Role of Ferns in Environmental Cleanup

  • Bhupinder Dhir


Ferns have been identified as a major group of plants that show high efficiency for removing various inorganic and organic contaminants from the environment. Both terrestrial and aquatic fern species including Pteris vittata, Pityrogramma calomelanos, Azolla pinnata, and Salvinia minima have been exploited for removing heavy metals, radionuclides, nutrients, hydrocarbons, and volatile compounds from contaminated soil and water. Efficiency of ferns for removing contaminants depends upon high rate of accumulation/removal and detoxification potential. Fast growth rate, high tolerance capacity, and high efficiency of contaminant removal strengthen the role of ferns as phytoremediators. Hence they can be used as a vital component of phytotechnologies framed for environmental cleanup.


Azolla Hydrocarbons Metals Pteris Radionuclides Salvinia 


  1. Al-Baldawi IA, Sheikh Abdullah SR, Suja F, Anuar N, Idris M (2012) Preliminary test of hydrocarbon exposure on Azolla pinnata in phytoremediation process. In: International conference on environment, energy and biotechnology, vol 33. IACSIT Press, SingaporeGoogle Scholar
  2. Alexandra DO, Mihaela DC, Cristina SL (2014) Applications of pteridophytes in phytoremediation. Curr Trends Nat Sci 3:68–73Google Scholar
  3. Asbchin SA, Omran AN, Jafari N (2012) Potential of Azolla filiculoides in the removal of Ni and Cu from wastewaters. Afr J Biotechnol 11(95):16158–16164CrossRefGoogle Scholar
  4. Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biochemical resource for phytoremediation of metal-polluted soils. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 85–107Google Scholar
  5. Banerjee G, Sarker S (1997) The role of Salvinia rotundifolia in scavenging aquatic Pb (II) pollution: a case study. Bioprocess Eng 17:295–300Google Scholar
  6. Benaroya RO, Tzin V, Tel-Or E, Zamski E (2004) Lead accumulation in the aquatic fern Azolla filiculoides. Plant Physiol Biochem 42:639–645CrossRefGoogle Scholar
  7. Bennicelli R, Stezpniewska Z, Banach A, Szajnocha K, Ostrowski J (2004) The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr(VI)) from municipal waste water. Chemosphere 55:141–146PubMedCrossRefGoogle Scholar
  8. Bennicelli RP, Balakhnina TI, Szajnocha K, Banach A, Wolinska A (2005) Potential of Azolla caroliniana for the removal of Pb and Cd from wastewaters. Int Agrophys 19:251–255Google Scholar
  9. Bucher M, Rausch C, Daram P (2001) Molecular and biochemical mechanisms of phosphorus uptake into plants. J Plant Nutr Soil Sci 164:209–217CrossRefGoogle Scholar
  10. Carlozzi P, Padovani G (2016) These plants purify the air, removing VOC’s and more via NASA study. Environ Sci Pollut Res 23:8749–8755CrossRefGoogle Scholar
  11. Cohen MF, Williams J, Yamasaki H (2002) Biodegradation of diesel fuel by an Azolla derived bacterial consortium. J Environ Sci Health Part A Tox Hazard Subst Environ Eng A 37(9):1593–1606CrossRefGoogle Scholar
  12. Cohen-Shoel N, Barkay Z, Ilzycer D, Gilath I, Tel-Or E (2002) Biofiltration of toxic elements by Azolla biomass. Water Air Soil Pollut 135:93–104CrossRefGoogle Scholar
  13. Costa ML, Santos MC, Carrapiço F (1999) Biomass characterization of Azolla filiculoides grown in natural ecosystems and wastewater. Hydrobiologia 415:323–327CrossRefGoogle Scholar
  14. De Kempeneer L, Sercu B, Vanbrabant W, Van Langenhove H, Verstraete W (2004) Bioaugmentation of the phyllosphere for the removal of toluene from indoor air. Appl Microbiol Biotechnol 64:284–288PubMedCrossRefGoogle Scholar
