Advertisement

Microwave Radiometry for Noninvasive Monitoring of Brain Temperature

  • Dario B. RodriguesEmail author
  • Paul R. Stauffer
  • Pedro J. S. Pereira
  • Paolo F. Maccarini
Chapter

Abstract

Microwave radiometry is a passive and noninvasive technique that is able to measure deep tissue temperature and track changes in thermal profiles in tissue up to 5 cm below the surface over several hours. These characteristics make microwave radiometry a suitable technique to monitor brain temperature during extended hypothermic surgeries, and thus avoid potential complications that result from poorly controlled low temperature levels and return to normothermia. This chapter addresses all development stages of a radiometric brain thermometer including: radiometer electronics; antenna design and fabrication; power to temperature calibration algorithm; multilayer head phantom model with variable temperature compartments; experimental validation of sensor performance; and initial clinical implementation. In particular, a radiometric antenna is described based on a log-spiral design optimized in silico to receive energy from deep brain. The prototype is tested using a realistic head phantom that consists of an anatomical human skull with separate brain and scalp compartments in which tissue-equivalent fluid phantoms circulate at independent temperatures (32 °C for scalp and 37 °C for brain). Experimental data shows that the calculated radiometric brain temperature tracks within 0.4 °C the measured brain phantom temperature over a 4.6 h experiment, when the brain phantom is lowered 10 °C and then returned to original temperature. A clinical case confirms the ability to noninvasively monitor temperature in deep brain using microwave radiometry, with radiometric measurements that closely track changes in core temperature as measured in the nasopharynx. Both simulated and experimental results demonstrate that a 1.1–1.6 GHz radiometric sensor with 2.5 cm diameter is an appropriate tool for noninvasive monitoring of deep brain temperature.

Keywords

Microwave radiometry Noninvasive thermometry Antenna design optimization Log-spiral antenna Hypothermia Brain temperature monitoring 

References

  1. 1.
    Polderman, K.H.: Mechanisms of action, physiological effects, and complications of hypothermia. Crit. Care Med. 37(7), S186–S202 (2009).  https://doi.org/10.1097/CCM.0b013e3181aa5241CrossRefGoogle Scholar
  2. 2.
    Hannenberg, A.A., Sessler, D.I.: Improving perioperative temperature management. Anesth. Analg. 107(5), 1454–1457 (2008).  https://doi.org/10.1213/ane.0b013e318181f6f2CrossRefGoogle Scholar
  3. 3.
    Diaz, M., Becker, D.E.: Thermoregulation: physiological and clinical considerations during sedation and general anesthesia. Anesth. Prog. 57(1), 25–33 (2010).  https://doi.org/10.2344/0003-3006-57.1.25CrossRefGoogle Scholar
  4. 4.
    McCullough, J.N., Zhang, N., Reich, D.L., Juvonen, T.S., Klein, J.J., Spielvogel, D., Ergin, M.A., Griepp, R.B.: Cerebral metabolic suppression during hypothermic circulatory arrest in humans. Ann. Thorac. Surg. 67(6), 1895–1899 (1999).  https://doi.org/10.1016/S0003-4975(99)00441-5CrossRefGoogle Scholar
  5. 5.
    Yan, T.D., Bannon, P.G., Bavaria, J., Coselli, J.S., Elefteriades, J.A., Griepp, R.B., Hughes, G.C., Lemaire, S.A., Kazui, T., Kouchoukos, N.T., Misfeld, M., Mohr, F.W., Oo, A., Svensson, L.G., Tian, D.H.: Consensus on hypothermia in aortic arch surgery. Ann. Cardiothorac Surg. 2(2), 163–168 (2013).  https://doi.org/10.3978/j.issn.2225-319X.2013.03.03Google Scholar
  6. 6.
    Frank, S.M., Fleisher, L.A., Breslow, M.J., Higgins, M.S., Olson, K.F., Kelly, S., Beattie, C.: Perioperative maintenance of normothermia reduces the incidence of morbid cardiac events—A randomized clinical trial. JAMA 277(14), 1127–1134 (1997).  https://doi.org/10.1001/jama.277.14.1127CrossRefGoogle Scholar
  7. 7.
