Dynamical Mean Field Theory for Oxide Heterostructures

Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 266)


Transition metal oxide heterostructures often, but by far not always, exhibit strong electronic correlations. State-of-the-art calculations account for these by dynamical mean field theory (DMFT). We discuss the physical situations in which DMFT is needed, not needed, and where it is actually not sufficient. By means of an example, \(\text {SrVO}_3/\text {SrTiO}_3\), we discuss step-by-step and figure-by-figure a density functional theory (DFT) + DMFT calculation. The second part reviews DFT + DMFT calculations for oxide heterostructure focusing on titanates, nickelates, vanadates, and ruthenates.


  1. 1.
    A. Georges, G. Kotliar, Hubbard model in infinite dimensions. Phys. Rev. B 45, 6479–6483 (1992).  https://doi.org/10.1103/PhysRevB.45.6479
  2. 2.
    A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13–125 (1996).  https://doi.org/10.1103/RevModPhys.68.13
  3. 3.
    W. Metzner, D. Vollhardt, Correlated lattice fermions in d = \(\infty \) dimensions. Phys. Rev. Lett. 62, 324–327 (1989).  https://doi.org/10.1103/PhysRevLett.62.324
  4. 4.
    K. Held, Electronic structure calculations using dynamical mean field theory. Adv. Phys. 56, 829–926 (2007).  https://doi.org/10.1080/00018730701619647
  5. 5.
    G. Kotliar, S.Y. Savrasov, K. Haule, V.S. Oudovenko, O. Parcollet, C.A. Marianetti, Electronic structure calculations with dynamical mean-field theory. Rev. Mod. Phys. 78, 865–951 (2006).  https://doi.org/10.1103/RevModPhys.78.865
  6. 6.
    A. Ohtomo, H.Y. Hwang, A high-mobility electron gas at the LaAlO\(_3\)/SrTiO\(_3\) heterointerface. Nature (London) 427, 423–426 (2004).  https://doi.org/10.1038/nature02308
  7. 7.
    Z. Zhong, Q. Zhang, K. Held, Quantum confinement in perovskite oxide heterostructures: tight binding instead of a nearly free electron picture. Phys. Rev. B 88, 125,401 (2013).  https://doi.org/10.1103/PhysRevB.88.125401
  8. 8.
    A.F. Santander-Syro, O. Copie, T. Kondo, F. Fortuna, S. Pailhés, R. Weht, X.G. Qiu, F. Bertran, A. Nicolaou, A. Taleb-Ibrahimi, P.L. Févre, G. Herranz, M. Bibes, N. Reyren, Y. Apertet, P. Lecoeur, A. Barthélémy, M.J. Rozenberg, Two-dimensional electron gas with universal subbands at the surface of SrTiO\(_3\). Nature (London) 469, 189–193 (2011).  https://doi.org/10.1038/nature09720
  9. 9.
    Z. Wang, Z. Zhong, X. Hao, S. Gerhold, B. Stoger, M. Schmid, J. Sanchez-Barriga, A. Varykhalov, C. Franchini, K. Held, U. Diebold, Anisotropic two-dimensional electron gas at SrTiO\(_3\)(110) protected by its native overlayer. Proc. Nat. Acad. Sci. 333, 3933 (2014).  https://doi.org/10.1073/pnas.1318304111
  10. 10.
    K. Yoshimatsu, K. Horiba, H. Kumigashir, T. Yoshida, A. Fujimori, M. Oshima, Metallic quantum well states in artificial structures of strongly correlated oxide. Science 333, 319–322 (2011).  https://doi.org/10.1126/science.1205771
  11. 11.
    M. Behrmann, F. Lechermann, Interface exchange processes in LaAlO\(_{3}\) / SrTiO\(_{3}\) induced by oxygen vacancies. Phys. Rev. B 92, 125,148 (2015).  https://doi.org/10.1103/PhysRevB.92.125148
  12. 12.
    G. Berner, A. Müller, F. Pfaff, J. Walde, C. Richter, J. Mannhart, S. Thiess, A. Gloskovskii, W. Drube, M. Sing, R. Claessen, Band alignment in LaAlO\(_{3}\)/SrTiO\(_{3}\) oxide heterostructures inferred from hard x-ray photoelectron spectroscopy. Phys. Rev. B 88, 115,111 (2013).  https://doi.org/10.1103/PhysRevB.88.115111
  13. 13.
    G. Berner, M. Sing, H. Fujiwara, A. Yasui, Y. Saitoh, A. Yamasaki, Y. Nishitani, A. Sekiyama, N. Pavlenko, T. Kopp, C. Richter, J. Mannhart, S. Suga, R. Claessen, Direct \(k\)-space mapping of the electronic structure in an oxide-oxide interface. Phys. Rev. Lett. 110, 247,601 (2013).  https://doi.org/10.1103/PhysRevLett.110.247601
  14. 14.
