Explanations for Groups

  • Alexander Felfernig
  • Ludovico Boratto
  • Martin Stettinger
  • Marko Tkalčič
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)


Explanations are used in recommender systems for various reasons. Users have to be supported in making (high-quality) decisions more quickly. Developers of recommender systems want to convince users to purchase specific items. Users should better understand how the recommender system works and why a specific item has been recommended. Users should also develop a more in-depth understanding of the item domain. Consequently, explanations are designed in order to achieve specific goals such as increasing the transparency of a recommendation or increasing a user’s trust in the recommender system. In this chapter, we provide an overview of existing research related to explanations in recommender systems, and specifically discuss aspects relevant to group recommendation scenarios. In this context, we present different ways of explaining and visualizing recommendations determined on the basis of aggregated predictions and aggregated models strategies.


  1. 1.
    B. Abdollahi, O. Nasraoui, Using explainability for constrained matrix factorization, in 11th ACM Conference on Recommender Systems, Como, Italy (2017), pp. 79–83Google Scholar
  2. 2.
    S. Amer-Yahia, S. Roy, A. Chawla, G. Das, C. Yu, Group recommendation: semantics and efficiency, in VLDB’09, Lyon, France (2009), pp. 754–765Google Scholar
  3. 3.
    L. Ardissono, A. Goy, G. Petrone, M. Segnan, P. Torasso, Intrigue: personalized recommendation of tourist attractions for desktop and handset devices. Appl. Artif. Intell. Spec. Issue Artif. Intell. Cult. Heritage Digit. Libr. 17(8–9), 687–714 (2003)Google Scholar
  4. 4.
    M. Atas, A. Felfernig, M. Stettinger, T.N. Trang Tran, Beyond item recommendation: using recommendations to stimulate knowledge sharing in group decisions, in 9th International Conference on Social Informatics (SocInfo 2017), Oxford, UK (2017), pp. 368–377Google Scholar
  5. 5.
    M. Bilgic, R. Mooney, Explaining recommendations: satisfaction vs. promotion, in ACM IUI 2005 Workshop Beyond Personalization, San Diego, CA, USA (2005), pp. 1–6Google Scholar
  6. 6.
    B. Buchanan, E. Shortliffe, Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project (Addison-Wesley, Boston, 1984)Google Scholar
  7. 7.
    G. Carenini, J. Moore, Generating and evaluating evaluative arguments. Artif. Intell. 170(11), 925–952 (2006)CrossRefGoogle Scholar
  8. 8.
    J. Castro, F. Quesada, I. Palomares, L. Martínez, A consensus-driven group recommender system. Intell. Syst. 30(8), 887–906 (2015)Google Scholar
  9. 9.
    J. Castro, J. Lu, G. Zhang, Y. Dong, L. Martínez, Opinion dynamics-based group recommender systems. IEEE Trans. Syst. Man Cybern. Syst. 99, 1–13 (2017).CrossRefGoogle Scholar
  10. 10.
    S. Chang, F. Harper, L. He, L. Terveen, CrowdLens: experimenting with crowd-powered recommendation and explanation, in 10th International AAAI Conference on Web and Social Media (ICWSM’16) (AAAI, Menlo Park, 2016), pp. 52–61Google Scholar
  11. 11.
    Y. Chen, Interface and interaction design for group and social recommender systems, in ACM Conference on Recommender Systems (RecSys’11), Chicago, IL (2011), pp. 363–366Google Scholar
  12. 12.
    L. Chen, P. Pu, Critiquing-based recommenders: survey and emerging trends. User Model. User-Adap. Inter. 22(1–2), 125–150 (2012)CrossRefGoogle Scholar
  13. 13.
    L. Chen, F. Wang, Explaining recommendations based on feature sentiments in product reviews, in ACM IUI 2017 (ACM, New York, 2017), pp. 17–28Google Scholar
  14. 14.
    H. Cramer, V. Evers, S. Ramlal, M. Van Someren, L. Rutledge, N. Stash, L. Aroyo, B. Wielinga, The effects of transparency on trust in and acceptance of a content-based art recommender. User Model. User-Adap. Inter. 18(5), 455–496 (2008)CrossRefGoogle Scholar
  15. 15.
    R. Dong, M. Schaal, M. OMahony, B. Smyth, Topic extraction from online reviews for classification and recommendation, in 23rd International Joint Conference on Artificial Intelligence (IJCAI 2013) (AAAI, Menlo Park, 2013), pp. 1310–1316Google Scholar
  16. 16.
    A. Felfernig, R. Burke, Constraint-based recommender systems: technologies and research issues, in ACM International Conference on Electronic Commerce (ICEC08), Innsbruck, Austria (2008), pp. 17–26Google Scholar
  17. 17.