    Kurz, A., Sessler, D.I., Lenhardt, R.: Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. N. Engl. J. Med. 334(19), 1209–1215 (1996).  https://doi.org/10.1056/nejm199605093341901CrossRefGoogle Scholar
  8. 8.
    Schmied, H., Kurz, A., Sessler, D.I., Kozek, S., Reiter, A.: Mild hypothermia increases blood loss and transfusion requirements during total hip arthroplasty. Lancet 347(8997), 289–292 (1996).  https://doi.org/10.1016/s0140-6736(96)90466-3CrossRefGoogle Scholar
  9. 9.
    Winkler, M., Akca, O., Birkenberg, B., Hetz, H., Scheck, T., Arkilic, C.F., Kabon, B., Marker, E., Grubl, A., Czepan, R., Greher, M., Goll, V., Gottsauner-Wolf, F., Kurz, A., Sessler, D.I.: Aggressive warming reduces blood loss during hip arthroplasty. Anesth. Analg. 91(4), 978–984 (2000).  https://doi.org/10.1097/00000539-200010000-00039CrossRefGoogle Scholar
  10. 10.
    Rajagopalan, S., Mascha, E., Na, J., Sessler, D.I.: The effects of mild perioperative hypothermia on blood loss and transfusion requirement. Anesthesiology 108(1), 71–77 (2008).  https://doi.org/10.1097/01.anes.0000296719.73450.52CrossRefGoogle Scholar
  11. 11.
    Lenhardt, R., Marker, E., Goll, V., Tschernich, H., Kurz, A., Sessler, D.I., Narzt, E., Lackner, F.: Mild intraoperative hypothermia prolongs postanesthetic recovery. Anesthesiology 87(6), 1318–1323 (1997).  https://doi.org/10.1097/00000542-199712000-00009CrossRefGoogle Scholar
  12. 12.
    Sessler, D.I.: Temperature monitoring and perioperative thermoregulation. Anesthesiology 109(2), 318–338 (2008).  https://doi.org/10.1097/ALN.0b013e31817f6d76CrossRefGoogle Scholar
  13. 13.
    McIlvoy, L.: Comparison of brain temperature to core temperature: a review of the literature. J. Neurosci. Nurs. 36(1), 23–31 (2004)CrossRefGoogle Scholar
  14. 14.
    Roth, J.V.: Some unanswered questions about temperature management. Anesth. Analg. 109(5), 1695–1699 (2009).  https://doi.org/10.1213/ANE.0b013e3181b763aeCrossRefGoogle Scholar
  15. 15.
    Lawson, L., Bridges, E.J., Ballou, I., Eraker, R., Greco, S., Shively, J., Sochulak, V.: Accuracy and precision of noninvasive temperature measurement in adult intensive care patients. Am. J. Crit. Care 16(5), 485–496 (2007)Google Scholar
  16. 16.
    Pompei, F., Pompei, M.: Non-invasive temporal artery thermometry: physics, physiology and clinical accuracy. Proc SPIE 5405, 61–67 (2004).  https://doi.org/10.1117/12.544841CrossRefGoogle Scholar
  17. 17.
    Moran, J.L., Peter, J.V., Solomon, P.J., Grealy, B., Smith, T., Ashforth, W., Wake, M., Peake, S.L., Peisach, A.R.: Tympanic temperature measurements: are they reliable in the critically ill? A clinical study of measures of agreement. Crit. Care Med. 35(1), 155–164 (2007).  https://doi.org/10.1097/01.ccm.0000250318.31453.cbCrossRefGoogle Scholar
  18. 18.
    Makinen, M.T., Pesonen, A., Jousela, I., Paivarinta, J., Poikajarvi, S., Alback, A., Salminen, U.S., Pesonen, E.: Novel zero-heat-flux deep body temperature measurement in lower extremity vascular and cardiac surgery. J. Cardiothorac. Vasc. Anesth. 30(4), 973–978 (2016).  https://doi.org/10.1053/j.jvca.2016.03.141CrossRefGoogle Scholar
  19. 19.