    H.O. Jeschke, J. Shen, R. Valentí, Localized versus itinerant states created by multiple oxygen vacancies in SrTiO\(_3\). New J. Phys. 17, 023,034 (2015).  https://doi.org/10.1088/1367-2630/17/2/023034
  15. 15.
    M. Imada, A. Fujimori, Y. Tokura, Metal-insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).  https://doi.org/10.1103/RevModPhys.70.1039
  16. 16.
    A. Liebsch, Surface versus bulk Coulomb correlations in photoemission spectra of SrVO\(_{3}\) and CaVO\(_{3}\). Phys. Rev. Lett. 90, 096,401 (2003).  https://doi.org/10.1103/PhysRevLett.90.096401
  17. 17.
    Z. Zhong, M. Wallerberger, J.M. Tomczak, C. Taranto, N. Parragh, A. Toschi, G. Sangiovanni, K. Held, Electronics with correlated oxides: SrVO\(_3\)/SrTiO\(_3\) as a Mott transistor. Phys. Rev. Lett. 114, 246,401 (2015).  https://doi.org/10.1103/PhysRevLett.114.246401
  18. 18.
    G. Lantz, M. Hajlaoui, E. Papalazarou, V.L.R. Jacques, A. Mazzotti, M. Marsi, S. Lupi, M. Amati, L. Gregoratti, L. Si, Z. Zhong, K. Held, Surface effects on the Mott-Hubbard transition in archetypal V\(_{2}\)O\(_{3}\). Phys. Rev. Lett. 115, 236,802 (2015).  https://doi.org/10.1103/PhysRevLett.115.236802
  19. 19.
    A. Georges, L. de’ Medici, J. Mravlje, Strong electronic correlations from Hund’s coupling. Ann. Rev. Condens. Matter Phys. 4, 137 (2013).  https://doi.org/10.1146/annurev-conmatphys-020911-125045
  20. 20.
    Z.P. Yin, K. Haule, G. Kotliar, Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides. Nat. Phys. 10, 932 (2011).  https://doi.org/10.1038/nmat3120
  21. 21.
    V.I. Anisimov, J. Zaanen, O.K. Andersen, Band theory and Mott insulators: Hubbard \(U\) instead of Stoner \(I\). Phys. Rev. B 44, 943–954 (1991).  https://doi.org/10.1103/PhysRevB.44.943
  22. 22.
    G. Sangiovanni, A. Toschi, E. Koch, K. Held, M. Capone, C. Castellani, O. Gunnarsson, S.K. Mo, J.W. Allen, H.D. Kim, A. Sekiyama, A. Yamasaki, S. Suga, P. Metcalf, Static versus dynamical mean-field theory of Mott antiferromagnets. Phys. Rev. B 73, 205,121 (2006).  https://doi.org/10.1103/PhysRevB.73.205121
  23. 23.
    D.D. Cuong, B. Lee, K.M. Choi, H.S. Ahn, S. Han, J. Lee, Oxygen vacancy clustering and electron localization in oxygen-deficient SrTiO\(_{3}\): LDA+\(U\) study. Phys. Rev. Lett. 98, 115,503 (2007).  https://doi.org/10.1103/PhysRevLett.98.115503
  24. 24.
    Z. Zhong, P.X. Xu, P.J. Kelly, Polarity-induced oxygen vacancies at LaAlO\(_{3}\)SrTiO\(_{3}\) interfaces. Phys. Rev. B 82, 165,127 (2010).  https://doi.org/10.1103/PhysRevB.82.165127
  25. 25.
    P. Hansmann, R. Arita, A. Toschi, S. Sakai, G. Sangiovanni, K. Held, Dichotomy between large local and small ordered magnetic moments in iron-based superconductors. Phys. Rev. Lett. 104, 197,002 (2010).  https://doi.org/10.1103/PhysRevLett.104.197002
  26. 26.
    A. Galler, C. Taranto, M. Wallerberger, M. Kaltak, G. Kresse, G. Sangiovanni, A. Toschi, K. Held, Screened moments and absence of ferromagnetism in FeAl. Phys. Rev. B 92, 205,132 (2015).  https://doi.org/10.1103/PhysRevB.92.205132
  27. 27.
    T. Maier, M. Jarrell, T. Pruschke, M.H. Hettler, Quantum cluster theories. Rev. Mod. Phys. 77, 1027–1080 (2005).  https://doi.org/10.1103/RevModPhys.77.1027
  28. 28.
    A.A. Katanin, A. Toschi, K. Held, Comparing pertinent effects of antiferromagnetic fluctuations in the two- and three-dimensional Hubbard model. Phys. Rev. B 80, 075,104 (2009).  https://doi.org/10.1103/PhysRevB.80.075104
  29. 29.
