Advertisement

Current Trends in Pteridophyte Extracts: From Plant to Nanoparticles

  • Liliana Cristina Soare
  • Nicoleta Anca Şuţan
Chapter

Abstract

The therapeutic use of pteridophytes has had a spectacular evolution, starting from their use in the traditional medicine of different peoples to the current stage in which pteridophytes are used in the form of nanoparticles. Phytosynthesis of Ag nanoparticles (AgNPs) in ethanol extracts from spores of Athyrium filix-femina was demonstrated through SEM and EDS analyses. The sizes of AgNPs varied between 10 nm and 94 nm. In the meristematic tips of Allium cepa, mitosis was inhibited by ethanol extracts from spores. The more pronounced mitodepressive effect associated with the presence of C-mitoses was induced by spore extracts supplemented with AgNPs, which demonstrate potential antitumour effects. Depending on the absence or the presence of AgNPs, the experimental samples were defined by distinct chromosomal aberrations, as follows: sticky chromosomes and binuclear cells and C-mitoses and the variation in the chromosome number, respectively.

Keywords

Pteridophyte extracts Nanoparticles Athyrium filix-femina Spores 

Notes

Acknowledgements

The authors thank the following researchers for their contribution to the work: PhD Physicist Cătălin Ducu and PhD Physicist Denis Negrea (University of Pitești). The spores of Athyrium filix-femina were provided by The Romanian Pteridological Society.

References

  1. Abraham G, Kaushik GK (2015) Antimicrobial activity and identification of potential antimicrobial compounds from aquatic pteridophyte, Azolla microphylla Kaulf. Indian J Exp Biol 53:232–235PubMedGoogle Scholar
  2. Aitken RJ, Chaundhry MQ, Boxall ABA, Hull M (2006) Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med 56:300–306CrossRefGoogle Scholar
  3. Akeroyd J, Synge H (1992) Higher plant diversity. In: Groombridge B (ed) Global biodiversity status of the Earth's living resources, 1st edn. Springer, Dordrecht, pp 64–87Google Scholar
  4. Alcaraz LE, Blanco SE, Puig ON, Tomas F, Ferretti FH (2000) Antibacterial activity of flavonoids against methicillin-resistant Staphylococcus aureus strains. J Theor Biol 205:231–240PubMedCrossRefGoogle Scholar
  5. Alihosseini F, Azarmi S, Ghaffari S, Haghighat S, Sorkhabadi RSM (2016) Synergic antibacterial effect of curcumin with ampicillin; free drug solutions in comparison with SLN dispersions. Adv Pharm Bull 6(3):461–465PubMedPubMedCentralCrossRefGoogle Scholar
  6. Allafchian AR, Mirahmadi-Zare SZ, Jalali SHAH, Hashemi SS, Wahabi MR (2016) Green synthesis of silver nanoparticles using phlomis leaf extract and investigation of their antibacterial activity. J Nanostruct Chem 6(2):129–135CrossRefGoogle Scholar
  7. Amoroso VB, Antes DE, Buenavista DP, Coritico FP (2014) Antimicrobial, antipyretic, and anti-inflammatory activities of selected Philippine medicinal pteridophytes. Asian J Biodivers 5:18–40CrossRefGoogle Scholar
  8. Auffan M, Rose J, Wiesner MR, Bottero J (2009) Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ Pollut 157:1127–1133.  https://doi.org/10.1016/j.envpol.2008.10.002 PubMedCrossRefGoogle Scholar
  9. Bahadori MB, Kordi FM, Ahmadi AA, Bahadori S, Valizadeh H (2015) Antibacterial evaluation and preliminary phytochemical screening of selected ferns from Iran. Res J Pharmacogn 2(2):53–59Google Scholar
  10. Baker C, Pradhan A, Pakstis L, Pochan DJ, Shah SI (2005) Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Nanotechnol 5(2):244–249PubMedCrossRefGoogle Scholar
  11. Balaji DS, Basavaraja RD, Mahesh DB, Belawadi KP, Abbaraju V (2008) Biosynthesis and stabilization of Au and Ag alloy nanoparticles by fungus Fusarium semitectum. Sci Technol Adv Mater 9:035012–035017CrossRefGoogle Scholar
