Advertisement

Renal Diseases and Skeletal Health

  • Sandro Mazzaferro
  • Silverio Rotondi
  • Lida Tartaglione
  • Natalia De Martino
  • Cristiana Leonangeli
  • Marzia Pasquali
Chapter

Abstract

Recent clinical observations underline the link between bone disease and disturbances of mineral metabolism with increased morbidity and mortality of Chronic Renal Failure (CRF). Indeed, in patients with Chronic Kidney Disease (CKD), bone disease may occur either with normal glomerular filtration rate (renal tubular disorders involving pH, Calcium or Phosphate metabolism) or with reduced glomerular filtration rate (the complex endocrine disorder of secondary hyperparathyroidism of CRF). Recently, to underline the clinical burden of this type of secondary hyperparathyroidism, a new clinical term has been introduced: CKD-MBD (chronic kidney disease-mineral and bone disorder). Besides bone disease, the endocrine derangements of mineral metabolism and the accelerated calcification processes of vessel walls are considered together in this syndrome, to highlight the pathogenetic link with cardiovascular disease and the eventual morbidity and mortality. The gold standard technique to diagnose renal osteodystrophy still remains the invasive bone biopsy. The less invasive biomarkers and radiologic techniques are less reliable to evaluate bone histology but are necessary to study the hormonal condition and the mechanical performance of the skeleton, respectively. As for therapy, it has been mostly focused on the control of secondary hyperparathyroidism, but this does not impact significantly the high fracture rate of renal patients. New drugs employed for osteoporosis and targeting specific functions of bone cells promise to open new therapeutic frontiers for renal osteodystrophy and CKD-MBD.

References

  1. 1.
    Levey AS, de Jong PE, Coresh J, et al. The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int. 2011;80:17–28.CrossRefPubMedGoogle Scholar
  2. 2.
    Mazzaferro S, Pasquali M, Pirrò G, Rotondi S, Tartaglione L. The bone and the kidney. Arch Biochem Biophys. 2010;503:95–102.CrossRefPubMedGoogle Scholar
  3. 3.
    Heilberg IP, Weisinger JR. Bone disease in idiopathic hypercalciuria. Curr Opin Nephrol Hypertens. 2006;15:394–402.CrossRefPubMedGoogle Scholar
  4. 4.
    Vezzoli G, Soldato L, Gambaro G. Hypercalciuria revisited: one or many conditions? Pediatr Nephrol. 2008;23:503–606.CrossRefPubMedGoogle Scholar
  5. 5.
    Thakker RV. Pathogenesis of Dent’s disease and related syndromes of X-linked nephrolithiasis. Kidney Int. 2000;57:787–93.CrossRefPubMedGoogle Scholar
  6. 6.
    Devuyst O, Pirson Y. Genetics of hypercalciuric stone forming disease. Kidney Int. 2007;72:1065–72.CrossRefPubMedGoogle Scholar
  7. 7.
    Bergwitz C, Roslin NM, Tieder M, et al. SCL34A3 mutations in patient with hereditary hypophosphatemic rickets with hypercalciuria predict key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Genet. 2006;78:179–92.CrossRefPubMedGoogle Scholar
  8. 8.
    Bushinsky DA, Goldring JM, Coe FL. Cellular contribution to pH-mediated calcium flux in neonatal mouse calvariae. Am J Physiol. 1985;248:F785–9.PubMedGoogle Scholar
  9. 9.
    Krieger NS, Parker WR, Alexander KM, Bushinsky DA. Prostaglandins regulate acid-induced cell-mediated bone resorption. Am J Physiol Renal Physiol. 2000;279:F1077–82.CrossRefPubMedGoogle Scholar
  10. 10.
    Frick KK, Bushinsky DA. Metabolic acidosis stimulates RANKL RNA expression in bone through a cyclo-oxygenase-dependent mechanism. J Bone Miner Res. 2003;18:1317–25.CrossRefPubMedGoogle Scholar
  11. 11.