    A. Felfernig, B. Gula, E. Teppan, Knowledge-based recommender technologies for marketing and sales. Spec. Issue Pers. Tech. Recomm. Syst. Intell. User Interfaces Int. J. Pattern Recognit. Artif. Intell. 21(2), 1–22 (2006)Google Scholar
  18. 18.
    A. Felfernig, B. Gula, G. Leitner, M. Maier, R. Melcher, S. Schippel, E. Teppan, A dominance model for the calculation of decoy products in recommendation environments, in AISB Symposium on Persuasive Technologies, Aberdeen, Scotland (2008), pp. 43–50Google Scholar
  19. 19.
    A. Felfernig, B. Gula, G. Leitner, M. Maier, R. Melcher, E. Teppan, Persuasion in knowledge-based recommendation, in 3rd International Conference on Persuasive Technology. Lecture Notes in Computer Science (Springer, Berlin, 2008), pp. 71–82Google Scholar
  20. 20.
    A. Felfernig, M. Schubert, G. Friedrich, M. Mandl, M. Mairitsch, E. Teppan, Plausible repairs for inconsistent requirements, in 21st International Joint Conference on Artificial Intelligence (IJCAI’09), Pasadena, CA (2009), pp. 791–796Google Scholar
  21. 21.
    A. Felfernig, M. Schubert, C. Zehentner, An efficient diagnosis algorithm for inconsistent constraint sets. Artif. Intell. Eng. Des. Anal. Manuf. 26(1), 53–62 (2012)CrossRefGoogle Scholar
  22. 22.
    A. Felfernig, L. Hotz, C. Bagley, J. Tiihonen, Knowledge-Based Configuration: From Research to Business Cases, 1st edn. (Elsevier/Morgan Kaufmann Publishers, Burlington, 2014)Google Scholar
  23. 23.
    A. Felfernig, M. Atas, T.N. Trang Tran, M. Stettinger, Towards group-based configuration, in International Workshop on Configuration 2016 (ConfWS’16) (2016), pp. 69–72Google Scholar
  24. 24.
    A. Felfernig, M. Atas, T.N. Trang Tran, M. Stettinger, S. Polat-Erdeniz, An analysis of group recommendation heuristics for high- and low-involvement items, in International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA/AIE 2017), Arras, France (2017), pp. 335–344Google Scholar
  25. 25.
    G. Friedrich, Elimination of spurious explanations, in 16th European Conference on Artificial Intelligence (ECAI 2004) (2004), pp. 813–817Google Scholar
  26. 26.
    G. Friedrich, M. Zanker, A taxonomy for generating explanations in recommender systems. AI Mag. 32(3), 90–98 (2011)CrossRefGoogle Scholar
  27. 27.
    E. Gansner, Y. Hu, S. Kobourov, C. Volinsky, Putting recommendations on the map: visualizing clusters and relations, in ACM Conference on Recommender Systems, New York, USA (2009), pp. 345–348Google Scholar
  28. 28.
    F. Gedikli, D. Jannach, M. Ge, How should I explain? a comparison of different explanation types for recommender systems. Hum. Comput. Stud. 72(4), 367–382 (2014)CrossRefGoogle Scholar
  29. 29.
    S. Gkika, G. Kekakos, The persuasive role of explanations in recommender systems, in 2nd International Workshop on Behavior Change Support Systems (BCSS 14) (2014), pp. 59–68Google Scholar
  30. 30.
    J. Herlocker, J. Konstan, J. Riedl, Explaining collaborative filtering recommendations, in ACM Conference on Computer Supported Cooperative Work (ACM, New York, 2000), pp. 241–250Google Scholar
  31. 31.
    A. Jameson, More than the sum of its members: challenges for group recommender systems, in International Working Conference on Advanced Visual Interfaces (2004), pp. 48–54Google Scholar
  32. 32.
    A. Jameson, B. Smyth, Recommendation to groups, in The Adaptive Web, ed. by P. Brusilovsky, A. Kobsa, W. Nejdl. Lecture Notes in Computer Science, vol. 4321 (Springer, Berlin, 2007), pp. 596–627Google Scholar
  33. 33.
    A. Jameson, S. Baldes, T. Kleinbauer, Two methods for enhancing mutual awareness in a group recommender system, in ACM International Working Conference on Advanced Visual Interfaces, Gallipoli, Italy (2004), pp. 447–449Google Scholar
  34. 34.
    A. Jameson, M. Willemsen, A. Felfernig, M. de Gemmis, P. Lops, G. Semeraro, L. Chen, Human decision making and recommender systems, in Recommender Systems Handbook, ed. by F. Ricci, L. Rokach, B. Shapira, 2nd edn. (Springer, Berlin, 2015), pp. 611–648CrossRefGoogle Scholar
  35. 35.