  15. Dela Cruz M, Christensen JH, Thomsen JD, Müller R (2014) Can ornamental potted plants remove volatile organic compounds from indoor air? A review. Environ Sci Pollut Res 21:13909–13928CrossRefGoogle Scholar
  16. Dhir B (2009) Salvinia: an aquatic fern with potential use in phytoremediation. Environ We Int J Sci Technol 4:23–27Google Scholar
  17. Dhir B, Sharmila P, Saradhi PP, Sharma S, Kumar R, Mehta D (2011) Heavy metal induced physiological alterations in Salvinia natans. Ecotoxicol Environ Saf 74:1678–1684PubMedCrossRefGoogle Scholar
  18. Drăghiceanu OA, Bobrescu CM, Soare LC (2014) Application of pteridophytes in phytoremediation. Curr Trends Natl Sci 3(6):68–73Google Scholar
  19. Duan GL, Zhu YG, Tong YP, Cai C, Kneer R (2005) Characterization of arsenate reductase in the extract of root and fronds of chinese brake fern, an arsenic hyperaccumulator. Plant Physiol 138:461–469PubMedPubMedCentralCrossRefGoogle Scholar
  20. Ena A, Carlozzi P, Pushparaj B, Paperi R, Carnevale S, Angelo S (2007) Ability of the aquatic fern Azolla to remove chemical oxygen demand and polyphenols from olive mill wastewater. Grasas Aceites 58(1):34–39CrossRefGoogle Scholar
  21. Espinoza-Quinones FR, Zacarlein CE, Palacio SM, Obregon CL, Zenatti DC, Galante RM, Rossi N, Rossi FL, Pereira RA, Welter RA, Rizzulto MA (2005) Removal of heavy metals from polluted river using aquatic macrophytes Salvinia sp. Braz J Plant Physiol 35:744–746Google Scholar
  22. Feng R, Wei C, Tu S, Tang S, Wu F (2010) Simultaneous hyperaccumulation of arsenic and antimony in Cretan brake fern: evidence of plant uptake and subcellular distributions. Microchem J 97:38–43CrossRefGoogle Scholar
  23. Fons F, Froissard D, Bessière JM, Buatois B, Rapior S (2010) Biodiversity of volatile organic compounds from five French ferns. Nat Prod Commun 5(10):1655–1658PubMedGoogle Scholar
  24. Forni C, Nicolai MA, D’Egidio DG (2001) Potential of the small aquatic plants Azolla and Lemna for nitrogenous compounds removal from wastewater. Trans Ecol Environ 49:315–324Google Scholar
  25. Francesconi K, Visoottiviseth P, Sridockhan W, Goessler W (2002) Arsenic species in an hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator. Sci Total Environ 284:27–35PubMedCrossRefGoogle Scholar
  26. Fuentes II, Espadas-Gil F, Talavera-May C, Fuentes G, Santamaría JM (2014) Capacity of the aquatic fern (Salvinia minima Baker) to accumulate high concentrations of nickel in its tissues, and its effect on plant physiological processes. Aquat Toxicol 155:142–150PubMedCrossRefGoogle Scholar
  27. García ML, Lodeiro PL, Barriada JL, Herrero R, de Vicente MES (2010) Reduction of Cr(VI) levels in solution using bracken fern biomass: batch and column studies. Chem Eng J 165:517–523CrossRefGoogle Scholar
  28. Ghodake GS, Telke AA, Jadhav JP, Govindwar SP (2009) Potential of Brassica juncea in order to treat textile effluent contaminated sites. Int J Phytoremediation 11:297–312CrossRefGoogle Scholar
  29. Giese M, Bauer-Doranth U, Langebartels C, Sandermann H (1994) Detoxification of formaldehyde by the spider plant (Chlorophytum comosum L.) and by soybean (Glycine max L.) cell-suspension cultures. Plant Physiol 104:1301–1309PubMedPubMedCentralCrossRefGoogle Scholar
  30. Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374PubMedCrossRefGoogle Scholar
  31. Gonzaga MIS, Gonzaga SJA, Ma LQ (2006) Arsenic phytoextraction and hyperaccumulation by fern species. Sci Agric 63:90–101CrossRefGoogle Scholar