    H. Kusunose, Influence of spatial correlations in strongly correlated electron systems: extension to dynamical mean field approximation. J. Phys. Soc. Jpn. 75, 054,713 (2006).  https://doi.org/10.1143/JPSJ.75.054713
  30. 30.
    A.N. Rubtsov, M.I. Katsnelson, A.I. Lichtenstein, Dual fermion approach to nonlocal correlations in the Hubbard model. Phys. Rev. B 77, 033,101 (2008).  https://doi.org/10.1103/PhysRevB.77.033101
  31. 31.
    C. Slezak, M. Jarrell, T. Maier, J. Deisz, Multi-scale extensions to quantum cluster methods for strongly correlated electron systems. J. Phys.: Condens. Matter 21, 435,604 (2009).  https://doi.org/10.1088/0953-8984/21/43/435604
  32. 32.
    A. Toschi, A.A. Katanin, K. Held, Dynamical vertex approximation: a step beyond dynamical mean-field theory. Phys. Rev. B 75, 045,118 (2007).  https://doi.org/10.1103/PhysRevB.75.045118
  33. 33.
    A. Sekiyama, H. Fujiwara, S. Imada, S. Suga, H. Eisaki, S.I. Uchida, K. Takegahara, H. Harima, Y. Saitoh, I.A. Nekrasov, G. Keller, D.E. Kondakov, A.V. Kozhevnikov, T. Pruschke, K. Held, D. Vollhardt, V.I. Anisimov, Mutual experimental and theoretical validation of bulk photoemission spectra of Sr\(_{1-x}\)Ca\(_x\)VO\(_3\). Phys. Rev. Lett. 93, 156,402 (2004).  https://doi.org/10.1103/PhysRevLett.93.156402
  34. 34.
    T. Yoshida, K. Tanaka, H. Yagi, A. Ino, H. Eisaki, A. Fujimori, Z.X. Shen, Direct observation of the mass renormalization in SrVO\(_{3}\) by angle resolved photoemission spectroscopy. Phys. Rev. Lett. 95, 146,404 (2005).  https://doi.org/10.1103/PhysRevLett.95.146404
  35. 35.
    I.H. Inoue, I. Hase, Y. Aiura, A. Fujimori, K. Morikawa, T. Mizokawa, Y. Haruyama, T. Maruyama, Y. Nishihara, Systematic change of spectral function observed by controlling electron correlation in Ca\(_{1x}\)Sr\(_x\)VO\(_3\) with fixed \(3d^1\) configuration. Physica C 235–240, 1007–1008 (1994).  https://doi.org/10.1016/0921-4534(94)91728-0
  36. 36.
    K. Yoshimatsu, T. Okabe, H. Kumigashira, S. Okamoto, S. Aizaki, A. Fujimori, M. Oshima, Dimensional-crossover-driven metal-insulator transition in SrVO\(_{3}\) ultrathin films. Phys. Rev. Lett. 104, 147,601 (2010).  https://doi.org/10.1103/PhysRevLett.104.147601
  37. 37.
    E.R. Ylvisaker, W.E. Pickett, K. Koepernik, Anisotropy and magnetism in the LSDA + \(U\) method. Phys. Rev. B 79, 035,103 (2009).  https://doi.org/10.1103/PhysRevB.79.035103
  38. 38.
    A.G. Petukhov, I.I. Mazin, L. Chioncel, A.I. Lichtenstein, Correlated metals and the LDA + \(U\) method. Phys. Rev. B 67, 153,106 (2003).  https://doi.org/10.1103/PhysRevB.67.153106
  39. 39.
    O. Grånäs, I.D. Marco, P. Thunström, L. Nordström, O. Eriksson, T. Björkman, J.M. Wills, Charge self-consistent dynamical mean-field theory based on the full-potential linear muffin-tin orbital method: Methodology and applications. Comput. Mater. Sci. 55, 295–302 (2012).  https://doi.org/10.1016/j.commatsci.2011.11.032
  40. 40.
    F. Lechermann, A. Georges, A. Poteryaev, S. Biermann, M. Posternak, A. Yamasaki, O.K. Andersen, Dynamical mean-field theory using Wannier functions: a flexible route to electronic structure calculations of strongly correlated materials. Phys. Rev. B 74, 125,120 (2006).  https://doi.org/10.1103/PhysRevB.74.125120
  41. 41.
    H. Park, A.J. Millis, C.A. Marianetti, Computing total energies in complex materials using charge self-consistent DFT+DMFT. Phys. Rev. B 90, 235,103 (2014).  https://doi.org/10.1103/PhysRevB.90.235103
  42. 42.
    I. Leonov, V.I. Anisimov, D. Vollhardt, First-principles calculation of atomic forces and structural distortions in strongly correlated materials. Phys. Rev. Lett. 112, 146,401 (2014).  https://doi.org/10.1103/PhysRevLett.112.146401
  43. 43.