    Bushinsky DA. Stimulated osteoclastic and suppressed osteoblastic activity in metabolic but not respiratory acidosis. Am J Physiol. 1995;268:C80–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Nijenhuis T, Renkema KY, Hoenderop JG, Bindels RY. Acid-base status determines the renal expression of Ca2+ and Mg2+ transport proteins. J Am Soc Nephrol. 2006;17:617–26.CrossRefPubMedGoogle Scholar
  13. 13.
    Ludwig MG, Vanek M, Guerini D, et al. Proton sensing G-protein–coupled receptors. Nature. 2003;425:93–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Jahr H, van Driel M, van Osch GJ, Weinans H, van Leeuwen JP. Identification of acid-sensing ion channels in bone. Biochem Biophys Res Commun. 2005;337:349–54.CrossRefPubMedGoogle Scholar
  15. 15.
    Clarke BL, Wynne AG, Wilson DM, Fitzpatrick LA. Osteomalacia associated with adult Fanconi’s syndrome: clinical and diagnostic features. Clin Endocrinol. 1995;43:479–90.CrossRefGoogle Scholar
  16. 16.
    Shimada T, Urakawa I, Yamazaki Y, et al. FGF-23 transgenic mice demonstrate hypophosphatemic rickets with reduced expression of sodium phosphate cotransporter type IIa. Biochem Biophys Res Commun. 2004;312:409–14.CrossRefGoogle Scholar
  17. 17.
    Slatopolsky E, Caglar S, Pennell JP, et al. On the pathogenesis of hyperparathyroidism in chronic experimental renal insufficiency in the dog. J Clin Invest. 1971;50:492–9.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Slatopolsky E, Finch J, Denda M, et al. Phosphorus restriction prevents parathyroid gland growth. High phosphorus directly stimulates PTH secretion in vitro. J Clin Invest. 1996;97:2534–40.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Mian IS. Sequence, structural, functional, and phylogenetic analyses of three glycosidase families. Blood Cells Mol Dis. 1998;2:83–100.Google Scholar
  20. 20.
    Rotondi S, Pasquali M, Tartaglione L, et al. Soluble α-Klotho serum levels in chronic kidney disease. Int J Endocrinol. 2015;2015:1–8.CrossRefGoogle Scholar
  21. 21.
    Yu J, Deng M, Zhao J, Huang L. Decreased expression of klotho gene in uremic atherosclerosis in apolipoprotein E deficient mice. Biochem Biophys Res Comm. 2010;391:261–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Levin A, Bakris GL, Molitch M, et al. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int. 2007;71:31–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Shimada T, Hasegawa H, Yamazaki Y, et al. FGF23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res. 2004;19:429–35.CrossRefPubMedGoogle Scholar
  24. 24.
    Silver J, Naveh-Many T. FGF23 and the parathyroid glands. Pediatr Nephrol. 2010;25:2241–5.CrossRefPubMedGoogle Scholar
  25. 25.
    Canaff L, Hendy GN. Human calcium-sensing receptor gene. Vitamin D response elements in promoters P1 and P2 confer transcriptional responsiveness to 1,25-dihydroxyvitamin D. J Biol Chem. 2002;277:30337–50.CrossRefPubMedGoogle Scholar
  26. 26.
    Tfelt-Hansen J, Brown EM. The calcium-sensing receptor in normal physiology and pathophysiology: a review. Crit Rev Clin Lab Sci. 2005;42:35–70.CrossRefPubMedGoogle Scholar
  27. 27.
    Dusso A, Arcidiacono MV, Yang J, Tokumoto M. Vitamin D inhibition of TACE and prevention of renal osteodystrophy and cardiovascular mortality. J Steroid Biochem Mol Biol. 2010;121:193–8.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Silverberg SJ, Shane E, de la Cruz L, et al. Skeletal disease in primary hyperparathyroidism. J Bone Miner Res. 1989;4:283–91.CrossRefPubMedGoogle Scholar
  29. 29.
    Rodda SJ, McMahon AP. Distinct role for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development. 2006;133:3231–44.CrossRefPubMedGoogle Scholar
  30. 30.