  32. Hanson AD, Roje S (2001) One-carbon metabolism in higher plants. Annu Rev Plant Physiol Plant Mol Biol 52:119–137PubMedCrossRefGoogle Scholar
  33. Ho YS (2003) Removal of copper ions from aqueous solution by tree fern. Water Res 37:2323–2330PubMedCrossRefGoogle Scholar
  34. Ho YS, Chiu WT, Hsu CS, Huang CT (2004) Sorption of lead ions from aqueous solution using tree fern as a sorbent. Hydrometallurgy 73:55–61CrossRefGoogle Scholar
  35. Hoffmann T, Kutter C, Santamaria JM (2004) Capacity of Salvinia minima Baker to tolerate and accumulate As and Pb. Eng Life Sci 4:61–65CrossRefGoogle Scholar
  36. Jacobson ME, Chiang SY, Gueriguian L, Westholm LR, Pierson J, Zhu G, Saunders FM (2003) Transformation kinetics of trinitrotoluene conversion in aquatic plants. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation. Wiley, New YorkGoogle Scholar
  37. Jadia CD, Fulekar MH (2008) Phytotoxicity and remediation of heavy metals by fibrous root grass (sorghum). J Appl Biosci 10:491–499Google Scholar
  38. Jafari N, Senobari Z, Pathak RK (2010) Biotechnological potential of Azolla filiculoides, Azolla microphylla and Azolla pinnata for biosorption of Pb(II), Mn(II), cu (II) and Zn(II). Ecol Environ Conserv 16:443–449Google Scholar
  39. Jindrova E, Chocova M, Demnerova K, Brenner V (2002) Bacterial aerobic degradation of benzene, toluene, ethylbenzene and xylene. Folia Microbiol 47:83–93CrossRefGoogle Scholar
  40. Kagalkar AN, Jagtap UB, Jadhav JP, Bapat VA, Govindwar SP (2009) Biotechnological strategies for phytoremediation of the sulphonated azo dye Direct Red 5B using Blumea malcolmii Hook. Bioresour Technol 100:4104–4110PubMedCrossRefGoogle Scholar
  41. Kagalkar AN, Jagtap UB, Jadhav JP, GovindwarSP BSA (2010) Studies on phytoremediation potentiality of Typhonium flagelliforme for the degradation of Brilliant Blue R. Planta 232(1):271–285PubMedCrossRefGoogle Scholar
  42. Kamachi H, Komori I, Tamura H, Sawa Y, Karahara I, Honma Y, Wada N, Kawabata T, Matsuda K, Ikeno S, Noguchi M, Inoue H (2005) Lead tolerance and accumulation in the gametophytes of the fern Athyrium yokoscense. J Plant Res 118:137–145PubMedCrossRefGoogle Scholar
  43. Kanchenko AG, Singh B, Bhatia NP (2007) Heavy metal tolerance in common fern species. Aust J Bot 55:63–73CrossRefGoogle Scholar
  44. Kertulis GM, Ma LQ, MacDonald GE, Chen R, Winefordner JD, Cai Y (2005) Arsenic speciation and transport in Pteris vittata L. and the effects on phosphorus in the xylem sap. Environ Exp Bot 54:239–247CrossRefGoogle Scholar
  45. Khandare RV, Kabra AN, Awate AV, Govindvar SP (2013) Synergistic degradation of diazo dye direct red 5B by Portulaca grandiflora and Pseudomonas putida. Int J Environ SciTechnol 10:1039–1050CrossRefGoogle Scholar
  46. Khataee AR, Movafeghi A, Vafaei F, Lisar SSY, Zarei M (2013) Potential of the aquatic fern Azolla filiculoides in biodegradation of an azo dye: modeling of experimental results by artificial neural networks. Int J Phytoremediation 15:729–742PubMedCrossRefGoogle Scholar
  47. Kim KJ, Kil MJ, Song JS, Yoo EH, Son K, Kays SJ (2008) Efficiency of volatile formaldehyde removal by indoor plants: contribution of aerial plant parts versus the root zone. J Am Soc Hortic Sci 133(4):521–526Google Scholar
  48. Konno H, Nakato T, Nakashima S, Katoh K (2005) Lygodium japonicum fern accumulates copper in the cell wall pectin. J Exp Bot 56:1923–1931PubMedCrossRefGoogle Scholar
  49. Kubicka K, Samecka-Cymerman A, Kolon K, Kosiba P, Kempers AJ (2015) Chromium and nickel in Pteridium aquilinum from environments with various levels of these metals. Environ Sci Pollut Res Int 22:527–534PubMedCrossRefGoogle Scholar