  12. Baskaran X, Vigila AVG, Parimelazhagan T, Muralidhara-Rao D, Zhang S (2016) Biosynthesis, characterization, and evaluation of bioactivities of leaf extact-mediated biocompatible silver nanoparticles from an early tracheophyte, Pteris tripartita Sw. Int J Nanomedicine 11:5789–5806PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bernhardt ES, Benjamin PC, Hochella MF, Cardinale BJ, Nisbet RM, Richardson CJ, Yin L (2010) An ecological perspective on nanomaterial impacts in the environment. J Environ Qual 39:1–12CrossRefGoogle Scholar
  14. Bhor G, Maskare S, Hinge S, Singh L, Nalawade A (2014) Synthesis of silver nanoparticles by using leaflet extract of Nephrolepis exaltata L and evaluation of antibacterial activity against human and plant pathogenic bacteria. Asian J Pharm Technol Innov 2(7), p. 6.Google Scholar
  15. Blajeski AL, Phan VA, Kottke TJ, Kaufmann SH (2002) G1 and G2 cell-cycle arrest following microtubule depolymerization in human breast cancer cells. J Clin Invest 110(1):91–99.  https://doi.org/10.1172/JCI13275 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Braga LC, Leite AA, Xavier KG, Takahashi JA, Bemquerer MP, Chartone-Souza E, Nascimento AM (2005) Synergic interaction between pomegranate extract and antibiotics against Staphylococcus aureus. Can J Microbiol 51(7):541–547PubMedCrossRefGoogle Scholar
  17. Britto JD, Gracelin DHS, Kumar PBJR (2014) Antibacterial activity of silver nanoparticles synthesis from a few medicinal ferns. Bull Environ Pharm Life Sci 3(3):224–227Google Scholar
  18. Bunnag D, Dhorranintra B, Limsuvan S (1989) Ferns and their allergenic importance: skin and nasal provocation tests to fern spore extract in allergic and non-allergic patients. Ann Allergy 62(6):554–558PubMedGoogle Scholar
  19. Campos JMS, Davide LC, Soares GLG, Viccini LF (2008) Mutagenic effects due to allelopathic action of fern (Gleicheniaceae) extracts. Allelopath J 22(1):143–151Google Scholar
  20. Cao J, Xia X, Chen X, Xiao J, Wang Q (2013) Characterization of flavonoids from Dryopteris erythrosora and evaluation of their antioxidant, anticancer and acetylcholinesterase inhibition activities. Food Chem Toxicol 51:242–250PubMedCrossRefGoogle Scholar
  21. Cassimeris L, Pryor NK, Salmon ED (1988) Real-time observations of microtubules dynamic instability in living cells. J Cell Biol 107:2223–2231PubMedCrossRefGoogle Scholar
  22. Chai TT, Panirchellvum E, Ong H-C, Wong F-C (2012) Phenolic contents and antioxidant properties of Stenochlaena palustris, an edible medicinal fern. Bot Stud 53:439–446Google Scholar
  23. Chai TT, Yeoh LY, Ismail NIM, Ong HC, Wong FC (2015) Cytotoxicity and antiglucosidase potential of six selected edible and medicinal ferns. Acta Pol Pharm Drug Res 72(2):297–401Google Scholar
  24. Chang HC, Huang G-J, Agrawal D, Kuo C-L, Wu C-R, Tsay H-S (2007) Antioxidant activities and polyphenol contents of six folk medicinal ferns used as “Gusuibu”. Bot Stud 48:397–406Google Scholar
  25. Chew FT, Lim SH, Shang HS, Siti Dahlia M, Goh DYT, Lee BW (2000) Evaluation of the allergenicity of tropical pollen and airborne spores in Singapore. Allergy 55:340–347PubMedCrossRefGoogle Scholar
  26. Chrislyn G, Prachi S, Sangeeta S, Priya S (2016) Green synthesis and characterization of silver nanoparticles. Int J Adv Res 4(8):1563–1568.  https://doi.org/10.21474/IJAR01/1362 CrossRefGoogle Scholar
  27. Croteau MN, Misra SK, Lioma S, Valsami-Jones E (2014) Bioaccumulation and toxicity of CuO nanoparticles by a freshwater invertebrate after waterborne and diet borne exposures. Environ Sci Technol 48:10929–10937.  https://doi.org/10.1021/es5018703 PubMedCrossRefGoogle Scholar
  28. Cushnie TPT, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356PubMedCrossRefGoogle Scholar
  29. Dalli AK, Saha G, Chakraborty U (2007) Characterization of antimicrobial compounds from a common fern, Pteris biaurita. Indian J Exp Biol 45(3):285–290PubMedGoogle Scholar
  30. Deliu I, Bejan C, Vișoiu E, Soare LC (2013) The antimicrobial activity of some extracts of fern gametophytes. Curr Trends Nat Sci 2(2):10–13Google Scholar
