Autodiagnosis of Information Retrieval on the Web as a Simulation of Selected Processes of Consciousness in the Human Brain

  • Anna BryniarskaEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 720)


An agent searching information on the Web processes finite sets of knowledge descriptions. By analogy to processes of consciousness, the knowledge is (1) assertions – what agent knows, (2) concepts – what agent has knowledge of and (3) axioms – what agent conceives by conceiving rules. An information retrieval system in which the agent knows about itself, is called an autodiagnosis of searching information on the Web. This work presents a theoretical description of autodiagnosis and its references to selected issues of neuropsychology related to processes of consciousness.


Autodiagnosis Neurological models of consciousness Information model of consciousness Semantic web Granular attributive language 


  1. 1.
    Albus, J.S.: The engineering of mind. Inf. Sci. 117, 1–18 (1999)CrossRefGoogle Scholar
  2. 2.
    Arbib, M.A.: The Metaphorical Brain. An introduction to cybernetics as artifical intelligence and brain theory. Wiley-Interscience, New York (1972)zbMATHGoogle Scholar
  3. 3.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  4. 4.
    Behere, S.: Architecting Autonomous Automotive Systems. Licentiate Thesis, Stockholm (2013)Google Scholar
  5. 5.
    Bekey, G.A.: Autonomous robots from biological inspiration to implementation and control. The MIT Press, Cambridge (2005)Google Scholar
  6. 6.
    Bryniarska, A.: An information retrieval agent in web resources. In: IADIS International Conference Intelligent Systems and Agents 2013 Proceedings, pp. 121–125. Prague, Czech Republic (2013)Google Scholar
  7. 7.
    Bryniarska, A.: The paradox of the fuzzy disambiguation in the information retrieval. (IJARAI) Int. J. Adv. Res. Artif. Intell. 2(9), 55–58 (2013)Google Scholar
  8. 8.
    Bryniarska, A., Bryniarski, E.: Rough search of vague knowledge. In: Wang, G., et al. (eds.) Thriving Rough Sets. SCI, vol. 708, pp. 283–310. Springer, Heidelberg (2017). Scholar
  9. 9.
    Cavanna, A.E., et al.: Consciousness: a neurological perspective. Behav. Neurol. 24(1), 107–116 (2011)CrossRefGoogle Scholar
  10. 10.
    Chalmers, D.J.: The Conscious Mind: In Search of a Theory of Conscious Experience. Department of Philosophy, University of California, Santa Cruz (1995)zbMATHGoogle Scholar
  11. 11.
    Crick, F., Koch, C.: Towards a neurobiological theory of consciousness. In: Seminars in the Neurosciences, vol. 2. Saunders Scientific Publications, Philadelphia (1990)Google Scholar
  12. 12.
    Friedenberg, J., Siverman, G.: Cognitive Science: An Introduction to the Study of Mind. SAGE Publication, London (2006)Google Scholar
  13. 13.
    Heynert, H.: Einfhrung in die Bionik. VEB Deutscher Verlag der Wissssenschaften, Berlin (1974)Google Scholar
  14. 14.
    Llinás, R., Ribary, U.: Coherent 40-Hz oscillation characterizes dream state in humans. Proc. Natl. Acad. Sci. USA 90, 2078–2081 (1993)CrossRefGoogle Scholar
  15. 15.
    Pedrycz, W.: Granular Computing: Analysis and Design of Intelligent Systems. Taylor & Francis Group, Abingdon (2013)CrossRefGoogle Scholar
  16. 16.
    Veres, S.M.: Autonomous and adaptive control of vehicles information - editorial to special issue. Int. J. Adapt. Control Signal Process. 21(2–3), 93–94 (2007)CrossRefGoogle Scholar
  17. 17.
    Veres, S.M., Lincoln, N.K.: Sliding mode control for agents and humans. In: TAROS 2008, Towards Autonomous Robotic Systems, Edinburgh (2008)Google Scholar
  18. 18.
    Walaszek-Babiszewska, A.: Fuzzy knowledge-based approach to diagnosis tasks in stochastic environment. In: Computational Intelligence and Informatics CINTI. IEEE (2013)Google Scholar
  19. 19.
    Young, G.B., Pigott, S.E.: Neurobiological basis of consciousness. Arch. Neurol. 56(2), 153–157 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of Computer ScienceOpole University of TechnologyOpolePoland

Personalised recommendations