Advertisement

Osteoporosis in Men

  • Elena Nebot Valenzuela
  • Peter Pietschmann
Chapter

Abstract

Traditionally, osteoporosis has been predominantly studied in women; nevertheless, men are not protected from bone loss and its complications. Remarkably, mortality after osteoporotic fractures is higher in men compared to women. In men, both estrogens and androgens play an important role in the regulation of bone turnover. Pathophysiological specificities of osteoporosis in men are osteoblastic deficiency and a high frequency of secondary causes of osteoporosis. Several randomized control trials specifically investigated the treatment of osteoporosis in men and demonstrated a reduction of vertebral fracture incidence.

Notes

Acknowledgments

Elena Nebot was supported by a postdoctoral fellow awarded by the University of Granada (Spain). The work of Peter Pietschmann is supported by the Austrian Science Fund (Project # P28827-B30). The authors are grateful to Ursula Föger-Samwald, Katharina Wahl-Figlash, and Birgit Schwarz for their assistance.

References

  1. 1.
    NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285(6):785–95.CrossRefGoogle Scholar
  2. 2.
    Khosla S. Update in male osteoporosis. J Clin Endocrinol Metab. 2010;95(1):3–10.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Patsch JM, Deutschmann J, Pietschmann P. Gender aspects of osteoporosis and bone strength. Wien Med Wochenschr. 2011;161(5–6):117–23.PubMedCrossRefGoogle Scholar
  4. 4.
    Melton LJ 3rd, et al. Effects of body size and skeletal site on the estimated prevalence of osteoporosis in women and men. Osteoporos Int. 2000;11(11):977–83.PubMedCrossRefGoogle Scholar
  5. 5.
    Schuit SC, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone. 2004;34(1):195–202.PubMedCrossRefGoogle Scholar
  6. 6.
    Wright NC, et al. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res. 2014;29(11):2520–6.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    US Department of Health and Human Services. Bone health and osteoporosis: a report of the surgeon general. 2004. Rockville, MD.Google Scholar
  8. 8.
    Burge R, et al. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res. 2007;22(3):465–75.PubMedCrossRefGoogle Scholar
  9. 9.
    Hernlund E, et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden. Arch Osteoporos. 2013;8(1):1–115.Google Scholar
  10. 10.
    Center JR, et al. Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet. 1999;353(9156):878–82.PubMedCrossRefGoogle Scholar
  11. 11.
    Kannegaard PN, et al. Excess mortality in men compared with women following a hip fracture. National analysis of comedications, comorbidity and survival. Age Ageing. 2010;39(2):203–9.PubMedCrossRefGoogle Scholar
  12. 12.
    D’Amelio P, Isaia GC. Male osteoporosis in the elderly. Int J Endocrinol. 2015;2015:907689.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Bass E, et al. Risk-adjusted mortality rates of elderly veterans with hip fractures. Ann Epidemiol. 2007;17(7):514–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Khosla S, Amin S, Orwoll E. Osteoporosis in men. Endocr Rev. 2008;29(4):441–64.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Stathopoulos IS, et al. A review on osteoporosis in men. Hormones (Athens). 2014;13(4):441–57.Google Scholar
  16. 16.
    Kirmani S, et al. Bone structure at the distal radius during adolescent growth. J Bone Miner Res. 2009;24(6):1033–42.PubMedCrossRefGoogle Scholar
  17. 17.
    Khosla S. Pathogenesis of osteoporosis. Transl Endocrinol Metab. 2010;1(1):55–86.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Lips P. Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev. 2001;22(4):477–501.PubMedCrossRefGoogle Scholar
  19. 19.
    Fink HA, et al. Association of testosterone and estradiol deficiency with osteoporosis and rapid bone loss in older men. J Clin Endocrinol Metab. 2006;91(10):3908–15.PubMedCrossRefGoogle Scholar