  50. Kumari S, Kumar B, Sheel R (2016) Bioremediation of heavy metals by serious aquatic weed, Salvinia. Int J Curr Microbiol Appl Sci 5:355–368CrossRefGoogle Scholar
  51. Ma LQ, Komar KM, Tu C, Zhang WH, Cai Y, Kennelley ED (2001) A fern that hyperaccumulate arsenic: a hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils. Nature 409:579–579PubMedCrossRefGoogle Scholar
  52. Mashkani SG, Ghazvini PTM (2009) Biotechnological potential of Azolla filiculoides for biosorption of Cs and Sr: application of micro-PIXE for measurement of biosorption. Bioresour Technol 100:1915–1921CrossRefGoogle Scholar
  53. McGuinness M, Dowling D (2009) Plant-associated bacterial degradation of toxic organic compounds in soil. Int J Environ Res Public Health 6:2226–2247PubMedPubMedCentralCrossRefGoogle Scholar
  54. Meharg AA (2003) Variation in arsenic accumulation hyperaccumulation in ferns and their allies. New Phytol 157:25–31CrossRefGoogle Scholar
  55. Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and non resistant plant species. New Phytol 154:29–43CrossRefGoogle Scholar
  56. Molisani MM, Rocha R, Machado W, Barreto RC, Lacerda LD (2006) Mercury contents in aquatic macrophytes from two reservoirs in the paraiba do sul: Guandu river system, SE Brazil. Braz J Biol 66:101–107PubMedCrossRefGoogle Scholar
  57. Muchhal US, Pardo JM, Raghothama KG (1996) Phosphate transporters from the higher plant Arabidopsis thaliana. Proc Nat Acad Sci USA 93:10519–10523PubMedPubMedCentralCrossRefGoogle Scholar
  58. Nichols PB, Couch JD, Al-Hamdani SH (2000) Selected physiological responses of Salvinia minima to different chromium concentrations. Aquat Bot 68:313–319CrossRefGoogle Scholar
  59. Nie M, Wang Y, Yu J, Xiao M, Jiang L, Yang J, Fang C, Chen J, Li B (2011) Understanding plant-microbe interactions for phytoremediation of petroleum polluted soil. PLoS One 6(3):1–8CrossRefGoogle Scholar
  60. Nilratnisakorn S, Thiravetyan P, Nakbanpote W (2007) Synthetic reactive dye wastewater treatment by narrow-leaved cattails (Typha angustifolia Linn.): effects of dye, salinity and metals. Sci Total Environ 384:67–76PubMedCrossRefGoogle Scholar
  61. Nilratnisakorn S, Thiravetyan P, Nakbanpote W (2008) Synthetic reactive dye wastewater treatment by narrow-leaved cattail: studied by XRD and FTIR. Asian J Energ Environ 9:231–252Google Scholar
  62. Olguin J, Hernandez E, Ramos I (2002) The effect of both different light conditions and the pH value on the capacity of Salvinia minima BAKER for removing cadmium, lead and chromium. Acta Biotechnol 22:121–131CrossRefGoogle Scholar
  63. Olguin EJ, Sánchez-Galván G, Pérez-Pérez T, Pérez-Orozco A (2005) Surface adsorption, intracellular accumulation and compartmentalization of Pb(II) in batch-operated lagoons with Salvinia minima as affected by environmental conditions, EDTA and nutrients. J Ind Microbiol Biotechnol 32:577–586PubMedCrossRefGoogle Scholar
  64. Olguín EJ, Sánchez-Galván G, Pérez-Pérez P (2007) Assessment of the phytoremediation potential of Salvinia minima Baker compared to Spirodela polyrrhiza in high-strength organic wastewater. Water Air Soil Pollut 181:135–147CrossRefGoogle Scholar
  65. Patil P, Desai N, Govindwar S, Jadhav JP, Bapat V (2009) Degradation analysis of reactive red 198 by hairy roots of Tagetes patula L. (marigold). Planta 230(4):725–735PubMedCrossRefGoogle Scholar
  66. Pickering IJ, Prince RC, George MJ, Smith RD, George GN, Salt DE (2000) Reduction and coordination of arsenic in Indian mustard. Plant Physiol 122:1171–1177PubMedPubMedCentralCrossRefGoogle Scholar
