Continuous Monitoring of Hemorrhagic Strokes via Differential Microwave Imaging

  • Mehmet Çayören
  • İbrahim Akduman


Continuous monitoring of a patient’s brain who is admitted to intensive care with a diagnosis of hemorrhagic stroke poses a great technological challenge. Existing medical imaging modalities such as CT and MRI that are extensively used for brain imaging are practically not suitable for these purposes. Nevertheless, microwave imaging as an emerging medical imaging technique can provide a safer and cost-effective alternative for continuous monitoring of the brain. In this context, differential microwave imaging with qualitative inverse scattering methods such as linear sampling method and factorization method is considered to determine evolution of intracranial hemorrhage without generating anatomical images. Through sequential S-parameters measurements performed on a brain phantom with a prototype microwave imaging system that cylindrically rotates two transceiver antennas around, feasibility of continuous monitoring of hemorrhagic strokes via microwave imaging is experimentally evaluated.



This work is supported by the Scientific and Research Council of Turkey (TUBITAK) under the grant numbers 113E977 and 216S415.


  1. 1.
    Abbak, M., Akinci, M.N., Cayoren, M., Akduman, I.: Experimental microwave imaging with a novel corrugated vivaldi antenna. IEEE Trans. Antennas Propag. 65(6), 3302–3307 (2017)CrossRefGoogle Scholar
  2. 2.
    Abbak, M., Çayören, M., Akduman, İ.: Microwave breast phantom measurements with a cavity-backed vivaldi antenna. IET Microwaves, Antennas Propag. 8(13), 1127–1133 (2014)CrossRefGoogle Scholar
  3. 3.
    Abubakar, A., van den Berg, P., Mallorqui, J.: Imaging of biomedical data using a multiplicative regularized contrast source inversion method. IEEE Trans. Microwave Theor. Tech. 50(7), 1761–1771 (2002)CrossRefGoogle Scholar
  4. 4.
    Akinci, M.N., Caglayan, T., Ozgur, S., Alkasi, U., Ahmadzay, H., Abbak, M., Cayoren, M., Akduman, I.: Qualitative microwave imaging with scattering parameters measurements. IEEE Trans. Microwave Theor. Tech. 63(9), 2730–2740 (2015)CrossRefGoogle Scholar
  5. 5.
    Akıncı, M.N., Çağlayan, T., Özgür, S., Alkaşı, U., Abbak, M., Çayören, M.: Experimental assessment of linear sampling and factorization methods for microwave imaging of concealed targets. Int. J. Antennas Propag. 2015, 1–11 (2015)Google Scholar
  6. 6.
    van den Berg, P.M., Kleinman, R.E.: A contrast source inversion method. Inverse Prob. 13(6), 1607 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging, 1 edn. CRC Press (1998)Google Scholar
  8. 8.
    Birenbaum, D., Bancroft, L.W., Felsberg, G.J.: Imaging in acute stroke. West. J. Emerg. Med. 12(1), 67–76 (2010)Google Scholar
  9. 9.
    Cakoni, F., Colton, D.: A Qualitative Approach to Inverse Scattering Theory. Springer (2013)Google Scholar
  10. 10.
    Cakoni, F., Colton, D., Monk, P.: The Linear Sampling Method in Inverse Electromagnetic Scattering. SIAM-Society for Industrial and Applied Mathematics (2010)Google Scholar
  11. 11.
    Catapano, I., Crocco, L., Isernia, T.: On simple methods for shape reconstruction of unknown scatterers. IEEE Trans. Antennas Propag. 55(5), 1431–1436 (2007)CrossRefGoogle Scholar
  12. 12.
    Colton, D., Kirsch, A.: A simple method for solving inverse scattering problems in the resonance region. Inverse Prob. 12(4), 383 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 3rd edn. Springer, New York (2012)zbMATHGoogle Scholar
  14. 14.
    Colton, D., Monk, P.: A linear sampling method for the detection of leukemia using microwaves II. SIAM J. Appl. Math. 60(1), 241–255 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Feigin, V.L., Lawes, C.M., Bennett, D.A., Anderson, C.S.: Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol 2(1), 43–53 (2003)CrossRefGoogle Scholar