  31. Devi S, Yasmeen, Singh J, Shankar R (1989) Patch testing animals to allergenic fern spores. J Toxicol Cutan Ocul Toxicol 8(2):167–172CrossRefGoogle Scholar
  32. Eder M, Mehnert W (1998) Bedeutung planzlicher begleitstoffe in extrackten. Pharmazie 53:285–293PubMedGoogle Scholar
  33. Eneji AE, Inanaga S, Muranaka S, Li J, Hattori T, Tsuji W (2005) Effect of calcium silicate on growth and dry matter yield of Chloris gayana and Sorghum sudanense under two soil water regimes. Grass Forage Sci 60:393–398CrossRefGoogle Scholar
  34. European Commission Scientific Committee on Emerging and Newly Identified Health Risks (2006) Modified opinion (after public consultation) on the appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies, European Commission, Bruxelles, Belgium, p 3–14Google Scholar
  35. Fernández OL, Mazzeo DEC, Marin-Morales MA (2007) Mechanism of micronuclei formation in polyploidization cells of Allium cepa exposed to trifluralin herbicide. Pestic Biochem Physiol 88:252–259CrossRefGoogle Scholar
  36. Fiskesjö G (1985) The Allium test as standard in environmental monitoring. Hereditas 102:99–112PubMedCrossRefGoogle Scholar
  37. Fiskesjö G (1993) Allium test I: a 2-3 day plant test for toxicity assessment by measuring the mean root growth of anions (Allium cepa L.) Environ Toxicol 8(4):461–470.  https://doi.org/10.1002/tox2530080410 Google Scholar
  38. Fun S, Tian F, Li J, Hutchins W, Chen H, Yang F, Yuan X, Cui Z, Yang C-H, He C (2017) Identification of phenolic compounds that suppress the virulence of Xanthomonas oryzae on rice via the type III secretion system. Mol Plant Pathol 18(4):555–568CrossRefGoogle Scholar
  39. Gartner C, Etahl W, Sies H (1997) Lycopene is more bioavailable from tomato paste than from fresh tomatoes. Am J Clin Nutr 66:116–122PubMedCrossRefGoogle Scholar
  40. Geethalakshmi R, Sarada DVL (2010) Synthesis of plant mediated silver nanoparticles using Trianthema decandra extract and evaluation of their anti-microbial activities. Int J Eng Sci Technol 2(5):970–975Google Scholar
  41. Ghosh S, Patil S, Ahire M et al (2011) Synthesis of gold nanoanisotrops using Dioscorea bulbifera tuber extract. J Nanomater 2011, Article ID 354793.  https://doi.org/10.1155/2011/354793
  42. Ghosh S, Patil S, Ahire M et al (2012a) Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int J Nanomedicine 7:483–496PubMedPubMedCentralGoogle Scholar
  43. Ghosh S, Patil S, Ahire M et al (2012b) Gnidia glauca flower extract mediated synthesis of gold nanoparticles and evaluation of its chemocatalytic potential. J Nanobiotechnol 10:17CrossRefGoogle Scholar
  44. Glamočlija U, Haverić S, Čakar J, Durmić A, Haverić A, Bajrović K (2014) Bioactivity and genotoxicity of centuries old remedy Asplenium scolopendrium L. Int J Pharm 4(2):38–41Google Scholar
  45. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO, ZnO, Ag, CNT, 2 Fullerenes) for different regions. Environ Sci Technol 43:9216–9222.  https://doi.org/10.1021/es9015553 PubMedCrossRefGoogle Scholar
  46. Hammami S, Snène A, El Mokni R, Faidi K, Falconieri D, Dhaouadi H, Piras A, Mighri Z, Porcedda S (2016) Essential oil constituents and antioxidant activity of Asplenium ferns. J Chromatogr Sci 54(8):1341–1345.  https://doi.org/10.1093/chromsci/bmw071 PubMedCrossRefGoogle Scholar
  47. Handy RD, Owen R, Valsami-Jones E (2008a) The ecotoxicology of nanoparticles and nanomaterials: current satus, knowledge gaps, challenges, and future needs. Ecotoxicology 17:315–325.  https://doi.org/10.1007/s10646-008-0206-0 PubMedCrossRefGoogle Scholar
  48. Handy RD, Kamme F, Lead JR, Hasselov M, Owen R, Crane M (2008b) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314.  https://doi.org/10.1007/s10646-008-0199-8 PubMedCrossRefGoogle Scholar
  49. Hattori T, Inanaga S, Araki H, Morita S, Luxuva M, Lux A (2005) Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiol Plant 123:459–466CrossRefGoogle Scholar