    Fang Y, Ginsberg C, Seifert M, et al. CKD-induced wingless/integration1 inhibitors and phosphorus cause the CKD-mineral and bone disorder. J Am Soc Nephrol. 2014;25:1760–73.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Pelletier S, Dubourg L, Carlier MC, Hadj-Aissa A, Fouque D. The relation between renal function and serum sclerostin in adult patients with CKD. Clin J Am Soc Nephrol. 2013;8:819–23.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Sabbagh Y, Graciolli FG, O’Brien S, et al. Repression of osteocyte Wnt/beta-catenin signaling is an early event in the progression of renal osteodystrophy. J Bone Miner Res. 2012;27:1757–72.CrossRefPubMedGoogle Scholar
  33. 33.
    Graciolli FG, Naves KR, Barreto F, et al. The complexity of chronic kidney disease-mineral bone disorder across stages of chronic kidney disease. Kidney Int. 2017;91:1436–46.CrossRefPubMedGoogle Scholar
  34. 34.
    Cejka D, Herberth J, Branscum AJ, et al. Sclerostin and dickkopf-1 in renal osteodystrophy. Clin J Am Soc Nephrol. 2011;6:877–82.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Drueke TB, Massy ZA. Changing bone patterns with progression of chronic kidney disease. Kidney Int. 2016;89:289–302.CrossRefPubMedGoogle Scholar
  36. 36.
    Pereira RC, Valta H, Tumber N, et al. Altered osteocyte-specific protein expression in bone after childhood solid organ transplantation. PLoS One. 2015;10:1–12.Google Scholar
  37. 37.
    Martin A, David V, Li H, et al. Overexpression of the DMP1 C-terminal fragment stimulates FGF23 and exacerbates the hypophosphatemic rickets phenotype in Hyp mice. Mol Endocrinol. 2012;26:1883–95.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Gomez F, de la Cueva R, Wauters JP, Lemarchand-Beraud T. Endocrine abnormalities in patients undergoing longterm hemodialysis: the role of prolactin. Am J Med. 1980;68:522–30.CrossRefPubMedGoogle Scholar
  39. 39.
    Handelsman DJ, Dong Q. Hypothalamo-pituitary gonadal axis in chronic renal failure. Endocrinol Metab Clin North Am. 1993;22:145–61.CrossRefPubMedGoogle Scholar
  40. 40.
    Kousteni S, Bellido T, Plotkin LI, et al. Non genotropic, sex-non specific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell. 2001;104:719–30.PubMedGoogle Scholar
  41. 41.
    Pederson L, Kremer M, Judd J, et al. Androgens regulate bone resorption activity of isolated osteoclasts in vitro. Proc Natl Acad Sci U S A. 1999;96:505–10.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Niwa T, Takeda N, Tatematsu A, et al. Accumulation of indoxyl sulfate, an inhibitor of drug-binding, in uremic serum as demonstrated by internal-surface reversed-phase liquid chromatography. Clin Chem. 1988;34:2264–7.PubMedGoogle Scholar
  43. 43.
    Nii-Kono T, Iwasaki Y, Uchida M, et al. Indoxyl sulfate induces skeletal resistance to parathyroid hormone in cultured osteoblastic cells. Kidney Int. 2007;71:738–43.CrossRefPubMedGoogle Scholar
  44. 44.
    Mozar A, Louvet L, Godin C, et al. Indoxyl sulphate inhibits osteoclast differentiation and function. Nephrol Dial Transplant. 2012;27:2176–81.CrossRefPubMedGoogle Scholar
  45. 45.
    Iwasaki Y, Yamato H, Nii-Kono T, et al. Administration of oral charcoal adsorbent (AST-120) suppresses low-turnover bone progression in uraemic rats. Nephrol Dial Transplant. 2006;21:2768–74.CrossRefPubMedGoogle Scholar
  46. 46.
    Moe S, Drüeke T, Block GA, et al. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int. 2009;76:S3–S130.Google Scholar
  47. 47.
    Moe S, Drüeke T, Cunningham J, et al. Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2006;69:1945–53.CrossRefPubMedGoogle Scholar
  48. 48.
