Advertisement

Group Recommender Applications

  • Alexander Felfernig
  • Ludovico Boratto
  • Martin Stettinger
  • Marko Tkalčič
Chapter
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

In this chapter, we present an overview of different group recommender applications. We organize this overview into the application domains of music, movies and TV programs, travel destinations and events, news and web pages, healthy living, software engineering, and domain-independent recommenders. Each application is analyzed with regard to the characteristics of group recommenders as introduced in Chap.  2.

References

  1. 1.
    L. Ardissono, A. Goy, G. Petrone, M. Segnan, P. Torasso, Intrigue: personalized recommendation of tourist attractions for desktop and handset devices. Appl. Artif. Intell. 17(8–9), 687–714 (2003). Special Issue on Artificial Intelligence for Cultural Heritage and Digital LibrariesGoogle Scholar
  2. 2.
    L. Atzori, A. Iera, G. Morabito, The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)Google Scholar
  3. 3.
    S. Berry, S. Fazzio, Y. Zhou, B. Scott, L. Francisco-Revilla, Netflix recommendations for groups. Am. Soc. Inf. Sci. Technol. 47(1), 1–3 (2010)Google Scholar
  4. 4.
    D. Chao, J. Balthorp, S. Forrest, Adaptive radio: achieving consensus using negative preferences, in ACM SIGGROUP Conference on Supporting Group Work, Sanibel Island, FL, USA (2005), pp. 120–123Google Scholar
  5. 5.
    I. Christensen, S. Schiaffino, Entertainment recommender systems for group of users. Expert Syst. Appl. 38(11), 14127–14135 (2011)Google Scholar
  6. 6.
    A. Crossen, J. Budzik, K. Hammond, Flytrap: intelligent group music recommendation, in 7th International Conference on Intelligent User Interfaces, San Francisco, CA, USA (2002), pp. 184–185Google Scholar
  7. 7.
    A. Felfernig, W. Maalej, M. Mandl, M. Schubert, F. Ricci, Recommendation and decision technologies for requirements engineering, in ICSE 2010 Workshop on Recommender Systems in Software Engineering (RSSE 2010), Cape Town, South Africa (2010), pp. 11–15Google Scholar
  8. 8.
    A. Felfernig, M. Jeran, G. Ninaus, F. Reinfrank, S. Reiterer, M. Stettinger, Basic approaches in recommendation systems, in Recommendation Systems in Software Engineering (Springer, Berlin, 2013), pp. 15–37Google Scholar
  9. 9.
    A. Felfernig, S. Polat-Erdeniz, M. Jeran, A. Akcay, P. Azzoni, M. Maiero, C. Doukas, Recommendation technologies for IoT edge devices. Proc. Comput. Sci. 110, 504–509 (2017)Google Scholar
  10. 10.
    A. Felfernig, M. Stettinger, A. Falkner, M. Atas, X. Franch, C. Palomares, OpenReq: recommender systems in requirements engineering, in RS-BDA’17, Graz, Austria (2017), pp. 1–4Google Scholar
  11. 11.
    E. Hallström, Group Recommender System for Restaurant Lunches. KTH Computer Science and Communication (2013)Google Scholar
  12. 12.
    A. Jameson, More than the sum of its members: challenges for group recommender systems, in International Working Conference on Advanced Visual Interfaces (2004), pp. 48–54Google Scholar
  13. 13.
    A. Jameson, B. Smyth, Recommendation to groups, in The Adaptive Web, ed. by P. Brusilovsky, A. Kobsa, W. Nejdl. Lecture Notes in Computer Science, vol. 4321 (2007), pp. 596–627Google Scholar
  14. 14.
    D. Kahneman, A. Tversky, Prospect theory: an analysis of decision under risk. Econometrica 47(2), 263–291 (1979)CrossRefzbMATHGoogle Scholar
  15. 15.
    J. Kay, W. Niu, Adapting information delivery to groups of people, in 1st International Workshop on New Technologies for Personalized Information Access, Edinburgh (2005), pp. 34–43Google Scholar
  16. 16.
    H. Lieberman, N. Dyke, A. Vivacqua, Let’s browse: a collaborative web browsing agent, in 4th International Conference on Intelligent User Interfaces, Los Angeles, CA, USA (1999), pp. 65–68Google Scholar
  17. 17.
    J. Masthoff, Group recommender systems: combining individual models, in Recommender Systems Handbook (Springer, London, 2011), pp. 677–702CrossRefGoogle Scholar
  18. 18.
    J. McCarthy, Pocket restaurant finder: a situated recommender system for groups, in Workshop on Mobile Ad-Hoc Communication, Minneapolis, MN, USA (2002), pp. 1–10Google Scholar
  19. 19.
    J. McCarthy, T. Anagnost, MusicFX: an arbiter of group preferences for computer supported collaborative workouts, in Conference on Computer Support Cooperative Work, Seattle, WA, USA (1998), pp. 363–372Google Scholar
  20. 20.
    K. McCarthy, L. McGinty, B. Smyth, M. Salamó, Social interaction in the CATS group recommender, in Workshop on the Social Navigation and Community Based Adaptation Technologies (2006)Google Scholar
  21. 21.