    K. Lejaeghere, G. Bihlmayer, T. Björkman, P. Blaha, S. Blügel, V. Blum, D. Caliste, I.E. Castelli, S.J. Clark, A. Dal Corso, S. de Gironcoli, T. Deutsch, J.K. Dewhurst, I. Di Marco, C. Draxl, M. Dułak, O. Eriksson, J.A. Flores-Livas, K.F. Garrity, L. Genovese, P. Giannozzi, M. Giantomassi, S. Goedecker, X. Gonze, O. Grånäs, E.K.U. Gross, A. Gulans, F. Gygi, D.R. Hamann, P.J. Hasnip, N.A.W. Holzwarth, D. Iuşan, D.B. Jochym, F. Jollet, D. Jones, G. Kresse, K. Koepernik, E. Küçükbenli, Y.O. Kvashnin, I.L.M. Locht, S. Lubeck, M. Marsman, N. Marzari, U. Nitzsche, L. Nordström, T. Ozaki, L. Paulatto, C.J. Pickard, W. Poelmans, M.I.J. Probert, K. Refson, M. Richter, G.M. Rignanese, S. Saha, M. Scheffler, M. Schlipf, K. Schwarz, S. Sharma, F. Tavazza, P. Thunström, A. Tkatchenko, M. Torrent, D. Vanderbilt, M.J. van Setten, V. Van Speybroeck, J.M. Wills, J.R. Yates, G.X. Zhang, S. Cottenier, Reproducibility in density functional theory calculations of solids. Science 351(6280), 1415 (2016).  https://doi.org/10.1126/science.aad3000
  44. 44.
    K. Schwarz, P. Blaha, G. Madsen, Electronic structure calculations of solids using the WIEN2k package for material sciences. Comp. Phys. Commun. 147, 71–76 (2002).  https://doi.org/10.1016/S0010-4655(02)00206-0
  45. 45.
    W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).  https://doi.org/10.1103/PhysRev.140.A1133
  46. 46.
    J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13,244–13,249 (1992).  https://doi.org/10.1103/PhysRevB.45.13244
  47. 47.
    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).  https://doi.org/10.1103/PhysRevLett.77.3865
  48. 48.
    Z. Zhong, P. Wissgott, K. Held, G. Sangiovanni, Microscopic understanding of the orbital splitting and its tuning at oxide interfaces. EPL 99, 37,011 (2012).  https://doi.org/10.1209/0295-5075/99/37011
  49. 49.
    N. Marzari, A.A. Mostofi, J.R. Yates, I. Souza, D. Vanderbilt, Maximally localized Wannier functions: theory and applications. Rev. Mod. Phys. 84, 1419–1475 (2012).  https://doi.org/10.1103/RevModPhys.84.1419
  50. 50.
    N. Marzari, I. Souza, D. Vanderbilt, An introduction to maximally-localized Wannier functions. In: \(\Psi _k\) Newsletter (Highlight 57) (2003)Google Scholar
  51. 51.
    N. Marzari, D. Vanderbilt, Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56, 12,847–12,865 (1997).  https://doi.org/10.1103/PhysRevB.56.12847
  52. 52.
    A.A. Mostofi, J.R. Yates, Y.S. Lee, I. Souza, D. Vanderbilt, N. Marzari, wannier90: A tool for obtaining maximally-localised Wannier functions. Comp. Phys. Commun. 178, 685–699 (2008).  https://doi.org/10.1016/j.cpc.2007.11.016
  53. 53.
    J. Kuneš, R. Arita, P. Wissgott, A. Toschi, H. Ikeda, K. Held, Wien2wannier: from linearized augmented plane waves to maximally localized Wannier functions. Comput. Phys. Commun. 181, 1888 (2010).  https://doi.org/10.1016/j.cpc.2010.08.005
  54. 54.
    I.A. Nekrasov, K. Held, G. Keller, D.E. Kondakov, T. Pruschke, M. Kollar, O.K. Andersen, V.I. Anisimov, D. Vollhardt, Momentum-resolved spectral functions of SrVO\(_{3}\) calculated by LDA + DMFT. Phys. Rev. B 73, 155,112 (2006).  https://doi.org/10.1103/PhysRevB.73.155112
  55. 55.
    E. Gull, A.J. Millis, A.I. Lichtenstein, A.N. Rubtsov, M. Troyer, P. Werner, Continuous-time Monte Carlo methods for quantum impurity models. Rev. Mod. Phys. 83, 349–404 (2011).  https://doi.org/10.1103/RevModPhys.83.349
  56. 56.
    M. Wallerberger, A. Hausoel, P. Gunacker, A. Kowalski, N. Parragh, F. Goth, K. Held, G. Sangiovanni, W2dynamics: local one- and two-particle quantities from dynamical mean field theory, (2018). arXiv:1801.10209
  57. 57.
    M. Jarrell, J. Gubernatis, Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data. Phys. Rep. 269, 133–195 (1996).  https://doi.org/10.1016/0370-1573(95)00074-7
  58. 58.
