/JNK pathway by Wnt3a is associated with differentiation fate determination of human bone marrow stromal (mesenchymal) stem cells. Biochem Biophys Res Commun. 2011;413:98–104.CrossRefPubMedGoogle Scholar
  77. 77.
    Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B. Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-γ2-transcription factor and TGF-β/BMP signaling pathways. Aging Cell. 2004;3:379–89.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Kajkenova O, Lecka-Czernik B, Gubrij I, Hauser SP, Takahashi K, Parfitt AM, Jilka RL, Manolagas SC, Lipschitz DA. Increased adipogenesis and myelopoiesis in the bone marrow of SAMP6: a murine model of defective osteoblastogenesis and low turnover osteopenia. J Bone Miner Res. 1997;12:1772–9.CrossRefPubMedGoogle Scholar
  79. 79.
    Duque G, Macoritto M, Kremer R. Vitamin D treatment of senescence accelerated mice (SAM-P/6) induces several regulators of stromal cell plasticity. Biogerontology. 2004;5:421–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Emanuela A. Greco
    • 1
  • Rachele Fornari
    • 1
  • Andrea Lenzi
    • 1
  • Silvia Migliaccio
    • 2
  1. 1.Department of Experimental Medicine, Section of Medical Pathophysiology, Endocrinology and NutritionSapienza University of RomeRomeItaly
  2. 2.Department of Movement, Human and Health Science, Unit of EndocrinologyUniversity of Foro ItalicoRomeItaly

Personalised recommendations