    O’Grady, N.P., Kalil, A., Barie, P., Bleck, T.: Misguided guidelines on noninvasive thermometry the authors reply. Crit. Care Med. 37(1), 383–384 (2009).  https://doi.org/10.1097/CCM.0b013e3181932cd6CrossRefGoogle Scholar
  20. 20.
    Haugk, M., Stratil, P., Sterz, F., Krizanac, D., Testori, C., Uray, T., Koller, J., Behringer, W., Holzer, M., Herkner, H.: Temperature monitored on the cuff surface of an endotracheal tube reflects body temperature. Crit. Care Med. 38(7), 1569–1573 (2010).  https://doi.org/10.1097/CCM.0b013e3181e47a20CrossRefGoogle Scholar
  21. 21.
    Arunachalam, K., Stauffer, P.R., Maccarini, P.F., Jacobsen, S., Sterzer, F.: Characterization of a digital microwave radiometry system for noninvasive thermometry using a temperature-controlled homogeneous test load. Phys. Med. Biol. 53(14), 3883–3901 (2008).  https://doi.org/10.1088/0031-9155/53/14/011CrossRefGoogle Scholar
  22. 22.
    Klemetsen, O., Birkelund, Y., Jacobsen, S.K., Maccarini, P.F., Stauffer, P.R.: Design of medical radiometer front-end for improved performance. PIER B 27, 289–306 (2011).  https://doi.org/10.2528/PIERB10101204CrossRefGoogle Scholar
  23. 23.
    Rodrigues, D.B., Maccarini, P.F., Salahi, S., Oliveira, T.R., Pereira, P.J.S., Limao-Vieira, P., Snow, B.W., Reudink, D., Stauffer, P.R.: Design and optimization of an ultra wideband and compact microwave antenna for radiometric monitoring of brain temperature. IEEE Trans. Biomed. Eng. 61(7), 2154–2160 (2014).  https://doi.org/10.1109/TBME.2014.2317484CrossRefGoogle Scholar
  24. 24.
    Klemetsen, O., Birkelund, Y., Maccarini, P., Stauffer, P., Jacobsen, S.: Design of small-sized and low-cost front end to medical microwave radiometer. PIERS Proc. 2010, 932–936 (2010)Google Scholar
  25. 25.
    Hand, J.W.: Physical techniques for delivering microwave energy to tissues. Br. J. Cancer Suppl. 5, 9–15 (1982)Google Scholar
  26. 26.
    Bardati, F., Iudicello, S.: Modeling the visibility of breast malignancy by a microwave radiometer. IEEE Trans. Biomed. Eng. 55(1), 214–221 (2008).  https://doi.org/10.1109/TBME.2007.899354CrossRefGoogle Scholar
  27. 27.
    Camart, J.C., Despretz, D., Prevost, B., Sozanski, J.P., Chive, M., Pribetich, J.: New 434 MHz interstitial hyperthermia system monitored by microwave radiometry: theoretical and experimental results. Int. J. Hyperth. 16(2), 95–111 (2000).  https://doi.org/10.1080/026567300285312CrossRefGoogle Scholar
  28. 28.
    Dubois, L., Sozanski, J.P., Tessier, V., Camart, J.C., Fabre, J.J., Pribetich, J., Chive, M.: Temperature control and thermal dosimetry by microwave radiometry in hyperthermia. IEEE Trans. Microw. Theory Tech. 44(10, pt. 2), 1755–1761 (1996).  https://doi.org/10.1109/22.539932
  29. 29.
    Jacobsen, S., Stauffer, P.R.: Can we settle with single-band radiometric temperature monitoring during hyperthermia treatment of chestwall recurrence of breast cancer using a dual-mode transceiving applicator? Phys. Med. Biol. 52(4), 911–928 (2007).  https://doi.org/10.1088/0031-9155/52/4/004CrossRefGoogle Scholar
  30. 30.