  20. 20.
    Orwoll E, et al. Testosterone and estradiol among older men. J Clin Endocrinol Metab. 2006;91(4):1336–44.PubMedCrossRefGoogle Scholar
  21. 21.
    Gagnon C, Li V, Ebeling PR. Osteoporosis in men: its pathophysiology and the role of teriparatide in its treatment. Clin Interv Aging. 2008;3(4):635–45.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Riggs BL, et al. A population-based assessment of rates of bone loss at multiple skeletal sites: evidence for substantial trabecular bone loss in young adult women and men. J Bone Miner Res. 2008;23(2):205–14.PubMedCrossRefGoogle Scholar
  23. 23.
    Walsh JS, Eastell R. Osteoporosis in men. Nat Rev Endocrinol. 2013;9(11):637–45.PubMedCrossRefGoogle Scholar
  24. 24.
    Seeman E. Structural basis of growth-related gain and age-related loss of bone strength. Rheumatology (Oxford). 2008;47(Suppl 4):iv2–8.Google Scholar
  25. 25.
    Burghardt AJ, et al. Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia. J Bone Miner Res. 2010;25(5):983–93.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Callewaert F, Boonen S, Vanderschueren D. Sex steroids and the male skeleton: a tale of two hormones. Trends Endocrinol Metab. 2010;21(2):89–95.PubMedCrossRefGoogle Scholar
  27. 27.
    Khosla S, et al. Relationship of volumetric BMD and structural parameters at different skeletal sites to sex steroid levels in men. J Bone Miner Res. 2005;20(5):730–40.PubMedCrossRefGoogle Scholar
  28. 28.
    Mellstrom D, et al. Older men with low serum estradiol and high serum SHBG have an increased risk of fractures. J Bone Miner Res. 2008;23(10):1552–60.PubMedCrossRefGoogle Scholar
  29. 29.
    Falahati-Nini A, et al. Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J Clin Invest. 2000;106(12):1553–60.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Leder BZ, et al. Differential effects of androgens and estrogens on bone turnover in normal men. J Clin Endocrinol Metab. 2003;88(1):204–10.PubMedCrossRefGoogle Scholar
  31. 31.
    LeBlanc ES, et al. The effects of serum testosterone, estradiol, and sex hormone binding globulin levels on fracture risk in older men. J Clin Endocrinol Metab. 2009;94(9):3337–46.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Khosla S. Testosterone: more is not always better. J Clin Endocrinol Metab. 2009;94(12):4665–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Khosla S. Estrogen and bone: insights from estrogen-resistant, aromatase-deficient, and normal men. Bone. 2008;43(3):414–7.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Sanyal A, et al. Regulation of bone turnover by sex steroids in men. J Bone Miner Res. 2008;23(5):705–14.PubMedCrossRefGoogle Scholar
  35. 35.
    Giustina A, Mazziotti G, Canalis E. Growth hormone, insulin-like growth factors, and the skeleton. Endocr Rev. 2008;29(5):535–59.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Khosla S, et al. Hormonal and biochemical determinants of trabecular microstructure at the ultradistal radius in women and men. J Clin Endocrinol Metab. 2006;91(3):885–91.PubMedCrossRefGoogle Scholar
  37. 37.
    Veldhuis JD, Bowers CY. Human GH pulsatility: an ensemble property regulated by age and gender. J Endocrinol Investig. 2003;26(9):799–813.CrossRefGoogle Scholar
  38. 38.
    Amin S, et al. High serum IGFBP-2 is predictive of increased bone turnover in aging men and women. J Bone Miner Res. 2007;22(6):799–807.PubMedCrossRefGoogle Scholar
  39. 39.
    Marie PJ, et al. Decreased DNA synthesis by cultured osteoblastic cells in eugonadal osteoporotic men with defective bone formation. J Clin Invest. 1991;88(4):1167–72.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Pernow Y, et al. Osteoblast dysfunction in male idiopathic osteoporosis. Calcif Tissue Int. 2006;78(2):90–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Patsch JM, et al. Trabecular bone microstructure and local gene expression in iliac crest biopsies of men with idiopathic osteoporosis. J Bone Miner Res. 2011;26(7):1584–92.PubMedCrossRefGoogle Scholar