    G. Keller, K. Held, V. Eyert, D. Vollhardt, V.I. Anisimov, Electronic structure of paramagnetic V\(_{2}\)O\(_{3}\): Strongly correlated metallic and mott insulating phase. Phys. Rev. B 70(20), 205,116 (2004).  https://doi.org/10.1103/PhysRevB.70.205116
  59. 59.
    R. Hesper, L.H. Tjeng, A. Heeres, G.A. Sawatzky, Photoemission evidence of electronic stabilization of polar surfaces in K\(_{3}\)C\(_{60}\). Phys. Rev. B 62, 16,046–16,055 (2000).  https://doi.org/10.1103/PhysRevB.62.16046
  60. 60.
    S. Okamoto, A.J. Millis, Electronic reconstruction at an interface between a Mott insulator and a band insulator. Nature (London) 428, 630–633 (2004).  https://doi.org/10.1038/nature02450
  61. 61.
    S. Okamoto, A.J. Millis, N.A. Spaldin, Lattice relaxation in oxide heterostructures: LaTiO\(_{3}\)/SrTiO\(_{3}\) superlattices. Phys. Rev. Lett. 97, 056,802 (2006).  https://doi.org/10.1103/PhysRevLett.97.056802
  62. 62.
    S. Okamoto, A.J. Millis, Spatial inhomogeneity and strong correlation physics: a dynamical mean-field study of a model Mott-insulator–band-insulator heterostructure. Phys. Rev. B 70, 241,104 (2004).  https://doi.org/10.1103/PhysRevB.70.241104
  63. 63.
    P. Hansmann, X. Yang, A. Toschi, G. Khaliullin, O.K. Andersen, K. Held, Turning a nickelate Fermi surface into a cupratelike one through heterostructuring. Phys. Rev. Lett. 103, 016,401 (2009).  https://doi.org/10.1103/PhysRevLett.103.016401
  64. 64.
    F. Lechermann, L. Boehnke, D. Grieger, Formation of orbital-selective electron states in LaTiO\(_{3}\)/SrTiO\(_{3}\) superlattices. Phys. Rev. B 87, 241,101 (2013).  https://doi.org/10.1103/PhysRevB.87.241101
  65. 65.
    F. Lechermann, L. Boehnke, D. Grieger, C. Piefke, Electron correlation and magnetism at the LaAlO\(_{3}\)/SrTiO\(_{3}\) interface: A DFT + DMFT investigation. Phys. Rev. B 90, 085,125 (2014).  https://doi.org/10.1103/PhysRevB.90.085125
  66. 66.
    F. Lechermann, H.O. Jeschke, A.J. Kim, S. Backes, R. Valentí, Electron dichotomy on the SrTiO\(_{3}\) defect surface augmented by many-body effects. Phys. Rev. B 93, 121,103 (2016).  https://doi.org/10.1103/PhysRevB.93.121103
  67. 67.
    M. Altmeyer, H.O. Jeschke, O. Hijano-Cubelos, C. Martins, F. Lechermann, K. Koepernik, A.F. Santander-Syro, M.J. Rozenberg, R. Valentí, M. Gabay, Magnetism, spin texture, and in-gap states: atomic specialization at the surface of oxygen-deficient SrTiO\(_{3}\). Phys. Rev. Lett. 116, 157–203 (2016).  https://doi.org/10.1103/PhysRevLett.116.157203
  68. 68.
    E. Pavarini, S. Biermann, A. Poteryaev, A.I. Lichtenstein, A. Georges, O.K. Andersen, Mott transition and suppression of orbital fluctuations in orthorhombic 3\(d^1\) perovskites. Phys. Rev. Lett. 92, 176,403 (2004).  https://doi.org/10.1103/PhysRevLett.92.176403
  69. 69.
    E. Pavarini, A. Yamasaki, J. Nuss, O.K. Andersen, How chemistry controls electron localization in 3\(d^1\) perovskites: a Wannier-function study. New J. Phys. 7, 188 (2005).  https://doi.org/10.1088/1367-2630/7/1/188
  70. 70.
    K. Dymkowski, C. Ederer, Strain-induced insulator-to-metal transition in LaTiO\(_{3}\) within DFT+DMFT. Phys. Rev. B 89, 161,109 (2014).  https://doi.org/10.1103/PhysRevB.89.161109
  71. 71.
    F. Lechermann, M. Obermeyer, Towards Mott design by \(\delta \)-doping of strongly correlated titanates. New J. Phys. 17, 043,026 (2015).  https://doi.org/10.1088/1367-2630/17/4/043026
  72. 72.
    G. Catalan, Progress in perovskite nickelate research. Phase Transitions 81, 729–749 (2008).  https://doi.org/10.1080/01411590801992463
  73. 73.