  50. Haverkamp R, Marshall A (2009) The mechanism of metal nanoparticle formation in plants: limits on accumulation. J Nanopart Res 11(6):1453–1463CrossRefGoogle Scholar
  51. Ho R, Teai T, Bianchini J-P, Laffont R, Raharivelomanana P (2011) Ferns: from traditional uses to pharmaceutical development, chemical identification of active principles. In: Kumar A, Fernández H, Revilla MA (eds) Working with ferns: issues and applications. Springer, New York, pp 321–346CrossRefGoogle Scholar
  52. Höhne H, Richter B (1981) Untersuchungen über den Mineralstoff- und Stickstoffgehalt von Farnkrautern. Flora 171:1–10CrossRefGoogle Scholar
  53. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, Hong NJ, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104–105115CrossRefGoogle Scholar
  54. IBM Corp Released (2011) IBM SPSS statistics for Windows, version 200 Armonk. IBM Corp, New YorkGoogle Scholar
  55. Jeevanandam J, Chan YS, Danquah MK (2017) Biosynthesis and characterization of MgO nanoparticles from plant extracts via induced molecular nucleation. New J Chem 41(7):2800–2814CrossRefGoogle Scholar
  56. Johnson M, Amutha S, Shibila T, Janakiraman N (2017) Green synthesis of silver nanoparticles using Cyathea nilgirensis Holttum and their cytotoxic and phytotoxic potentials. Part Sci Technol.  https://doi.org/10.1080/02726351.2016.1278292
  57. Jordan MA, Thrower D, Wilson L (1991) Mechanism of inhibition of cell proliferation by Vinca alkaloids. Cancer Res 51:2212–2222PubMedGoogle Scholar
  58. Kalcheva VP, Dragoeva AP, Kalchev KN, Enchev DD (2009) Cytotoxic and genotoxic effects of Br-containing oxalosphole on Allium cepa L. root tip cells and mouse bone marrow cells. Genet Mol Biol 32(2):389–393PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kalita S, Kandimalla R, Sharma KK, Kataki AC, Deka M, Kotoky J (2016) Amoxicillin functionalized gold nanoparticles reverts MRSA resistance. Mater Sci Eng C 61:720–727CrossRefGoogle Scholar
  60. Kandhasamy M, Arunachalam KD, Thatheyus AJ (2008) Drynaria quercifolia (L.) J.Sm: a potential resource for antibacterial activity. Afr J Microbiol Res 2:202–205Google Scholar
  61. Kang KC, Kim SS, Baik MH, Choi JW, Kwon SH (2008) Synthesis of silver nanoparticles by using the green chemical method. Appl Chem 12(2):281–284Google Scholar
  62. Khokhani D, Zhang C, Li Y, Wang Q, Zeng Q, Yamazaki A, Hutchins W, Zhou SS, Chen X, Yang CH (2013) Discovery of plant phenolic compounds that act as type III secretion system inhibitors or inducers of the fire blight pathogen, Erwinia amylovora. Appl Environ Microbiol 79(18):5424–5436PubMedPubMedCentralCrossRefGoogle Scholar
  63. Klain SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851CrossRefGoogle Scholar
  64. Klaine SJ, Koelmans AA, Horne N, Carley S, Handy RD, Kapustka L, Nowack B, Von der Kammer F (2012) Paradigms to assess the environmental impact of manufactured nanomaterials. Environ Toxicol Chem 31(1):3–14.  https://doi.org/10.1002/etc.733 PubMedCrossRefGoogle Scholar
  65. Korbekandi H, Chitsazi MR, Asghari G, Najafi RB, Badii A, Iravani S (2014) Green biosynthesis of silver nanoparticles using Azolla pinnata whole plant hydroalcoholic extract. Green Processes Synth 3(5):365–373.  https://doi.org/10.1515/gps-2014-0042 Google Scholar
  66. Korthout HA, Casper MP, Kottenhagen MJ, Helmer Q, Wang M (2002) A tormentor in the quest for plant p-53-like proteins. FEBS Lett 526:53–57PubMedCrossRefGoogle Scholar
  67. Koteswaramma B, Kamakshamma J, Varalaksmi S (2017) Biological synthesis of silver nanoparticles from aqueous extract of Actiniopteris radiata and evaluation of their antimicrobial activity. Int J Pharm Biol Sci 8(1):121–125Google Scholar
  68. Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan PT (2012) Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim Acta A 93:95–99CrossRefGoogle Scholar
  69. Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A (2011) A flow cytometric method to assess nanoparticle uptake in bacteria. Cytometry A 79A:707–712Google Scholar