  42. 42.
    Pietschmann P, et al. Bone turnover markers and sex hormones in men with idiopathic osteoporosis. Eur J Clin Investig. 2001;31(5):444–51.CrossRefGoogle Scholar
  43. 43.
    Gillberg P, Johansson AG, Ljunghall S. Decreased estradiol levels and free androgen index and elevated sex hormone-binding globulin levels in male idiopathic osteoporosis. Calcif Tissue Int. 1999;64(3):209–13.PubMedCrossRefGoogle Scholar
  44. 44.
    Braidman I, et al. Preliminary evidence for impaired estrogen receptor-alpha protein expression in osteoblasts and osteocytes from men with idiopathic osteoporosis. Bone. 2000;26(5):423–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Majeska RJ, Ryaby JT, Einhorn TA. Direct modulation of osteoblastic activity with estrogen. J Bone Joint Surg Am. 1994;76(5):713–21.PubMedCrossRefGoogle Scholar
  46. 46.
    Pernow Y, et al. Bone histomorphometry in male idiopathic osteoporosis. Calcif Tissue Int. 2009;84(6):430–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Kurland ES, et al. Insulin-like growth factor-I in men with idiopathic osteoporosis. J Clin Endocrinol Metab. 1997;82(9):2799–805.PubMedGoogle Scholar
  48. 48.
    Ebeling PR. Osteoporosis in men. Curr Opin Rheumatol. 2013;25(4):542–52.PubMedCrossRefGoogle Scholar
  49. 49.
    Korpi-Steiner N, Milhorn D, Hammett-Stabler C. Osteoporosis in men. Clin Biochem. 2014;47(10–11):950–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Ebeling PR. Clinical practice. Osteoporosis in men. N Engl J Med. 2008;358(14):1474–82.PubMedCrossRefGoogle Scholar
  51. 51.
    Adler RA. Osteoporosis in men: recent progress. Endocrine. 2013;44(1):40–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Kanis JA, et al. Towards a diagnostic and therapeutic consensus in male osteoporosis. Osteoporos Int. 2011;22(11):2789–98.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Canalis E, et al. Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int. 2007;18(10):1319–28.PubMedCrossRefGoogle Scholar
  54. 54.
    Minisola S, et al. Biochemical markers in glucocorticoid-induced osteoporosis. J Endocrinol Investig. 2008;31(7 Suppl):28–32.Google Scholar
  55. 55.
    Hofbauer LC, et al. Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: potential paracrine mechanisms of glucocorticoid-induced osteoporosis. Endocrinology. 1999;140(10):4382–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Pierotti S, et al. Pre-receptorial regulation of steroid hormones in bone cells: insights on glucocorticoid-induced osteoporosis. J Steroid Biochem Mol Biol. 2008;108(3–5):292–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Van Staa TP, et al. Use of oral corticosteroids and risk of fractures. J Bone Miner Res. 2000;15(6):993–1000.PubMedCrossRefGoogle Scholar
  58. 58.
    Mikosch P. Alcohol and bone. Wien Med Wochenschr. 2014;164(1):15–24.PubMedCrossRefGoogle Scholar
  59. 59.
    Suh KT, et al. Decreased osteogenic differentiation of mesenchymal stem cells in alcohol-induced osteonecrosis. Clin Orthop Relat Res. 2005;431:220–5.CrossRefGoogle Scholar
  60. 60.
    Klein RF, Fausti KA, Carlos AS. Ethanol inhibits human osteoblastic cell proliferation. Alcohol Clin Exp Res. 1996;20(3):572–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Maurel DB, et al. Alcohol and bone: review of dose effects and mechanisms. Osteoporos Int. 2012;23(1):1–16.PubMedCrossRefGoogle Scholar
  62. 62.
    Gonzalez-Reimers E, et al. Serum sclerostin in alcoholics: a pilot study. Alcohol Alcohol. 2013;48(3):278–82.PubMedCrossRefGoogle Scholar
  63. 63.
    Chen JR, et al. Estradiol protects against ethanol-induced bone loss by inhibiting up-regulation of receptor activator of nuclear factor-kappaB ligand in osteoblasts. J Pharmacol Exp Ther. 2006;319(3):1182–90.PubMedCrossRefGoogle Scholar