    Stauffer, P.R., Jacobsen, S., Neuman, D.: Microwave array applicator for radiometry controlled superficial hyperthermia. Proc. SPIE 4247, 19–29 (2001).  https://doi.org/10.1117/12.427866CrossRefGoogle Scholar
  31. 31.
    Wang, S.S., VanderBrink, B.A., Regan, J., Carr, K., Link, M.S., Homoud, M.K., Foote, C.M., Estes 3rd, N.A., Wang, P.J.: Microwave radiometric thermometry and its potential applicability to ablative therapy. J. Interv. Card. Electrophysiol. 4(1), 295–300 (2000).  https://doi.org/10.1023/A:1009842402357CrossRefGoogle Scholar
  32. 32.
    Karathanasis, K.T., Gouzouasis, I.A., Karanasiou, I.S., Uzunoglu, N.K.: Experimental study of a hybrid microwave radiometry-hyperthermia apparatus with the use of an anatomical head phantom. IEEE Trans. Inf. Technol. B 16(2), 241–247 (2012).  https://doi.org/10.1109/titb.2012.2187301CrossRefGoogle Scholar
  33. 33.
    Hand, J.W., Van Leeuwen, G.M.J., Mizushina, S., Van De Kamer, J.B., Maruyama, K., Sugiura, T., Azzopardi, D.V., Edwards, A.D.: Monitoring of deep brain temperature in infants using multi-frequency microwave radiometry and thermal modelling. Phys. Med. Biol. 46(7), 1885–1903 (2001).  https://doi.org/10.1088/0031-9155/46/7/311CrossRefGoogle Scholar
  34. 34.
    Maruyma, K., Mizushina, S., Sugiura, T., Van Leeuwen, G.M.J., Hand, J.W., Marrocco, G., Bardati, F., Edwards, A.D., Azzopardi, D., Land, D.: Feasibility of noninvasive measurement of deep brain temperature in newborn infants by multifrequency microwave radiometry. IEEE Trans. Microw. Theory Tech. 48(11, pt. 2), 2141–2147 (2000).  https://doi.org/10.1109/22.884206
  35. 35.
    Oikonomou, A., Karanasiou, I.S., Uzunoglu, N.K.: Phased-array near field radiometry for brain intracranial applications. PIER 109, 345–360 (2010).  https://doi.org/10.2528/pier10073004CrossRefGoogle Scholar
  36. 36.
    Arunachalam, K., Maccarini, P.F., De Luca, V., Bardati, F., Snow, B.W., Stauffer, P.R.: Modeling the detectability of vesicoureteral reflux using microwave radiometry. Phys. Med. Biol. 55(18), 5417–5435 (2010).  https://doi.org/10.1088/0031-9155/55/18/010CrossRefGoogle Scholar
  37. 37.
    Snow, B.W., Arunachalam, K., De Luca, V., Maccarini, P.F., Klemetsen, O., Birkelund, Y., Pysher, T.J., Stauffer, P.R.: Non-invasive vesicoureteral reflux detection: heating risk studies for a new device. J. Pediatr. Urol. 7(6), 624–630 (2011).  https://doi.org/10.1016/j.jpurol.2011.05.005CrossRefGoogle Scholar
  38. 38.
    Stauffer, P., Maccarini, P., Arunachalam, K., Salahi, S., De Luca, V., Boico, A., Klemetsen, O., Birkelund, Y., Jacobsen, S., Bardati, F., Tognolatti, P., Snow, B.: Microwave radiometry for non-invasive detection of vesicoureteral reflux (VUR) following bladder warming. Proc. SPIE 7901, 0V1–11 (2011).  https://doi.org/10.1117/12.875636
  39. 39.
    Arunachalam, K., Maccarini, P., De Luca, V., Tognolatti, P., Bardati, F., Snow, B., Stauffer, P.: Detection of vesicoureteral reflux using microwave radiometry-system characterization with tissue phantoms. IEEE Trans. Biomed. Eng. 58(6), 1629–1636 (2011).  https://doi.org/10.1109/TBME.2011.2107515CrossRefGoogle Scholar
  40. 40.