    J.L. García-Muñoz, J. Rodríguez-Carvajal, P. Lacorre, J.B. Torrance, Neutron-diffraction study of \(R\)NiO\(_{3}\) (\(R\) =La, Pr, Nd, Sm): Electronically induced structural changes across the metal-insulator transition. Phys. Rev. B 46, 4414–4425 (1992).  https://doi.org/10.1103/PhysRevB.46.4414
  74. 74.
    J.B. Torrance, P. Lacorre, A.I. Nazzal, E.J. Ansaldo, C. Niedermayer, Systematic study of insulator-metal transitions in perovskites \(R\)NiO\(_{3}\) (\(R\) =Pr, Nd, Sm, Eu) due to closing of charge-transfer gap. Phys. Rev. B 45, 8209–8212 (1992).  https://doi.org/10.1103/PhysRevB.45.8209
  75. 75.
    J.A. Alonso, J.L. García-Muñoz, M.T. Fernández-Díaz, M.A.G. Aranda, M.J. Martínez-Lope, M.T. Casais, Charge disproportionation in \(R\)NiO\(_{3}\) perovskites: Simultaneous metal-insulator and structural transition in YNiO\(_{3}\). Phys. Rev. Lett. 82, 3871–3874 (1999).  https://doi.org/10.1103/PhysRevLett.82.3871
  76. 76.
    E.A. Nowadnick, J.P. Ruf, H. Park, P.D.C. King, D.G. Schlom, K.M. Shen, A.J. Millis, Quantifying electronic correlation strength in a complex oxide: a combined DMFT and ARPES study of LaNiO\(_{3}\). Phys. Rev. B 92, 245,109 (2015).  https://doi.org/10.1103/PhysRevB.92.245109
  77. 77.
    J. Rodríguez-Carvajal, S. Rosenkranz, M. Medarde, P. Lacorre, M.T. Fernandez-Díaz, F. Fauth, V. Trounov, Neutron-diffraction study of the magnetic and orbital ordering in \(^{154}\)SmNiO\(_{3}\) and \(^{153}\)EuNiO\(_{3}\). Phys. Rev. B 57, 456–464 (1998).  https://doi.org/10.1103/PhysRevB.57.456
  78. 78.
    U. Staub, G.I. Meijer, F. Fauth, R. Allenspach, J.G. Bednorz, J. Karpinski, S.M. Kazakov, L. Paolasini, F. d’Acapito, Direct observation of charge order in an epitaxial NdNiO\(_{3}\) film. Phys. Rev. Lett. 88, 126,402 (2002).  https://doi.org/10.1103/PhysRevLett.88.126402
  79. 79.
    B. Lau, A.J. Millis, Theory of the magnetic and metal-insulator transitions in \(R\)NiO\(_{3}\) bulk and layered structures. Phys. Rev. Lett. 110, 126,404 (2013).  https://doi.org/10.1103/PhysRevLett.110.126404
  80. 80.
    S. Lee, R. Chen, L. Balents, Landau theory of charge and spin ordering in the nickelates. Phys. Rev. Lett. 106, 016,405 (2011).  https://doi.org/10.1103/PhysRevLett.106.016405
  81. 81.
    S. Lee, R. Chen, L. Balents, Metal-insulator transition in a two-band model for the perovskite nickelates. Phys. Rev. B 84, 165,119 (2011).  https://doi.org/10.1103/PhysRevB.84.165119
  82. 82.
    V.I. Anisimov, D. Bukhvalov, T.M. Rice, Electronic structure of possible nickelate analogs to the cuprates. Phys. Rev. B 59, 7901–7906 (1999).  https://doi.org/10.1103/PhysRevB.59.7901
  83. 83.
    J. Chaloupka, G. Khaliullin, Orbital order and possible superconductivity in LaNiO\(_3\)/LaMO\(_3\) superlattices. Phys. Rev. Lett. 100, 016,404 (2008).  https://doi.org/10.1103/PhysRevLett.100.016404
  84. 84.
    P. Hansmann, A. Toschi, X. Yang, O.K. Andersen, K. Held, Electronic structure of nickelates: from two-dimensional heterostructures to three-dimensional bulk materials. Phys. Rev. B 82, 235,123 (2010).  https://doi.org/10.1103/PhysRevB.82.235123
  85. 85.
    M.J. Han, X. Wang, C.A. Marianetti, A.J. Millis, Dynamical mean-field theory of nickelate superlattices. Phys. Rev. Lett. 107, 206,804 (2011).  https://doi.org/10.1103/PhysRevLett.107.206804
  86. 86.
    N. Parragh, G. Sangiovanni, P. Hansmann, S. Hummel, K. Held, A. Toschi, Effective crystal field and Fermi surface topology: a comparison of \(d\)- and \(dp\)-orbital models. Phys. Rev. B 88, 195,116 (2013).  https://doi.org/10.1103/PhysRevB.88.195116
  87. 87.