  67. Popa K, CecalA HD, Caraus I, Draghici CL (2004) Removal of 60Co2+ and 137Cs+ ions from low radioactive solutions using Azolla caroliniana Willd. Water fern. Central Euro J Chem 2:434–445Google Scholar
  68. Prabhu SG, Srinikethan G, Hegde S (2016) Potential of pteridophytes in heavy metal phytoremediation. Int J Res Eng Technol 5:1–9Google Scholar
  69. Qing E, Xiu L, Xiao Y (2009) The arsenic hyperaccumulator fern Pteris vittata L. Environ Sci Technol 43:8488–8495CrossRefGoogle Scholar
  70. Rai PK (2008) Phytoremediation of Hg and Cd from industrial effluent using an aquatic free floating macrophyte. Azolla pinnata. Int J Phytoremediation 10:430–439PubMedCrossRefGoogle Scholar
  71. Rakhshaee R, Khosravi M, TaghiGanji MT (2006) Kinetic modeling and thermodynamic study to remove Pb(II), Cd(II), Ni(II) and Zn(II) from aqueous solution using dead and living Azolla filiculoides. J Hazard Mater B134:120–129CrossRefGoogle Scholar
  72. Ribeiro TH, Rubio J, Smith RW (2003) A dried hydrophobic aquaphyte as an oil filter for oil/water emulsions. Spill Sci Technol Bull 8:483–489CrossRefGoogle Scholar
  73. Rizwana M, Darshan M, Nilesh D (2014) Phytoremediation of textile waste water using potential wetland plant: eco-sustainable approach. Int J Interdisciplinary Multidisciplinary Stud 1(4):130–138Google Scholar
  74. Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Ann Rev Plant Physiol Plant Mol Biol 49:643–668CrossRefGoogle Scholar
  75. Sánchez-Galván G, Monroy O, Gómez G, Olguín EJ (2008) Assessment of the hyperaccumulating lead capacity of Salvinia minima using bioadsorption and intracellular accumulation factors. Water Air Soil Pollut 194:77–90CrossRefGoogle Scholar
  76. Schmitz H, Hilgers U, Weidner M (2000) Assimilation and metabolism of formaldehyde by leaves appear unlikely to be of value for indoor air purification. New Phytol 147(2):307–315CrossRefGoogle Scholar
  77. Sharma A, Sachdeva S (2015) Cadmium toxicity and its phytoremediation a review. Int J Sci Eng Res 6(9):395–405Google Scholar
  78. Sheel R, Anand M, Nisha K (2015) Phytoremediation of heavy metals (Zn and Pb) and its toxicity on Azolla filiculoides. Int J Sci Res 4(7):1238–1241Google Scholar
  79. Shin H, Dewbre GR, Harrison MJ (2004) Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J 39:629–642PubMedCrossRefGoogle Scholar
  80. Sood A, Uniyal PL, Prasanna R, Ahluwalia AS (2011) Phytoremediation potential of aquatic macrophyte, Azolla. Ambio 41:22–137Google Scholar
  81. Srivastava M, Ma LQ, SinghN SS (2005) Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic. J Exp Bot 56:1335–1342PubMedCrossRefGoogle Scholar
  82. Srivastava M, Ma LQ, Santos JAG (2006) Three new arsenic hyperaccumulating ferns. Sci Total Environ 364:24–31PubMedCrossRefGoogle Scholar
  83. Stepniewska Z, Bennicelli RP, Balakhnina TI, Szajnocha K, Banach A, Wolinska A (2005) Potential of Azolla caroliniana for the removal of Pb and Cd from wastewaters. Int Agrophys 19:251–255Google Scholar
  84. Suñe N, Sánchez G, Caffaratti S, Maine MA (2007) Cadmium and chromium removal kinetics from solution by two aquatic macrophytes. Environ Pollut 145:467–473PubMedCrossRefGoogle Scholar
  85. Taghi-Ganji M, Khosravi M, Rakhshaee R (2005) Biosorption of Pb, Cd, Cu and Zn from the wastewater by treated A. filiculoides with H2O2/MgCl2. Int J Environ Sci Technol 1:265–271CrossRefGoogle Scholar
  86. Tiwari S, Sarangi BK (2017) Comparative analysis of antioxidant response by Pteris vittata and Vetiveria zizanioides towards arsenic stress. Ecol Eng 100:211–218CrossRefGoogle Scholar