    Mazzaferro S, Tartaglione L, Rotondi S, Bover J, Goldsmith D, Pasquali M. News on biomarkers in CKD-MBD. Semin Nephrol. 2014;34:598–611.CrossRefPubMedGoogle Scholar
  49. 49.
    Garrett G, Sardiwal S, Lamb EJ, Goldsmith DJ. PTH--a particularly tricky hormone: why measure it at all in kidney patients? Clin J Am Soc Nephrol. 2013;8:299–312.CrossRefPubMedGoogle Scholar
  50. 50.
    Ureña P, Hruby M, Ferreira A, Ang KS, de Vernejoul MC. Plasma total versus bone alkaline phosphatase as markers of bone turnover in hemodialysis patients. J Am Soc Nephrol. 1996;7:506–12.PubMedGoogle Scholar
  51. 51.
    Drechsler C, Verduijn M, Pilz S, Krediet RT, et al. Bone alkaline phosphatase and mortality in dialysis patients. Clin J Am Soc Nephrol. 2011;6:1752–9.CrossRefPubMedGoogle Scholar
  52. 52.
    Yamada S, Inaba M, Kurajoh M, Shidara K, Imanishi Y, Ishimura E, et al. Utility of serum tartrate-resistant acid phosphatase (TRAP5b) as a bone resorption marker inpatients with chronic kidney disease: independence from renal dysfunction. Clin Endocrinol. 2008;69:189–96.CrossRefGoogle Scholar
  53. 53.
    Henriksen K, Tanko LB, Qvist P, Delmas PD, Christiansen C, Karsdal MA. Assessment of osteoclast number and function: application in the development of new and improved treatment modalities for bone diseases. Osteoporos Int. 2007;18(5):681.CrossRefPubMedGoogle Scholar
  54. 54.
    Coen G, Mazzaferro S, Bonucci E, Taggi F, Ballanti P, Bianchi AR, et al. Bone GLA protein in predialysis chronic renal failure. Effects of 1,25(OH)2D3 administration in a long term follow-up. Kidney Int. 1985;28:783–90.CrossRefPubMedGoogle Scholar
  55. 55.
    Vasikaran S, Eastell R, Bruyere O, et al. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int. 2011;22:391–420.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Johnell O, Oden A, De Laet C, et al. Biochemical indices of bone turnover and the assessment of fracture probability. Osteoporos Int. 2002;13:523–6.CrossRefPubMedGoogle Scholar
  57. 57.
    Grabner A, Mazzaferro S, Cianciolo G, et al. Fibroblast growth factor 23: mineral metabolism and beyond. Contrib Nephrol. 2017;190:83–95.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Marçais C, Maucort-Boulch D, Drai J, et al. Circulating Klotho associates with cardiovascular morbidity and mortality during hemodialysis. J Clin Endocrinol Metab. 2017;102(9):3154–61. [Epub ahead of print].CrossRefPubMedGoogle Scholar
  59. 59.
    Evenepoel P, D’Haese P, Bacchetta J, et al. Bone biopsy practice patterns across Europe: the European renal osteodystrophy initiative-a position paper. Nephrol Dial Transplant. 2017;32(10):1608–13. [Epub ahead of print].PubMedGoogle Scholar
  60. 60.
    Torres PU, Bover J, Mazzaferro S. When, how, and why a bone biopsy should be performed in patients with chronic kidney disease. Semin Nephrol. 2014;34:612–25.CrossRefPubMedGoogle Scholar
  61. 61.
    Alem AM, Sherrard DJ, Gillen DL, et al. Increased risk of hip fracture among patients with end-stage renal disease. Kidney Int. 2000;58:396–9.CrossRefPubMedGoogle Scholar
  62. 62.
    Wakasugi M, Kazama JJ, Taniguchi M, et al. Increased risk of hip fracture among Japanese hemodialysis patients. J Bone Miner Metab. 2013;31:315–21.CrossRefPubMedGoogle Scholar
  63. 63.