    O.E. Peil, M. Ferrero, A. Georges, Orbital polarization in strained LaNiO\(_{3}\): structural distortions and correlation effects. Phys. Rev. B 90, 045,128 (2014).  https://doi.org/10.1103/PhysRevB.90.045128
  88. 88.
    E. Benckiser, M.W. Haverkort, S. Brück, E. Goering, S. Macke, A. Frañó, X. Yang, O.K. Andersen, G. Cristiani, H.U. Habermeier, A.V. Boris, I. Zegkinoglou, P. Wochner, H.J. Kim, V. Hinkov, B. Keimer, Orbital reflectometry of oxide heterostructures. Nat. Mater. 10, 189 (2011).  https://doi.org/10.1038/nmat2958
  89. 89.
    M. Wu, E. Benckiser, M.W. Haverkort, A. Frano, Y. Lu, U. Nwankwo, S. Brück, P. Audehm, E. Goering, S. Macke, V. Hinkov, P. Wochner, G. Christiani, S. Heinze, G. Logvenov, H.U. Habermeier, B. Keimer, Strain and composition dependence of orbital polarization in nickel oxide superlattices. Phys. Rev. B 88, 125,124 (2013).  https://doi.org/10.1103/PhysRevB.88.125124
  90. 90.
    A.S. Disa, D.P. Kumah, A. Malashevich, H. Chen, D.A. Arena, E.D. Specht, S. Ismail-Beigi, F.J. Walker, C.H. Ahn, Orbital engineering in symmetry-breaking polar heterostructures. Phys. Rev. Lett. 114, 026,801 (2015).  https://doi.org/10.1103/PhysRevLett.114.026801
  91. 91.
    H. Park, A.J. Millis, C.A. Marianetti, Influence of quantum confinement and strain on orbital polarization of four-layer LaNiO\(_{3}\) superlattices: A DFT + DMFT study. Phys. Rev. B 93, 235,109 (2016).  https://doi.org/10.1103/PhysRevB.93.235109
  92. 92.
    M. Uchida, K. Ishizaka, P. Hansmann, Y. Kaneko, Y. Ishida, X. Yang, R. Kumai, A. Toschi, Y. Onose, R. Arita, K. Held, O.K. Andersen, S. Shin, Y. Tokura, Pseudogap of metallic layered nickelate \({\rm R\mathit{}_{\rm 2x}} {\rm Sr\mathit{}_{\rm x}} {\rm NiO}_{4}\) (R=Nd,Eu) crystals measured using angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 106, 027,001 (2011).  https://doi.org/10.1103/PhysRevLett.106.027001
  93. 93.
    H. Chen, H. Park, A.J. Millis, C.A. Marianetti, Charge transfer across transition-metal oxide interfaces: emergent conductance and electronic structure. Phys. Rev. B 90, 245,138 (2014).  https://doi.org/10.1103/PhysRevB.90.245138
  94. 94.
    Z. Fang, N. Nagaosa, Quantum versus Jahn-Teller orbital physics in YVO\(_{3}\) and LaVO\(_{3}\). Phys. Rev. Lett. 93, 176,404 (2004).  https://doi.org/10.1103/PhysRevLett.93.176404
  95. 95.
    M. De Raychaudhury, E. Pavarini, O.K. Andersen, Orbital fluctuations in the different phases of YVO\(_{3}\) and LaVO\(_{3}\). Phys. Rev. Lett. 99, 126,402 (2007).  https://doi.org/10.1103/PhysRevLett.99.126402
  96. 96.
    Y. Hotta, T. Susaki, H.Y. Hwang, Polar discontinuity doping of the LaVO\(_{3}\)/SrTiO\(_{3}\) interface. Phys. Rev. Lett. 99, 236,805 (2007).  https://doi.org/10.1103/PhysRevLett.99.236805
  97. 97.
    E. Assmann, P. Blaha, R. Laskowski, K. Held, S. Okamoto, G. Sangiovanni, Oxide heterostructures for efficient solar cells. Phys. Rev. Lett. 110, 078–701 (2013).  https://doi.org/10.1103/PhysRevLett.110.078701
  98. 98.
    E. Assmann, Spectral properties of strongly correlated materials. Ph.D. thesis, TU Wien (2015)Google Scholar
  99. 99.
    P. Werner, K. Held, M. Eckstein, Role of impact ionization in the thermalization of photoexcited mott insulators. Phys. Rev. B 90, 235,102 (2014).  https://doi.org/10.1103/PhysRevB.90.235102
  100. 100.
    L. Wang, Y. Li, A. Bera, C. Ma, F. Jin, K. Yuan, W. Yin, A. David, W. Chen, W. Wu, W. Prellier, S. Wei, T. Wu, Device performance of the Mott insulator LaVO\(_{3}\) as a photovoltaic material. Phys. Rev. Applied 3, 064,015 (2015).  https://doi.org/10.1103/PhysRevApplied.3.064015
  101. 101.