    E. Knutov, P. DeBra, M. Pechenizkiy, AH 12 years later: a comprehensive survey of adaptive hypermedia methods and techniques. New Rev. Hypermed. Multimed. 15(1), 5–38 (2009)CrossRefGoogle Scholar
  36. 36.
    J. Konstan, J. Riedl, Recommender systems: from algorithms to user experience. User Model. User-Adap. Inter. 22(1), 101–123 (2012)CrossRefGoogle Scholar
  37. 37.
    P. Kouki, J. Schaffer, J. Pujara, J. O’Donovan, L. Getoor, User preferences for hybrid explanations, in 11th ACM Conference on Recommender Systems, Como, Italy (2017), pp. 84–88Google Scholar
  38. 38.
    B. Lamche, U. Adigüzel, W. Wörndl, Interactive explanations in mobile shopping recommender systems, in 8th ACM Conference on Recommender Systems, Joint Workshop on Interfaces and Human Decision Making for Recommender Systems (IntRS’14), Foster City, Silicon Valley, California, USA (2014), pp. 14–21Google Scholar
  39. 39.
    H. Lieberman, N. Dyke, A. Vivacqua, Let’s browse: a collaborative web browsing agent, in 4th International Conference on Intelligent User Interfaces, Los Angeles, CA, USA (1999), pp. 65–68Google Scholar
  40. 40.
    W. Lin, S. Alvarez, C. Ruiz, Efficient adaptive-support association rule mining for recommender systems. Data Min. Knowl. Disc. 6, 83–105 (2002)MathSciNetCrossRefGoogle Scholar
  41. 41.
    N. Mahyar, W. Liu, S. Xiao, J. Browne, M. Yang, S. Dow, Consensus: visualizing points of disagreement for multi-criteria collaborative decision making, in ACM Conference on Computer Supported Cooperative Work and Social Computing (ACM, New York, 2017), pp. 17–20Google Scholar
  42. 42.
    K. McCarthy, J. Reilly, L. McGinty, B. Smyth, On the dynamic generation of compound critiques in conversational recommender systems, in International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems (Springer, Berlin, 2004), pp. 176–184Google Scholar
  43. 43.
    K. McCarthy, J. Reilly, L. McGinty, B. Smyth, Thinking positively - explanatory feedback for conversational recommender systems, in European Conference on Case-Based Reasoning (ECCBR-04) Explanation Workshop (2004), pp. 1–10Google Scholar
  44. 44.
    B. Miller, I. Albert, S. Lam, J. Konstan, J. Riedl, MovieLens unplugged: experiences with a recommender system on four mobile devices, in People and Computers XVII Designing for Society, ed. by E. O’Neill, P. Palanque, P. Johnson (Springer, London, 2004), pp. 263–279CrossRefGoogle Scholar
  45. 45.
    K. Muhammad, A. Lawlor, B. Smyth, A live-user study of opinionated explanations for recommender systems, in 21st International Conference on Intelligent User Interfaces (IUI 2016) (ACM, New York, 2016), pp. 256–260Google Scholar
  46. 46.
    G. Ninaus, A. Felfernig, M. Stettinger, S. Reiterer, G. Leitner, L. Weninger, W. Schanil, IntelliReq: intelligent techniques for software requirements engineering, in Prestigious Applications of Intelligent Systems Conference (PAIS) (2014), pp. 1161–1166Google Scholar
  47. 47.
    E. Ntoutsi, K. Stefanidis, K. Norvag, H. Kriegel, Fast group recommendations by applying user clustering, in ER 2012. Lecture Notes in Computer Science, vol. 7532 (Springer, Berlin, 2012), pp. 126–140Google Scholar
  48. 48.
    I. Nunes, D. Jannach, A systematic review and taxonomy of explanations in decision support and recommender systems. User Model. User-Adap. Inter. 27, 393–444 (2017)CrossRefGoogle Scholar
  49. 49.
    M. O’Connor, D. Cosley, J. Konstan, J. Riedl, PolyLens: a recommender system for groups of users, in 7th European Conference on Computer Supported Cooperative Work (2001), pp. 199–218Google Scholar
  50. 50.
    I. Palomares, L. Martinez, F. Herrera, MENTOR: a graphical monitoring tool of preferences evolution in large-scale group decision making. Knowl.-Based Syst. 58, 66–74 (2014)CrossRefGoogle Scholar
  51. 51.
    P. Pu, L. Chen, Trust-inspiring explanation interfaces for recommender systems. Knowl.-Based Syst. 20(6), 542–556 (2007)CrossRefGoogle Scholar
  52. 52.