    Yenchek RH, Ix JH, Shlipak MG, Bauer DC, Rianon NJ, Kritchevsky SB, Harris TB, Newman AB, Cauley JA, Fried LF, Health, Aging, and Body Composition Study. Bone mineral density and fracture risk in older individuals with CKD. Clin J Am Soc Nephrol. 2012;7:1130–6.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Jamal SA, West SL, Miller PD. Fracture risk assessment in patients with chronic kidney disease. Osteoporos Int. 2012;23:1191–8.CrossRefPubMedGoogle Scholar
  65. 65.
    Jamal SA, West SL, Miller PD. Bone and kidney disease: diagnostic and therapeutic implications. Curr Rheumatol Rep. 2012;14:217–23.CrossRefPubMedGoogle Scholar
  66. 66.
    Ott SM. When bone mass fails to predict bone failure. Calcif Tissue Int. 1993;53(Suppl. 1):S7–13.CrossRefPubMedGoogle Scholar
  67. 67.
    Jamal SA, Hayden JA, Beyene J. Low bone mineral density and fractures in long term hemodialysis patients: a meta-analysis. Am J Kidney Dis. 2007;49:674–81.CrossRefPubMedGoogle Scholar
  68. 68.
    Jamal SA, Cheung AM, West S, Lok C. Bone mineral density by DXA and HR pQCT can discriminate fracture status in men and women with stages 3 to 5 chronic kidney disease. Osteoporos Int. 2012;23:2805–13.CrossRefPubMedGoogle Scholar
  69. 69.
    Nishiyama KK, Macdonald HM, Buie HR, Hanley DA, Boyd SK. Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal aBMD: an in vivo HR-pQCT study. J Bone Miner Res. 2010;25:882–90.PubMedGoogle Scholar
  70. 70.
    Liu XS, Stein EM, Zhou B, et al. Individual trabecula segmentation (ITS)-based morphological analyses and microfinite element analysis of HRpQCT images discriminate postmenopausal fragility fractures independent of DXA measurements. J Bone Miner Res. 2012;27:263–72.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Pereira RC, Bischoff DS, Yamaguchi D, Salusky IB, Wesseling-Perry K. Micro-CT in the assessment of pediatric renal osteodystrophy by bone histomorphometry. Clin J Am Soc Nephrol. 2016;11:481–7.CrossRefPubMedGoogle Scholar
  72. 72.
    NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2010;285:785–95.CrossRefGoogle Scholar
  73. 73.
    Kanis JA, on behalf of the World Health Organization Scientific Group. Assessment of osteoporosis at the primary health-care level. Technical report. Sheffield: World Health Organization Collaborating Centre for Metabolic Bone Diseases, University of Sheffield; 2007. Printed by the University of Sheffield.Google Scholar
  74. 74.
    Tartaglione L, Pasquali M, Rotondi S, Muci ML, Covic A, Mazzaferro S. Positioning novel biologicals in CKD mineral and bone disorders. J Nephrol. 2017;30(5):689–99. [Epub ahead of print].CrossRefPubMedGoogle Scholar
  75. 75.
    Miller PD. Diagnosis and treatment of osteoporosis in chronic renal disease. Semin Nephrol. 2009;29:144–55.CrossRefPubMedGoogle Scholar
  76. 76.
    Lane NE, Parimi N, Corr M, et al. Association of serum fibroblast growth factor 23 (FGF23) and incident fractures in older men: the Osteoporotic Fractures in Men (MrOS) study. J Bone Miner Res. 2013;28:2325–32.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Jamal SA, West SL, Nickolas TL. The clinical utility of FRAX to discriminate fracture status in men and women with chronic kidney disease. Osteoporos Int. 2014;25(1):71–6.CrossRefPubMedGoogle Scholar
  78. 78.
    Naylor KL, Leslie WD, Hodsman AB, Rush DN, Garg AX. FRAX predicts fracture risk in kidney transplant recipients. Transplantation. 2014;97:940–5.CrossRefPubMedGoogle Scholar
  79. 79.