    M. Nakamura, F. Kagawa, T. Tanigaki, H.S. Park, T. Matsuda, D. Shindo, Y. Tokura, M. Kawasaki, Spontaneous polarization and bulk photovoltaic effect driven by polar discontinuity in LaFeO\(_{3}\)/SrTiO\(_{3}\) heterojunctions. Phys. Rev. Lett. 116, 156,801 (2016).  https://doi.org/10.1103/PhysRevLett.116.156801
  102. 102.
    G. Koster, L. Klein, W. Siemons, G. Rijnders, J.S. Dodge, C.B. Eom, D.H.A. Blank, M.R. Beasley, Structure, physical properties, and applications of SrRuO\(_3\) thin films. Rev. Mod. Phys. 84, 253–298 (2012).  https://doi.org/10.1103/RevModPhys.84.253
  103. 103.
    W.E. Bell, M. Tagami, High-temperature chemistry of the ruthenium-osygen system. J. Phys. Chem. 67, 2432–2436 (1963).  https://doi.org/10.1021/j100805a042
  104. 104.
    D. Toyota, I. Ohkubo, H. Kumigashira, M. Oshima, T. Ohnishi, M. Lippmaa, M. Takizawa, A. Fujimori, K. Ono, M. Kawasaki, H. Koinuma, Thickness-dependent electronic structure of ultrathin SrRuO\(_3\) films studied by in situ photoemission spectroscopy. Appl. Phys. Lett. 87, 162,508 (2005).  https://doi.org/10.1063/1.2108123
  105. 105.
    J. Xia, W. Siemons, G. Koster, M.R. Beasley, A. Kapitulnik, Critical thickness for itinerant ferromagnetism in ultrathin films of SrRuO\(_{3}\). Phys. Rev. B 79, 140,407 (2009).  https://doi.org/10.1103/PhysRevB.79.140407
  106. 106.
    J.M. Rondinelli, N.M. Caffrey, S. Sanvito, N.A. Spaldin, Electronic properties of bulk and thin film SrRuO\(_{3}\): Search for the metal-insulator transition. Phys. Rev. B 78, 155,107 (2008).  https://doi.org/10.1103/PhysRevB.78.155107
  107. 107.
    P. Mahadevan, F. Aryasetiawan, A. Janotti, T. Sasaki, Evolution of the electronic structure of a ferromagnetic metal: case of SrRuO\(_{3}\). Phys. Rev. B 80, 035,106 (2009).  https://doi.org/10.1103/PhysRevB.80.035106
  108. 108.
    G. Rijnders, D.H.A. Blank, J. Choi, C.B. Eom, Enhanced surface diffusion through termination conversion during epitaxial SrRuO\(_3\) growth. Appl. Phys. Lett. 84, 505 (2004).  https://doi.org/10.1063/1.1640472
  109. 109.
    E. Jakobi, S. Kanungo, S. Sarkar, S. Schmitt, T. Saha-Dasgupta, LDA + DMFT study of Ru-based perovskite SrRuO\(_{3}\) and CaRuO\(_{3}\). Phys. Rev. B 83, 041,103 (2011).  https://doi.org/10.1103/PhysRevB.83.041103
  110. 110.
    M. Kim, B.I. Min, Nature of itinerant ferromagnetism of SrRuO\(_{3}\): A DFT+DMFT study. Phys. Rev. B 91, 205,116 (2015).  https://doi.org/10.1103/PhysRevB.91.205116
  111. 111.
    L. Si, Z. Zhong, J.M. Tomczak, K. Held, Route to room-temperature ferromagnetic ultrathin SrRuO\(_{3}\) films. Phys. Rev. B 92, 041,108 (2015).  https://doi.org/10.1103/PhysRevB.92.041108
  112. 112.
    E. Assmann, P. Wissgott, J. Kuneš, A. Toschi, P. Blaha, K. Held, woptic: optical conductivity with Wannier functions and adaptive k-mesh refinements. Comput. Phys. Commun. 202, 1 (2016).  https://doi.org/10.1016/j.cpc.2015.12.010
  113. 113.
    S. Bhandary, E. Assmann, M. Aichhorn, K. Held, Charge self-consistency in density functional theory + dynamical mean field theory: k-space reoccupation and orbital order, (2016). Phys. Rev. B 94, 155–131 (2016).  https://doi.org/10.1103/PhysRevB.94.155131
  114. 114.
    D. Xiao, W. Zhu, Y. Ran, N. Nagaosa, S. Okamoto, Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures. Nature Commun. 2, 596 (2011).  https://doi.org/10.1038/ncomms1602

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Solid State PhysicsTU WienAustria
  2. 2.Max Planck Institute for Solid State PhysicsStuttgartGermany
  3. 3.Institut Für Theoretische Physik Und AstrophysikUniversität WürzburgWürzburgGermany

Personalised recommendations