    Rodrigues, D.B., Maccarini, P.F., Salahi, S., Colebeck, E., Topsakal, E., Pereira, P.J.S., Limao-Vieira, P., Stauffer, P.R.: Numerical 3D modeling of heat transfer in human tissues for microwave radiometry monitoring of brown fat metabolism. Proc. SPIE 8584, 0S1–12 (2013).  https://doi.org/10.1117/12.2004931
  41. 41.
    Zampeli, E., Raftakis, I., Michelongona, A., Nikolaou, C., Elezoglou, A., Toutouzas, K., Siores, E., Sfikakis, P.P.: Detection of subclinical synovial inflammation by microwave radiometry. PLoS ONE 8(5), e64606 (2013).  https://doi.org/10.1371/journal.pone.0064606CrossRefGoogle Scholar
  42. 42.
    Stauffer, P.R., Snow, B.W., Rodrigues, D.B., Salahi, S., Oliveira, T.R., Reudink, D., Maccarini, P.F.: Non-invasive measurement of brain temperature with microwave radiometry: demonstration in a head phantom and clinical case. Neuroradiol. J. 27(1), 3–12 (2014).  https://doi.org/10.15274/NRJ-2014-10001CrossRefGoogle Scholar
  43. 43.
    Birkelund, Y., Klemetsen, O., Jacobsen, S.K., Arunachalam, K., Maccarini, P., Stauffer, P.R.: Vesicoureteral reflux in children: a phantom study of microwave heating and radiometric thermometry of pediatric bladder. IEEE Trans. Biomed. Eng. 58(11), 3269–3278 (2011).  https://doi.org/10.1109/TBME.2011.2167148CrossRefGoogle Scholar
  44. 44.
    Balanis, C.: Antenna Theory: Analysis and Design, 3rd edn. Wiley, Hoboken, New Jersey (2005)Google Scholar
  45. 45.
    Ahlbom, A., Bergqvist, U., Bernhardt, J.H., Cesarini, J.P., Court, L.A., Grandofo, M., Hietanen, M., McKinlay, A.F., Repacholi, M.H., Sliney, D.H., Stolwok, J.A.J., Swicord, M.L., Szabo, L.D., Taki, M., Tenforde, T.S., Jammet, H.P., Matthes, R.: Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz) (vol. 74, pg. 494, 1998). Health Phys. 75(4), 442–442 (1998)Google Scholar
  46. 46.
    Aitken, G.: A new correlation radiometer. ITAP 16(2), 224–228 (1968).  https://doi.org/10.1109/tap.1968.1139144
  47. 47.
    Ulaby, F., Moore, R., Fung, A.: Microwave Remote Sensing: Active and Passive, Volume I: Fundamentals and Radiometry, vol. 1, 1st edn. Artec House, Norwood, MA 02062, USA (1981)Google Scholar
  48. 48.
    Jacobsen, S., Stauffer, P.R.: Nonparametric 1-D temperature restoration in lossy media using Tikhonov regularization on sparse radiometry data. IEEE Trans. Biomed. Eng. 50(2), 178–188 (2003).  https://doi.org/10.1109/TBME.2002.807655CrossRefGoogle Scholar
  49. 49.
    Youn, H.S., Celik, N., Iskander, M., Baker, J., Graham, J., Murphy, S.: Miniaturized conical spiral antenna with tapered resistive roading and corrugated arms. Proc. IEEE APSURSI 2011, 1185–1188 (2011).  https://doi.org/10.1109/APS.2011.5996496Google Scholar
  50. 50.
    Filipovic, D.S., Volakis, J.L.: Broadband meanderline slot spiral antenna. IEE Proc. Microw. Antennas Propag. 149(2), 98–105 (2002).  https://doi.org/10.1049/ip-map:20020284
  51. 51.
    Filipovic, D.S., Cencich, T.: Frequency Independent Antennas. In: Volakis, J.L. (ed.) Antenna Engineering Handbook, 4th edn, pp. 13-11-67. McGraw-Hill, New York (2007)Google Scholar
  52. 52.