  16. 16.
    Gabriel, S., Lau, R.W., Gabriel, C.: The dielectric properties of biological tissues: III. parametric models for the dielectric spectrum of tissues. Phys. Med. Biology 41(11), 2271–2293 (1996)Google Scholar
  17. 17.
    Guzina, B.B., Cakoni, F., Bellis, C.: On the multi-frequency obstacle reconstruction via the linear sampling method. Inverse Prob. 26(12), 125,005 (2010)Google Scholar
  18. 18.
    Ireland, D., Bialkowski, M.E.: Microwave head imaging for stroke detection. Prog. Electromagnet. Res. M 21, 163–175 (2011)CrossRefGoogle Scholar
  19. 19.
    Kirsch, A.: Characterization of the shape of a scattering obstacle using the spectral data of the far field operator. Inverse Prob. 14(6), 1489–1512 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kirsch, A., Grinberg, N.: The Factorization Method for Inverse Problems, 1 edn. Oxford University Press (2008)Google Scholar
  21. 21.
    Kress, R.: Linear Integral Equations, 3 edn. Springer (2013)Google Scholar
  22. 22.
    Mobashsher, A.T., Abbosh, A.M., Wang, Y.: Microwave system to detect traumatic brain injuries using compact unidirectional antenna and wideband transceiver with verification on realistic head phantom. IEEE Trans. Microwave Theory Tech. 62(9), 1826–1836 (2014)CrossRefGoogle Scholar
  23. 23.
    Mobashsher, A.T., Mahmoud, A., Abbosh, A.M.: Portable wideband microwave imaging system for intracranial hemorrhage detection using improved back-projection algorithm with model of effective head permittivity. Sci. Rep. 6, 20,459 (2016)Google Scholar
  24. 24.
    Mohammed, B.J., Abbosh, A.M.: Realistic head phantom to test microwave systems for brain imaging. Microw. Opt. Tech. Lett. 56(4), 979–982 (2014)CrossRefGoogle Scholar
  25. 25.
    Mohammed, B.J., Abbosh, A.M., Mustafa, S., Ireland, D.: Microwave system for head imaging. IEEE Trans. Instrum. Meas. 63(1), 117–123 (2014)CrossRefGoogle Scholar
  26. 26.
    Mustafa, S., Mohammed, B., Abbosh, A.: Novel preprocessing techniques for accurate microwave imaging of human brain. IEEE Antennas Wirel. Propag. Lett. 12, 460–463 (2013)CrossRefGoogle Scholar
  27. 27.
    Pastorino, M.: Microwave Imaging. Wiley, Hoboken, N.J (2010)CrossRefGoogle Scholar
  28. 28.
    Persson, M., Fhager, A., Trefna, H.D., Yu, Y., McKelvey, T., Pegenius, G., Karlsson, J.E., Elam, M.: Microwave-based stroke diagnosis making global prehospital thrombolytic treatment possible. IEEE Trans. Biomed. Eng. 61(11), 2806–2817 (2014)CrossRefGoogle Scholar
  29. 29.
    Potthast, R.: A survey on sampling and probe methods for inverse problems. Inverse Prob. 22(2), R1–R47 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Scapaticci, R., Bucci, O.M., Catapano, I., Crocco, L.: Differential microwave imaging for brain stroke followup. Int. J. Antennas Propag. 2014, 1–11 (2014)CrossRefGoogle Scholar
  31. 31.
    Scapaticci, R., Crocco, L., Bucci, O.M., Catapano, I.: Assessment of inversion strategies for microwave imaging of weak magnetic scatterers embedded into a biological environment. In: 2012 6th European Conference on Antennas and Propagation (EUCAP). IEEE (2012)Google Scholar
  32. 32.
    Scapaticci, R., Donato, L.D., Catapano, I., Crocco, L.: A feasibility study on microwave imaging for brain stroke monitoring. Prog. Electromagnet. Res. B 40, 305–324 (2012)CrossRefGoogle Scholar
  33. 33.
    Semenov, S.Y., Corfield, D.R.: Microwave tomography for brain imaging: Feasibility assessment for stroke detection. Int. J. Antennas Propag. 2008, 1–8 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringIstanbul Technical UniversityIstanbulTurkey
  2. 2.MITOS Medical Technologies A.S.IstanbulTurkey

Personalised recommendations