Advertisement

Electromagnetic-Wave Wigglers

  • H. P. Freund
  • T. M. AntonsenJr.
Chapter

Abstract

The physical mechanism in the free-electron laser depends upon the propagation of an electron beam through a periodic magnetic field. Both incoherent and coherent radiation results from the undulatory motion of the electron beam in the external fields which permits a wave-particle coupling to the output radiation. Coherent radiation depends upon the stimulated emission due to the ponderomotive wave formed by the beating of the radiation and wiggler fields. The wiggler field itself may be either magnetostatic or electromagnetic in nature. Although the bulk of experiments as of this time have relied upon magnetostatic wigglers with either helical or planar polarizations, the fundamental principle has also been demonstrated in the laboratory using a large-amplitude electromagnetic wave to induce the requisite undulatory motion in the electron beam. In this chapter, we discuss the fundamental theory of free-electron lasers with electromagnetic-wave wigglers.

Keywords

Electromagnetic-wave wiggler Single-particle trajectories Small-signal gain Efficiency enhancement 

References

  1. 1.
    V.L. Granatstein, P. Sprangle, R.K. Parker, J.A. Pasour, M. Herndon, S.P. Schlesinger, Realization of a relativistic mirror: electromagnetic backscattering from the front of a magnetized relativistic electron beam. Phys. Rev. A 14, 1194 (1976)CrossRefGoogle Scholar
  2. 2.
    V.L. Granatstein, S.P. Schlesinger, M. Herndon, R.K. Parker, J.A. Pasour, Production of megawatt submillimeter pulses by stimulated magneto-Raman scattering. Appl. Phys. Lett. 30, 384 (1977)CrossRefGoogle Scholar
  3. 3.
    P. Sprangle, V.L. Granatstein, L. Baker, Stimulated scattering from a magnetized relativistic electron beam. Phys. Rev. A 12, 1697 (1975)CrossRefGoogle Scholar
  4. 4.
    P. Sprangle, A.T. Drobot, Stimulated backscattering from relativistic unmagnetized electron beams. J. Appl. Phys. 50, 2652 (1979)CrossRefGoogle Scholar
  5. 5.
    A.T. Lin, J.M. Dawson, Nonlinear saturation and thermal effects on the free-electron laser using an electromagnetic pump. Phys. Fluids 23, 1224 (1980)CrossRefGoogle Scholar
  6. 6.
    H.R. Hiddleston, S.B. Segall, Equations of motion for a free-electron laser with an electromagnetic pump field and an axial electrostatic field. IEEE J. Quantum Electron. QE-17, 1488 (1981)CrossRefGoogle Scholar
  7. 7.
    H.R. Hiddleston, S.B. Segall, G.C. Catella, Gain-enhanced free-electron laser with an electromagnetic pump field, in Physics of Quantum Electronics: Free-Electron Generators of Coherent Radiation, ed. by S.F. Jacobs, G.T. Moore, H.S. Pilloff, M. Sargent, M.O. Scully, R. Spitzer, vol. 9 (Addison-Wesley, Reading, 1982), p. 849Google Scholar
  8. 8.
    H.P. Freund, R.A. Kehs, V.L. Granatstein, Electron orbits in combined electromagnetic wiggler and axial guide magnetic fields. IEEE J. Quantum Electron. QE-21, 1080 (1985)CrossRefGoogle Scholar
  9. 9.
    A. Goldring, L. Friedland, Electromagnetically pumped free-electron laser with a guide magnetic field. Phys. Rev. A 32, 2879 (1985)CrossRefGoogle Scholar
  10. 10.
    J.A. Pasour, P. Sprangle, C.M. Tang, C.A. Kapetanakos, High-power two-stage free-electron laser oscillator operating in the trapped particle mode. Nucl. Instr. Meth. A237, 154 (1985)CrossRefGoogle Scholar
  11. 11.
    S.B. Segall, M.S. Curtin, S.A. Von Laven, Key issues in the design of a two-stage free-electron laser. Nucl. Instr. Meth. A250, 316 (1986)CrossRefGoogle Scholar
  12. 12.
    I. Kimel, L.R. Elias, G. Ramian, The University of California at Santa Barbara two-stage free-electron laser. Nucl. Instr. Meth. A250, 320 (1986)CrossRefGoogle Scholar
  13. 13.
    H.P. Freund, R.A. Kehs, V.L. Granatstein, Linear gain of a free-electron laser with an electromagnetic-wave wiggler and an axial guide magnetic field. Phys. Rev. A 34, 2007 (1986)CrossRefGoogle Scholar
  14. 14.
    H.P. Freund, Efficiency enhancement in free-electron lasers driven by electromagnetic-wave wigglers. IEEE J. Quantum Electron. QE-23, 1590 (1987)CrossRefGoogle Scholar
  15. 15.
    B.G. Danly, G. Bekefi, R.C. Davidson, R.J. Temkin, T.M. Tran, J.S. Wurtele, Principles of gyrotron powered electromagnetic wigglers for free-electron lasers. IEEE J. Quantum Electron. QE-23, 103 (1987)CrossRefGoogle Scholar
  16. 16.
    J. Gea-Banacloche, G.T. Moore, R.R. Schlicher, M.O. Scully, H. Walther, Soft X-ray free-electron laser with a laser undulator. IEEE J. Quantum Electron. QE-23, 1558 (1987)CrossRefGoogle Scholar
  17. 17.
    T.M. Tran, B.G. Danly, J.S. Wurtele, Free-electron lasers with electromagnetic standing-wave wigglers. IEEE J. Quantum Electron. QE-23, 1578 (1987)CrossRefGoogle Scholar
  18. 18.
    A. Sharma, V. Tripathi, A whistler pumped free-electron laser. Phys. Fluids 31, 3375 (1988)CrossRefGoogle Scholar
  19. 19.
    R. Hofland, D.C. Pridmore-Brown, Optically-pumped free-electron laser with electrostatic reacceleration. Nucl. Instr. Meth. A285, 276 (1989)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • H. P. Freund
    • 1
  • T. M. AntonsenJr.
    • 2
  1. 1.University of Maryland, University of New MexicoViennaUSA
  2. 2.University of MarylandPotomacUSA

Personalised recommendations