    Rumsey, V.H.: Frequency independent antennas. IRE Nat. Conv. Rec. 5, 114–118 (1957).  https://doi.org/10.1109/IRECON.1957.1150565CrossRefGoogle Scholar
  53. 53.
    Dyson, J.D.: The equiangular spiral antenna. IRE Trans. Antennas Propag. 7, 181–187 (1959).  https://doi.org/10.1109/tap.1959.1144653
  54. 54.
    Duhamel, R.H., Isbell, D.E.: Broadband logarithmically periodic antenna structures. Proc. Inst. Radio Eng. 45(3), 385–385 (1957).  https://doi.org/10.1109/irecon.1957.1150566
  55. 55.
    Thaysen, J., Jakobsen, K., Appel-Hansen, J.: A logarithmic spiral antenna for 0.4 to 3.8 GHz. Appl. Microw. Wirel. 13(2), 32–45 (2001)Google Scholar
  56. 56.
    Kaiser, J.A.: The archimedean two-wire spiral antenna. IRE Trans. Antennas Propag. 8(3), 312–323 (1960).  https://doi.org/10.1109/TAP.1960.1144840CrossRefGoogle Scholar
  57. 57.
    Pozar, D.M.: Microwave Engineering, 2nd edn. Wiley, New York (1998)Google Scholar
  58. 58.
    LaSorte, N.J., Barnes, W.J., Refai, H.H.: Characterization of the electromagnetic environment in a hospital and propagation study. Proc. IEEE EMC 2009, 135–140 (2009).  https://doi.org/10.1109/ISEMC.2009.5284561Google Scholar
  59. 59.
    Federal Communications Commission online table of frequency allocations (16 April 2013)Google Scholar
  60. 60.
    Hayman, L.A., Shukla, V., Ly, C., Taber, K.H.: Clinical and imaging anatomy of the scalp. J. Comput. Assist. Tomogr. 27(3), 454–459 (2003).  https://doi.org/10.1097/00004728-200305000-00027CrossRefGoogle Scholar
  61. 61.
    Gabriel, S., Lau, R.W., Gabriel, C.: The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 41(11), 2271–2293 (1996).  https://doi.org/10.1088/0031-9155/41/11/003CrossRefGoogle Scholar
  62. 62.
    Kanda, M.Y., Ballen, M., Salins, S., Chou, C.K., Balzano, Q.: Formulation and characterization of tissue equivalent liquids used for RF densitometry and dosimetry measurements. IEEE Trans. Microw. Theory Tech. 52(8), 2046–2056 (2004).  https://doi.org/10.1109/tmtt.2004.832001CrossRefGoogle Scholar
  63. 63.
    Duhamel, R.H., Scherer, J.P.: Frequency-independent antennas. In: Johnson, R.C. (ed.) Antenna Engineering Handbook, 3rd edn. McGraw-Hill Inc, New York (1993)Google Scholar
  64. 64.
    Mizushina, S., Ohba, K., Abe, K., Mizoshiri, S., Sugiura, T.: Recent trends in medical microwave radiometry. IEICE Trans. Commun. E78B(6), 789–798 (1995)Google Scholar
  65. 65.
    Sterzer, F.: Microwave radiometers for non-invasive measurements of subsurface tissue temperatures. Automedica 8, 203–211 (1987)Google Scholar
  66. 66.
    Scapaticci, R., Di Donato, L., Catapano, I., Crocco, L.: A feasibility study on microwave imaging for brain stroke monitoring. Prog. Electromagn. Res. B 40, 305–324 (2012).  https://doi.org/10.2528/PIERB12022006CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Dario B. Rodrigues
    • 1
    Email author
  • Paul R. Stauffer
    • 1
  • Pedro J. S. Pereira
    • 2
    • 3
  • Paolo F. Maccarini
    • 4
  1. 1.Department of Radiation OncologyThomas Jefferson UniversityPhiladelphiaUSA
  2. 2.Department of MathematicsInstituto Superior de Engenharia de LisboaLisbonPortugal
  3. 3.CEFITEC, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
  4. 4.Department of Biomedical EngineeringDuke UniversityDurhamUSA

Personalised recommendations