  70. Kunjiappan S, Bhattacharjee C, Chowdhury R (2015) Hepatoprotective and antioxidant effects of Azolla microphylla based gold nanoparticles against acetaminophen induced toxicity in a fresh water common carp fish (Cyprinus carpio L.) Nanomed J 2(2):88–110Google Scholar
  71. Lai HY, Lim YY, Tan SP (2009) Antioxidative, tyrosinase inhibiting and antibacterial activities of leaf extracts from medicinal ferns. Biosci Biotechnol Biochem 73(6):1362–1366PubMedCrossRefGoogle Scholar
  72. Lai HY, Lim YY, Kim KH (2010) Blechnum orientale Linn a fern with potential as antioxidant, anticancer and antibacterial agent. BMC Complement Altern Med 10:15. http://wwwbiomedcentralcom/1472-6882/10/15 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Lai JC, Lai HY, Rao NK, Ng SF (2016) Treatment for diabetic ulcer wounds using a fern tannin optimized hydrogel formulation with antibacterial and antioxidative properties. J Ethnopharmacol 189:277–289.  https://doi.org/10.1016/jep.2016.05.032 PubMedCrossRefGoogle Scholar
  74. Lee HB, Kim JC, Lee SM (2009) Antibacterial activity of two phloroglucinols, flavaspidic acids AB and PB, from Dryopteris crassirhizoma. Arch Pharm Res 32:655–659.  https://doi.org/10.1007/s12272-009-1502-9 PubMedCrossRefGoogle Scholar
  75. Lee JH, Lim JM, Velmurugan P, Park YJ, Park YJ, Bang KS, Oh BT (2016) Photobiologic-mediated fabrication of silver nanoparticles with antibacterial activity. J Photochem Photobiol B 162:93–99.  https://doi.org/10.1016/j.jphotobiol.2016.06.029 PubMedCrossRefGoogle Scholar
  76. Lila MA (2009) Interactions between flavonoids that benefit human health. In: Gould K, Davies K, Winefield C (eds) Anthocyanins biosynthesis, functions, and applications. Springer, New York, pp 305–324Google Scholar
  77. Lila MA, Raskin I (2005) Health-related interactions of phytochemicals. J Food Sci 7:R20–R27CrossRefGoogle Scholar
  78. Lim YH, Kim IH, Seo JJ (2007) In vitro activity of kaempferol isolated from the Impatiens balsamina alone and in combination with erythromycin or clindamycin against Propionibacterium acnes. J Microbiol 45(5):473–477PubMedGoogle Scholar
  79. Liu R (2003) Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am J Clin Nutr 78:517S–520SPubMedCrossRefGoogle Scholar
  80. Liu Y, Wujisguleng W, Long C (2012) Food uses of ferns in China: a review. Acta Soc Bot Pol 81(4):263–270CrossRefGoogle Scholar
  81. Lok C, Ho C, Chen R, He Q, Tu W, Sun H, Tam PK, Chiu J, Chem C (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12:527–534PubMedCrossRefGoogle Scholar
  82. Lu SG (2007) Pteridology. Higher Education Press, BeijingGoogle Scholar
  83. Ma XY, Xie CX, Liu C, Song JY, Yao H, Luo K, Zhu YJ, Gao T, Pang XH, Qian J, Chen SL (2010) Species identification of medicinal pteridophytes by a DNA barcode marker, the chloroplast psbA-trnH intergenic region. Biol Pharm Bull 33(11):1919–1924PubMedCrossRefGoogle Scholar
  84. Ma H, Williams PL, Diamond SA (2013) Ecotoxicity of manufactured ZnO nanoparticles - a review. Environ Pollut 172:76–85.  https://doi.org/10.1016/j.envpol.2012.08.011 PubMedCrossRefGoogle Scholar
  85. Magaye RR, Wu A, Zhao J, Zou B, Shi H, Yu H, Liu K, Lin X, Xu J, Yang C (2014) Acute toxicity of nickel nanoparticles in rats after intravenous injection. Int J Nanomedicine 9(1):1393–1402PubMedPubMedCentralGoogle Scholar
  86. Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO (2014) "Green" nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat 6(1):35–44Google Scholar
  87. Manzo S, Miglietta ML, Rametta G, Buono S, Di Francia G (2013) Toxic effects of ZnO nanoparticles towards marine algae Dunaliella tertiolecta. Sci Total Environ 445-446:371–376.  https://doi.org/10.1016/j.scitotenv.2012.12.051 PubMedCrossRefGoogle Scholar
  88. Marston A, Hostettmann K (2006) Separation and quantification of flavonoids. In: Andersen ØM, Markham KR (eds) Flavonoids chemistry, biochemistry and applications. Taylor & Francis Group, Boca Raton, London, New York, pp 1–36Google Scholar