  64. 64.
    Chen JR, et al. Protective effects of estradiol on ethanol-induced bone loss involve inhibition of reactive oxygen species generation in osteoblasts and downstream activation of the extracellular signal-regulated kinase/signal transducer and activator of transcription 3/receptor activator of nuclear factor-kappaB ligand signaling cascade. J Pharmacol Exp Ther. 2008;324(1):50–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Cosman F, et al. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2014;25(10):2359–81.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Nayak S, Greenspan SL. Cost-effectiveness of osteoporosis screening strategies for men. J Bone Miner Res. 2016;31(6):1189–99.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Dawson-Hughes B, et al. The potential impact of the National Osteoporosis Foundation guidance on treatment eligibility in the USA: an update in NHANES 2005–2008. Osteoporos Int. 2012;23(3):811–20.PubMedCrossRefGoogle Scholar
  68. 68.
    Laurent M, et al. Osteoporosis in older men: recent advances in pathophysiology and treatment. Best Pract Res Clin Endocrinol Metab. 2013;27(4):527–39.PubMedCrossRefGoogle Scholar
  69. 69.
    Gielen E, et al. Osteoporosis in men. Best Pract Res Clin Endocrinol Metab. 2011;25(2):321–35.PubMedCrossRefGoogle Scholar
  70. 70.
    Fisher JE, et al. Alendronate mechanism of action: geranylgeraniol, an intermediate in the mevalonate pathway, prevents inhibition of osteoclast formation, bone resorption, and kinase activation in vitro. Proc Natl Acad Sci U S A. 1999;96(1):133–8.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Orwoll E, et al. Alendronate for the treatment of osteoporosis in men. N Engl J Med. 2000;343(9):604–10.PubMedCrossRefGoogle Scholar
  72. 72.
    Boonen S, et al. Fracture risk and zoledronic acid therapy in men with osteoporosis. N Engl J Med. 2012;367(18):1714–23.PubMedCrossRefGoogle Scholar
  73. 73.
    Ellis GK, et al. Randomized trial of denosumab in patients receiving adjuvant aromatase inhibitors for nonmetastatic breast cancer. J Clin Oncol. 2008;26(30):4875–82.PubMedCrossRefGoogle Scholar
  74. 74.
    Langdahl BL, et al. A 24-month study evaluating the efficacy and safety of denosumab for the treatment of men with low bone mineral density: results from the ADAMO trial. J Clin Endocrinol Metab. 2015;100(4):1335–42.PubMedCrossRefGoogle Scholar
  75. 75.
    Higano CS. Androgen-deprivation-therapy-induced fractures in men with nonmetastatic prostate cancer: what do we really know? Nat Clin Pract Urol. 2008;5(1):24–34.PubMedCrossRefGoogle Scholar
  76. 76.
    Smith MR, et al. Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N Engl J Med. 2009;361(8):745–55.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Michaelson MD, Marujo RM, Smith MR. Contribution of androgen deprivation therapy to elevated osteoclast activity in men with metastatic prostate cancer. Clin Cancer Res. 2004;10(8):2705–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Orwoll ES, et al. The effect of teriparatide [human parathyroid hormone (1–34)] therapy on bone density in men with osteoporosis. J Bone Miner Res. 2003;18(1):9–17.PubMedCrossRefGoogle Scholar
  79. 79.
    Neer RM, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344(19):1434–41.PubMedCrossRefGoogle Scholar
  80. 80.
    Kamel HK, et al. Failure to diagnose and treat osteoporosis in elderly patients hospitalized with hip fracture. Am J Med. 2000;109(4):326–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Kiebzak GM, et al. Undertreatment of osteoporosis in men with hip fracture. Arch Intern Med. 2002;162(19):2217–22.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
  2. 2.Department of PhysiologySchool of Pharmacy and Institute of Nutrition and Food Technology, University of GranadaGranadaSpain

Personalised recommendations