  87. Torbati S, Movafeghi A, Khataee AR (2015) Biodegradation of C.I. acid blue 92 by Nasturtium officinale: study of some physiological responses and metabolic fate of dye. Int J Phytoremediation 17:322–329PubMedCrossRefGoogle Scholar
  88. Treesubsuntorn C, Thiravetyan P (2012) Removal of benzene from indoor air by Dracaena sanderiana: effect of wax and stomata. Atmos Environ 57:317–321CrossRefGoogle Scholar
  89. Tu C, Ma LQ, Bondada B (2002) Arsenic accumulation in the hyperaccumulator Chinese brake and its utilization potential for phytoremediation. J Environ Qual 31:1671–1675PubMedCrossRefGoogle Scholar
  90. Tu S, Ma LQ, Luongo T (2004a) Root exudates and arsenic accumulation in arsenic hyperaccumulating Pteris vittata and non-hyperaccumulating Nephrolepis exaltata. Plant Soil 258:9–19CrossRefGoogle Scholar
  91. Tu S, Ma LQ, MacDonald GE (2004b) Arsenic absorption, speciation and thiol formation in excised parts of Pteris vittata in the presence of phosphorus. Environ Exp Bot 51:121–131CrossRefGoogle Scholar
  92. Ugrekhelidze D, Korte F, Kvesitadze G (1997) Uptake and transformation of benzene and toluene by plant leaves. Ecotoxicol Environ Saf 6:24–29CrossRefGoogle Scholar
  93. Vafaei F, Movafeghi A, Khataee AR, Zarei M, Lisar SSY (2013) Potential of Hydrocotyle vulgaris for phytoremediation of a textile dye: inducing antioxidant response in roots and leaves. Ecotoxicol Environ Saf 93:128–134PubMedCrossRefGoogle Scholar
  94. Wang J, Zhao FJ, Meharg AA, Raab A, Feldman J, McGrath SP (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130:1552–1156PubMedPubMedCentralCrossRefGoogle Scholar
  95. Wathakar AD, Khandare RV, Kamble AA, Mulla AY, Govindwar SP, Jadhav JP (2013) Phytoremediation potential of Petunia grandiflora Juss., an ornamental plant to degrade a disperse, disulfonate triphenylmethane textile dye Brilliant Blue G. Environ Sci Pollut Res Int 20:939–949CrossRefGoogle Scholar
  96. Xu QS, Ji WD, Yang HY, Wang HX, Xu Y, Zhao J, Shi GX (2009) Cadmium accumulation and phytotoxicity in an aquatic fern, Salvinia natans (Linn.) Acta Ecol Sin 29:3019–3027Google Scholar
  97. Zazouli MA, Balarak D, Mahdavi Y (2013) Pyrocatechol removal from aqueous solutions by using Azolla filiculoides. Health Scope 2(1):25–30CrossRefGoogle Scholar
  98. Zhang W, Cai Y, Tu C, Ma LQ (2002) Arsenic speciation and distribution in an arsenic hyperaccumulating plant. Sci Total Environ 300:167–177PubMedCrossRefGoogle Scholar
  99. Zhang W, Cai Y, Downum KR, Ma LQ (2004) Thiol synthesis and arsenic hyperaccumulation in Pteris vittata (Chinese brake fern). Environ Pollut 131:337–345PubMedCrossRefGoogle Scholar
  100. Zhao M, Duncun JR (1997) Removal and recovery of nickel from aqueous solution and electroplating rinse effluent using Azolla filiculoides. Process Biochem 33(3):249–255CrossRefGoogle Scholar
  101. Zhao FJ, Dunham SJ, SP MG (2002) Arsenic hyperaccumulation by different fern species. New Phytol 156:27–31CrossRefGoogle Scholar
  102. Zhao FJ, Wang JR, Barker JHA, Schat H, Bleeker PM, McGrath SP (2003) The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New Phytol 159:403–410CrossRefGoogle Scholar
  103. Zheng J, Niu T, Wu G, Chen W (2010) One magic pteridophyte (Pteris vittata L.): application in remediating arsenic contaminated soils and mechanism of arsenic hyperaccumulation. Front Agric 4:293–298CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Bhupinder Dhir
    • 1
  1. 1.Department of GeneticsUniversity of Delhi South CampusNew DelhiIndia

Personalised recommendations