  89. McFee AF, Tice RR (1990) Influence of treatment to sacrifice time and the presence of BrdUrd on chemically-induced aberration rates in mouse marrow cells. Mutat Res 241:95–108PubMedCrossRefGoogle Scholar
  90. Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31:346–356.  https://doi.org/10.1016/j.biotechadv.2013.01.003 PubMedCrossRefGoogle Scholar
  91. Moran RC (2004) A natural history of ferns Portland. Timber Press, PortlandGoogle Scholar
  92. Moran RC (2008) Diversity, biogeography, and floristics. In: Ranker TA, Haufler CH (eds) Biology and evolution of ferns and Lycophytes. Cambridge University Press, New York, pp 367–394CrossRefGoogle Scholar
  93. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353.  https://doi.org/10.1088/0957-4484/16/10/059 PubMedCrossRefGoogle Scholar
  94. Nalwade AR, Badhe MN, Pawale CB, Hinge SB (2013) Rapid biosynthesis of silver nanoparticles using fern leaflet extract and evaluation of their antibacterial activity. Int J Biol Technol 4(2):12–18Google Scholar
  95. Nath K, Bhattacharya MK, Sen A, Kar S (2013) Antibacterial activity of frond extract of Asplenium nidus L., a threatened ethnomedicinal fern of North East India. International. J Pharmacogn Phytochem 28(2):1169–1172Google Scholar
  96. Nayak N, Rath S, Mishra MP, Ghosh G, Padhy RN (2013) Antibacterial activity of the terrestrial fern Lygodium flexuosum (L.) Sw. against multidrug resistant enteric- and uro- pathogenic bacteria. J Acute Dis 2:270–276CrossRefGoogle Scholar
  97. Nowack B, Bucheli TD (2007) Occurrence, behavior and effect of nanoparticles in the environment. Environ Pollut 150(1):5–22PubMedCrossRefGoogle Scholar
  98. Pal SK (2012) Study of solvent extracts of some selected ferns for antimicrobial activity. Indian J Biol Sci 18:33–37Google Scholar
  99. Pan C, Chen YG, Ma XY, Jiang JH, He F, Zhang Y (2011) Phytochemical constituents and pharmacological activities of plants from the genus Adiantum: a review. Trop J Pharm Res 10(5):681–692Google Scholar
  100. Panneerselvam C, Murugan K, Roni M, Aziz AT, Suresh U, Rajaganesh R, Mathiyazhagan P, Subramaniam J, Devakumar D, Nicoletti M, Higuchi A, Alarfaj AA, Munusamy MA, Kumar S, Desneux N, Benelli G (2016) Fern-synthesized nanoparticles in the fight against malaria: LC/MS analysis of Pteridium aquilinum leaf extract and biosynthesis of silver nanoparticles with high mosquitocidal and antiplasmodial activity. J Parasitol Res 115(3):997–1013.  https://doi.org/10.1007/s00436-015-4828-x CrossRefGoogle Scholar
  101. Parihar P, Parihar L, Bohra A (2006) Antibacterial activity of Athyrium pectinatum (Wall) Presl. Nat Prod Rad 5(4):262–265Google Scholar
  102. Park Y, Hong YN, Weyers A, Kim YS, Linhardt RJ (2011) Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnol 5(3):69–78.  https://doi.org/10.1049/iet-nbt.2010.0033 PubMedCrossRefGoogle Scholar
  103. Prathna TC, Mathew L, Chandrasekaran N, Raichur AM, Mukherjee A (2010) Biomimetic synthesis of nanoparticles: science, technology and applicability. In: Mukherjee A (ed) Biomimetics learning from nature. InTech.  https://doi.org/10.5772/8776. https://www.intechopen.com/books/biomimetics-learning-from-nature/biomimetic-synthesis-of-nanoparticles-science-technology-amp-applicability
  104. Rajaganesh R, Murugan K, Panneerselvam C, Jayashanthini S, Aziz AT, Roni M, Suresh U, Trivedi S, Rehman H, Nicoletti M, Benelli G, Higuchi A (2016) Fern-synthesized silver nanocrystals: towards a new class of mosquito oviposition deterrents? Res Vet Sci 109:40–51.  https://doi.org/10.1016/j.rvsc.2016.09.012 PubMedCrossRefGoogle Scholar
  105. Rajesh KD, Vasantha S, Panneerselvam A, Rajesh NV, Jeyathilakan N (2016) Phytochemical analysis, in vitro antioxidant potential and gas chromatography-mas spectrometry studies of Dicranopteris linearis. Asian J Pharm Clin Res 9(Suppl. 2):1–6Google Scholar