    K. McCarthy, M. Salamó, L. Coyle, L. McGinty, B. Smyth, P. Nixon, Group recommender systems: a critiquing-based approach, in 11th International Conference on Intelligent User Interfaces (IUI 2006) (ACM, New York, 2006), pp. 267–269Google Scholar
  22. 22.
    T. Nguyen, F. Ricci, A chat-based group recommender system for tourism, in Information and Communication Technologies in Tourism, ed. by R. Schegg, B. Stangl (Springer, Cham, 2017), pp. 17–30Google Scholar
  23. 23.
    G. Ninaus, A. Felfernig, M. Stettinger, S. Reiterer, G. Leitner, L. Weninger, W. Schanil, IntelliReq: intelligent techniques for software requirements engineering, in Prestigious Applications of Intelligent Systems Conference (PAIS) (2014), pp. 1161–1166Google Scholar
  24. 24.
    M. O’Connor, D. Cosley, J. Konstan, J. Riedl, PolyLens: a recommender system for groups of users, in 7th European Conference on Computer Supported Cooperative Work (2001), pp. 199–218Google Scholar
  25. 25.
    S. Pizzutilo, B. DeCarolis, G. Cozzolongo, F. Ambruoso, Group modeling in a public space: methods, techniques, experiences, in 5th WSEAS International Conference on Applied Informatics and Communications, Malta (2005), pp. 175–180Google Scholar
  26. 26.
    G. Popescu, P. Pu, Probabilistic game theoretic algorithms for group recommender systems, in 2nd Workshop on Music Recommendation and Discovery (WOMRAD 2011), Chicago, IL, USA (2011), pp. 7–12Google Scholar
  27. 27.
    G. Popescu, P. Pu, What’s the best music you have?: designing music recommendation for group enjoyment in groupfun, in CHI ’12 Extended Abstracts on Human Factors in Computing Systems, Austin, TX, USA (2012), pp. 1673–1678Google Scholar
  28. 28.
    L. Quijano-Sanchez, J. Recio-García, B. Díaz-Agudo, Personality and social trust in group recommendations, in 22nd International Conference on Tools with Artificial Intelligence, Arras, France (2010), pp. 121–126Google Scholar
  29. 29.
    L. Quijano-Sanchez, J. Recio-García, B. Díaz-Agudo, G. Jiménez-Díaz, Happy Movie: a group recommender application in facebook, in 24th International Florida Artificial Intelligence Research Society Conference, Palm Beach, FL, USA (2011), pp. 419–420Google Scholar
  30. 30.
    K. Reinecke, M. Nguyen, A. Bernstein, M. Näf, K. Gajos, Doodle around the world: online scheduling behavior reflects cultural differences in time perception and group decision-making, in Computer Supported Cooperative Work (CSCW’13), San Antonio, TX, USA (2013), pp. 45–54Google Scholar
  31. 31.
    S. Shafiee, L. Hvam, M. Bonev, Scoping a product configuration project for engineer-to-order companies. J. Ind. Eng. Manag. 5(4), 207–220 (2014)Google Scholar
  32. 32.
    B. Smyth, J. Freyne, M. Coyle, P. Briggs, E. Balfe, I-SPY - anonymous, community-based personalization by collaborative meta-search, in Research and Development in Intelligent Systems XX (2004), pp. 367–380Google Scholar
  33. 33.
    M. Stettinger, A. Felfernig, G. Leitner, S. Reiterer, Counteracting anchoring effects in group decision making, in 23rd Conference on User Modeling, Adaptation, and Personalization (UMAP’15). Lecture Notes in Computer Science, vol. 9146 (Dublin, Ireland, 2015), pp. 118–130Google Scholar
  34. 34.
    M. Stettinger, A. Felfernig, G. Leitner, S. Reiterer, M. Jeran, Counteracting serial position effects in the Choicla Group decision support environment, in 20th ACM Conference on Intelligent User Interfaces (IUI2015), Atlanta, Georgia, USA (2015), pp. 148–157Google Scholar
  35. 35.
    T.N. Trang Tran, M. Atas, A. Felfernig, M. Stettinger, An overview of recommender systems in the healthy food domain. J. Intell. Inf. Syst. 1–26 (2017). https://doi.org/10.1007/s10844-017-0469-0
  36. 36.
    H. Wei, L. Yang, C. Hsieh, D. Estrin, GroupLink: group event recommendations using personal digital traces, in 19th ACM Conference on Computer Supported Cooperative Work (CSCW’16), San Francisco, CA, USA (2016), pp. 110–113Google Scholar
  37. 37.
    D. Winterfeldt, W. Edwards, Decision Analysis and Behavioral Research (Cambridge University Press, Cambridge, 1986)Google Scholar
  38. 38.
    Y. Zhiwen, Z. Xingshe, Z. Daquing, An adaptive in-vehicle multimedia recommender for group users, in 61st Vehicular Technology Conference, Stockholm, Sweden (2005), pp. 1–5Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Alexander Felfernig
    • 1
  • Ludovico Boratto
    • 2
  • Martin Stettinger
    • 1
  • Marko Tkalčič
    • 3
  1. 1.Institute for Software TechnologyGraz University of TechnologyGrazAustria
  2. 2.EURECATCentre Tecnológico de CatalunyaBarcelonaSpain
  3. 3.Faculty of Computer ScienceFree University of Bozen-BolzanoBolzanoItaly

Personalised recommendations