    L. Quijano-Sanchez, J. Recio-García, B. Díaz-Agudo, G. Jiménez-Díaz, Social factors in group recommender systems. ACM Trans. Intell. Syst. Technol. 4(1), 8:1–8:30 (2006)Google Scholar
  53. 53.
    L. Quijano-Sanchez, C. Sauer, J. Recio-García, B. Díaz-Agudo, Make it personal: a social explanation system applied to group recommendations. Expert Syst. Appl. 76, 36–48 (2017)CrossRefGoogle Scholar
  54. 54.
    B. Rastegarpanah, M. Crovella, K. Gummadi, Exploring explanations for matrix factorization recommender systems, fatrec workshop, in 11th ACM Conference on Recommender Systems, Como, Italy (2017)Google Scholar
  55. 55.
    M. Salamo, K. McCarthy, B. Smyth, Generating recommendations for consensus negotiation in group personalization services. Pers. Ubiquit. Comput. 16(5), 597–610 (2012)CrossRefGoogle Scholar
  56. 56.
    D. Serbos, S. Qi, N. Mamoulis, E. Pitoura, P. Tsaparas, Fairness in package-to-group recommendations, in WWW’17 (ACM, New York, 2017), pp. 371–379Google Scholar
  57. 57.
    M. Stettinger, Choicla: towards domain-independent decision support for groups of users, in 8th ACM Conference on Recommender Systems, Foster City, Silicon Valley, California, USA (2014), pp. 425–428Google Scholar
  58. 58.
    M. Stettinger, A. Felfernig, G. Leitner, S. Reiterer, Counteracting anchoring effects in group decision making, in 23rd Conference on User Modeling, Adaptation, and Personalization (UMAP’15). Lecture Notes in Computer Science, vol. 9146, Dublin, Ireland (2015), pp. 118–130Google Scholar
  59. 59.
    P. Symeonidis, A. Nanopoulos, Y. Manolopoulos, Providing justifications in recommender systems. IEEE Trans. Syst. Man Cybern. 38, 1262–1272 (2008)CrossRefGoogle Scholar
  60. 60.
    J. Teze, S. Gottifredi, A. Garcia, G. Simari, Improving argumentation-based recommender systems through context-adaptable selection criteria. J. Econ. Perspect. 42(21), 8243–8258 (2015)Google Scholar
  61. 61.
    N. Tintarev, Explaining Recommendations, University of Aberdeen, 2009Google Scholar
  62. 62.
    N. Tintarev, J. Masthoff, Designing and evaluating explanations for recommender systems, in Recommender Systems Handbook (Springer, Boston, 2011), pp. 479–510Google Scholar
  63. 63.
    N. Tintarev, J. Masthoff, Evaluating the effectiveness of explanations for recommender systems. User Model. User-Adap. Inter. 22(4–5), 399–439 (2012)CrossRefGoogle Scholar
  64. 64.
    N. Tintarev, J. Masthoff, Explaining recommendations: design and evaluation, in Recommender Systems Handbook, ed. by F. Ricci, L. Rokach, B. Shapira, 2nd edn. (Springer, Boston, 2015), pp. 353–382CrossRefGoogle Scholar
  65. 65.
    N. Tintarev, J. O’Donovan, A. Felfernig, Human interaction with artificial advice givers. ACM Trans. Interact. Intell. Syst. 6(4), 1–10 (2016)CrossRefGoogle Scholar
  66. 66.
    T. Ulz, M. Schwarz, A. Felfernig, S. Haas, A. Shehadeh, S. Reiterer, M. Stettinger, Human computation for constraint-based recommenders. J. Intell. Inf. Syst. 49(1), 37–57 (2017)CrossRefGoogle Scholar
  67. 67.
    K. Verbert, D. Parra, P. Brusilovsky, E. Duval, Visualizing recommendations to support exploration, transparency and controllability, in International Conference on Intelligent User Interfaces (IUI’13), New York, NY, USA (2013), pp. 351–362Google Scholar
  68. 68.
    J. Vig, S. Sen, J. Riedl, Tagsplanations: explaining recommendations using tags, in ACM IUI 2009, Sanibel Island, FL,USA (ACM, New York, 2009), pp. 47–56Google Scholar
  69. 69.
    D. Winterfeldt, W. Edwards, Decision Analysis and Behavioral Research (Cambridge University Press, Cambridge, 1986)Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Alexander Felfernig
    • 1
  • Ludovico Boratto
    • 2
  • Martin Stettinger
    • 1
  • Marko Tkalčič
    • 3
  1. 1.Institute for Software TechnologyGraz University of TechnologyGrazAustria
  2. 2.EURECATCentre Tecnológico de CatalunyaBarcelonaSpain
  3. 3.Faculty of Computer ScienceFree University of Bozen-BolzanoBolzanoItaly

Personalised recommendations