  106. Rani D, Khare PB, Dantu PK (2010) In vitro antibacterial and antifungal properties of aqueous and non-aqueous frond extracts of Psilotum nudum, Nephrolepis biserrata and Nephrolepis cordifolia. Indian J Pharm Sci 72(6):818–822.  https://doi.org/10.4103/0250-474X.84606 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Rank J (2003) The method of Allium anaphase-telophase chromosome aberration assay. Ekologija (Vilnius) 1:38–42Google Scholar
  108. Raut R, Kolekar N, Lakkakula J, Mendhulkar V, Kashid S (2010) Extracellular synthesis of silver nanoparticles using dried leaves of Pongamia pinnata (L.) Pierre. Nano-Micro Lett 2(2):106–113.  https://doi.org/10.5101/nml.v2i2.p106-113 CrossRefGoogle Scholar
  109. Repetto G, Jos A, Hayen MJ, Molero ML, del Peso A, Salguero M, del Castillo P, Rodriguez-Vicente MC, Repetto M (2001) A test battery for the ecotoxicological evaluation of pentachlorophenol. Toxicol In Vitro 15:503–509.  https://doi.org/10.1016/S0887-2333(01)00055-8 PubMedCrossRefGoogle Scholar
  110. Roco MC (2005) Environmentally responsible development of nanotechnology. Environ Sci Technol 39(5):106A–112A.  https://doi.org/10.1021/es053199u PubMedCrossRefGoogle Scholar
  111. Roos M (1996) Mapping the world’s pteridophyte diversity - systematics and floras. In: Camus JM, Gibby M, Johns RJ (eds) Pteridology in perspective. Kew: Royal Botanic Gardens, London, pp 29–42Google Scholar
  112. Roudsari MT, Bahrami AR, Dehghani H, Iranshani M, Matin MM, Mahmoudi M (2012) Bracken-fern extract induce cell cycle arrest and apoptosis in certain cancer cell lines. Asian Pac J Cancer Prev 13(12):6047–6053PubMedCrossRefGoogle Scholar
  113. Samidoss CM, Murugn K, Mathath R, Sivaprizajothi S, Suganya NA (2013) Larvicidal potential of silver nanoparticles synthesized using Adiantum capillus-veneris against Anopheles stephensi (Diptera; Culicidae). Int J Curr Trop Med Health Res 1(1):9–18Google Scholar
  114. Sant DG, Gujarathi TR, Harne SR, Ghosh S, Kitture R, Kale S, Chopade BA, Pardesi KR (2013) Adiantum philippense L. frond assisted rapid green synthesis of gold and silver nanoparticles. J Nanopart 2013:9.  https://doi.org/10.1155/2013/182320 CrossRefGoogle Scholar
  115. Santhoshkumar S, Nagarajan N (2014) AM fungal association in the rhizosphere soil of some pteridophytic plant species in Valparai Hills, Western Ghats of Tamilnadu, India. Int J Life Sci 2(3):201–206Google Scholar
  116. Santos ATB, Silva Araujo TF, Silva LCN, Silva CB, Oliveira AFM, Araujo JM, Menezes Lima VL, Santos Correia MT (2015) Organic extract from Indigofera suffruticosa leaves have antimicrobial and synergic actions with erythromycin against Staphylococcus aureus. Front Microbiol 6:1–7.  https://doi.org/10.3389/fmicb.2015.00013 CrossRefGoogle Scholar
  117. Santos RD, Pimenta-Freire G, FJB F, Dias-Souza MV (2016) Interference of flavonoids and carotenoids on the antimicrobial activity of some drugs against clinical isolates of Pseudomonas aeruginosa. Int Food Res J 23(3):1268–1273Google Scholar
  118. Schneider H, Schuettpelz E, Pryer KM, Cranfill R, Magallón S, Lupia R (2004) Ferns diversified in the shadow of angiosperms. Nature 428(6982):553–557.  https://doi.org/10.1038/nature02361 PubMedCrossRefGoogle Scholar
  119. Simán SE, Povey AC, Ward TH, Margison GP, Sheffield E (2000) Fern spore extracts can damage DNA. Br J Cancer 83(1):69–73PubMedPubMedCentralCrossRefGoogle Scholar
  120. Sinha T, Ahmaruzzaman M (2016) Indigenous north eastern Indian fern mediated fabrication of spherical silver and anisotropic gold nano structured materials and their efficiency for the abatement of perilous organic compounds from waste eater – a green approach. RSC Adv 6:21076–21089.  https://doi.org/10.1039/C5RA26124D CrossRefGoogle Scholar
  121. Soare LC, Ferdeș M, Deliu I, Gibea A (2012a) Studies regarding the antibacterial activity of some extracts of native pteridophytes. UPB Sci Bull Ser B 74(1):21–26Google Scholar