    West SL, Lok CE, Langsetmo L, Cheung AM, Szabo E, Pearce D, et al. Bone mineral density predicts fractures in chronic kidney disease. J Bone Miner Res. 2015;30:913–919 8.CrossRefPubMedGoogle Scholar
  80. 80.
    Nickolas TL, Cremers S, Zhang A, et al. Discriminants of prevalent fractures in chronic kidney disease. J Am Soc Nephrol. 2011;22:1560–72.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Naylor KL, Garg AX, Zou G, et al. Comparison of fracture risk prediction among individuals with reduced and normal kidney function. Clin J Am Soc Nephrol. 2015;10:646–53.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Fried LF, Biggs ML, Shlipak MG, et al. Association of kidney function with incident hip fracture in older adults. J Am Soc Nephrol. 2007;18:282–6.CrossRefPubMedGoogle Scholar
  83. 83.
    Coco M, Rush H. Increased incidence of hip fractures in dialysis patients with low serum parathyroid hormone. Am J Kidney Dis. 2000;36:1115–21.CrossRefPubMedGoogle Scholar
  84. 84.
    Beaubrun AC, Kilpatrick RD, Freburger JK, Bradbury BD, Wang L, Brookhart MA. Temporal trends in fracture rates and postdischarge outcomes among hemodialysis patients. J Am Soc Nephrol. 2013;24(9):1461.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Naylor K, McArthur E, Leslie W, et al. Three three-year incidence of fracture in chronic kidney disease. Kidney Int. 2014;86:810–8.CrossRefPubMedGoogle Scholar
  86. 86.
    Ketteler M, Block GA, Evenepoel P, et al. Executive summary of the 2017 KDIGO Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) Guideline Update: what’s changed and why it matters. Kidney Int. 2017;92:23–36.CrossRefGoogle Scholar
  87. 87.
    Moe SM. Renal osteodystrophy or kidney-induced osteoporosis? Curr Osteoporos Rep. 2017;15:194–7.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Mazzaferro S, Goldsmith D, Larsson TE, Massy ZA, Cozzolino M. Vitamin D metabolites and/or analogs: which D for which patient? Curr Vasc Pharmacol. 2014;12:339–49.CrossRefPubMedGoogle Scholar
  89. 89.
    Andress DL, Keith MD, Norris C, et al. Intravenous calcitriol in the treatment of refractory osteitis fibrosa of chronic renal failure. N Engl J Med. 1989;321:274–9.CrossRefPubMedGoogle Scholar
  90. 90.
    Bover J, Cozzolino M. Mineral and bone disorders in chronic kidney disease and end-stage renal disease patients: new insights into vitamin D receptor activation. Kidney Int Suppl. 2011;1:122–9.CrossRefGoogle Scholar
  91. 91.
    Behets GJ, Spasovski G, Sterling LR, et al. Bone histomorphometry before and after long-term treatment with cinacalcet in dialysis patients with secondary hyperparathyroidism. Kidney Int. 2015;87:846–56.CrossRefPubMedGoogle Scholar
  92. 92.
    Sumida K, Ubara Y, Hoshino J, Mise K, Hayami N, Suwabe T, et al. Once-weekly teriparatide in hemodialysis patients with hypoparathyroidism and low bone mass: a prospective study. Osteoporos Int. 2016;27:1441–50.CrossRefPubMedGoogle Scholar
  93. 93.
    Chen CL, Chen NC, Hsu CY, et al. An open-label, prospective pilot clinical study of denosumab for severe hyperparathyroidism in patients with ow bone mass undergoing dialysis. J Clin Endocrinol Metab. 2014;99:2426–32.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sandro Mazzaferro
    • 1
  • Silverio Rotondi
    • 1
  • Lida Tartaglione
    • 1
  • Natalia De Martino
    • 1
  • Cristiana Leonangeli
    • 1
  • Marzia Pasquali
    • 1
  1. 1.Unit of Nephrology, Dipartimento di Scienze Cardiovascolari Respiratorie Nefrologiche Anestesiologiche e Geriatriche, Azienda Policlinico Umberto ISapienza Università di RomaRomeItaly

Personalised recommendations