  122. Soare LC, Ferdeș M, Stefanov S, Denkova Z, Nikolova R, Denev P, Bejan C, Păunescu A (2012b) Antioxidant activity, polyphenols content and antimicrobial activity of several native pteridophytes of Romania. Not Bot Hort Agrobot Cluj Napoca 40(1):53–57.  https://doi.org/10.15835/nbha4016648 Google Scholar
  123. Soare LC, Deliu I, Iosub I, Dobrescu CM, Ferdeș M (2012c) New therapeutic formulations with an antibacterial effect, based on plant extracts. Current trends in. Nat Sci 1(2):79–82Google Scholar
  124. Soliman MI (2001) Genotoxicity testing of neem plant (Azadirachta indica A. Juss) using the Allium cepa chromosome aberration assay. J Biol Sci 1(11):1021–1027CrossRefGoogle Scholar
  125. Souri E, Amin G, Farsam H, Jalalizadeh H, Barezi S (2008) Screening of thirteen medicinal plant extracts for antioxidant activity. Iran J Pharm Res 7(2):149–154Google Scholar
  126. Șuțan AN, Fierăscu I, Fierăscu RC, Manolescu DȘ, Soare LC (2016) Comparative analytical characterization and in vitrocytogenotoxic activity evaluation of Asplenium scolopendrium L. leaves and rhizome extracts prior to and after Ag nanoparticles phytosynthesis. Ind Crop Prod 83:379–386.  https://doi.org/10.1016/j.indcrop.2016.01.011 CrossRefGoogle Scholar
  127. Tedesco SB, Laughinghouse HD IV (2012) Bioindicator of genotoxicity: the Allium cepa test. In: Srivastava JK (ed) Environmental contamination. InTech, Rijeka, pp 137–156Google Scholar
  128. Teow SY, Ali SA (2015) Synergistic antibacterial activity of Curcumin with antibiotics against Staphylococcus aureus. Pak J Pharm Sci 28(6):2109–2114PubMedGoogle Scholar
  129. Thakar SB, Ghorpade PN, Kale MV, Sonawane KD (2015) Fern Ethnomedicinal Plant Database: exploring fern ethnomedicinal plants knowledge for computational drug discovery. Curr Comput Aided Drug Des 11(3):266–271PubMedCrossRefGoogle Scholar
  130. Tryon AF, Lugardon B (1978) Wall structure and mineral content in Selaginella spores. Pollen Spores 20:315–340Google Scholar
  131. Turkevich J, Stevenson PC, Hiller PCJ (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55CrossRefGoogle Scholar
  132. Valizadeh H, Sonboli A, Kordi FM, Dehghan H, Bahadori MB (2015) Cytotoxicity, antioxidant activity and phenolic content of eight fern species from North of Iran. Pharm Sci 21:18–24.  https://doi.org/10.15171/PS.2015.12 CrossRefGoogle Scholar
  133. Verma DK, Hasan SH, Banik RM (2016) Photo-catalyzed and phyto-mediated rapid green synthesis of silver nanoparticles using herbal extract of Salvinia molesta and its antimicrobial efficacy. J Photochem Photobiol B 155:51–59.  https://doi.org/10.1016/j.jphotobiol.2015.12.008 PubMedCrossRefGoogle Scholar
  134. Wang S, Lawson R, Ray P, Yu H (2011) Toxic effects of gold nanoparticles on Salmonella typhimurium bacteria. Toxicol Ind Health 27(6):547–554.  https://doi.org/10.1177/0748233710393395 PubMedPubMedCentralCrossRefGoogle Scholar
  135. Xavier GSA, Selvaraj P, Nida J (2016) Impact of phytoecdysone fractions of the ferns Cyclosorous interruptus, Christella dentata and Nephrolepis cordifolia on the biology of Spodoptera litura (Fab). J Biopest 9(2):125–134Google Scholar
  136. Xie Y, Zheng Y, Dai X, Wang Q, Cao J, Xiao J (2015) Sesonal dynamics of total flavonoid contents and antioxidant activity of Dryopteris erythrosora. Food Chem 186:113–118PubMedCrossRefGoogle Scholar
  137. Yoshida T, Hatano T, Ito H (2005) High molecular weight plant polyphenols (tannins): prospective functions. In: Romeo JT (ed) Recent advances in phytochemistry, volume 39: chemical ecology and phytochemistry of forest ecosystems. Elsevier Inc., San Diego, CA, pp 163–190.Google Scholar
  138. Yusuf UK (1994) Flavonoid glycosides in the fern Blechnum orientale Linn. Am Fern J 84:69–70CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Liliana Cristina Soare
    • 1
  • Nicoleta Anca Şuţan
    • 1
  1. 1.Department of Natural SciencesUniversity of PiteştiPiteștiRomania

Personalised recommendations