Ab-Initio Calculations of TMO Band Structure

Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 266)


We review the fundamental aspects related to ab-initio band structure calculations for the \(\text {SrTiO}_3/\text {LaAlO}_3\) interface, analyzing capabilities and limits of the most advanced approaches, using available experiments as a reference. In particular, we discuss accuracy and failures for what concern the description of electronic, transport, and thermoelectric properties of oxide heterostructures. Despite evident shortcomings, our overview assesses the usefulness and the satisfying quality of ab-initio methods as an efficient approach for oxide heterostructure design and analysis.



A.F. warmly thanks Sbastien Lemal and Philippe Ghosez for their careful critical reading of the manuscript, and acknowledges financial support under Project PON-NETERGIT, and computing support from CRS4 Computing Centre (Loc. Piscina Manna, Pula, Italy).


  1. 1.
    M. Huijben, G. Rijnders, D.H. Blank, S. Bals, S. Van Aert, J. Verbeeck, G. Van Tendeloo, A. Brinkman, H. Hilgenkamp, Electronically coupled complementary interfaces between perovskite band insulators. Nat. Mater. 5, 556–560 (2006), http://www.nature.com/doifinder/10.1038/nmat1675
  2. 2.
    N. Nakagawa, H.Y. Hwang, D.A. Muller, Why some interfaces cannot be sharp. Nat. Mater. 5, 204–209 (2006), http://www.nature.com/doifinder/10.1038/nmat1569
  3. 3.
    A. Ohtomo, H.Y. Hwang, A high-mobility electron gas at the LaAlO\(_3\)/SrTiO\(_3\) heterointerface. Nature 427, 423–427 (2004), http://www.nature.com/doifinder/10.1038/nature04773
  4. 4.
    V.I. Anisimov, J. Zaanen, O.K. Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943 (1991), https://doi.org/10.1103/PhysRevB.44.943
  5. 5.
    A. Filippetti, V. Fiorentini, A practical first-principles band-theory approach to the study of correlated materials. Eur. Phys. J. B 71, 139–183 (2009), http://www.springerlink.com/index/10.1140/epjb/e2009-00313-2
  6. 6.
    A. Filippetti, C.D. Pemmaraju, S. Sanvito, P. Delugas, D. Puggioni, V. Fiorentini, Variational pseudo-self-interaction-corrected density functional approach to the ab initio description of correlated solids and molecules. Phys. Rev. B 84, 195127 (2011), http://link.aps.org/doi/10.1103/PhysRevB.84.195127
  7. 7.
    D.I. Bilc, R. Orlando, R. Shaltaf, G.M. Rignanese, J. Íñiguez, Ph. Ghosez, Hybrid exchange-correlation functional for accurate prediction of the electronic and structural properties of ferroelectric oxides. Phys. Rev. B 77, 165107 (2008), http://link.aps.org/doi/10.1103/PhysRevB.77.165107
  8. 8.
    J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003), http://scitation.aip.org/content/aip/journal/jcp/118/18/10.1063/1.1564060
  9. 9.
    J.-M. Albina, M. Mrovec, M.B. Meyer, C. Elssser, Structure, stability, and electronic properties of SrTiO\(_3\)/LaAlO\(_3\) and SrTiO\(_3\)/SrRuO\(_3\) interfaces. Phys. Rev. B 76, 165103 (2007), http://link.aps.org/doi/10.1103/PhysRevB.76.165103
  10. 10.
    N.C. Bristowe, E. Artacho, P.B. Littlewood, Oxide superlattices with alternating p and n interfaces. Phys. Rev. B 80, 045425 (2009), http://link.aps.org/doi/10.1103/PhysRevB.80.045425
  11. 11.
    M.S. Park, S.H. Rhim, A.J. Freeman, Charge compensation and mixed valency in LaAlO\(_3\)/SrTiO\(_3\) heterointerfaces studied by the FLAPW method. Phys. Rev. B 74, 205416 (2006), http://link.aps.org/doi/10.1103/PhysRevB.74.205416
  12. 12.
    W.-J. Son, E. Cho, B. Lee, J. Lee, S. Han, Density and spatial distribution of charge carriers in the intrinsic n-type LaAlO\(_3\)/SrTiO\(_3\) interface. Phys. Rev. B 79, 245411 (2009), http://link.aps.org/doi/10.1103/PhysRevB.79.245411
  13. 13.
    E. Lesne, N. Reyren, D. Doennig, R. Mattana, H. Jaffrs, V. Cros, F. Petroff, F. Choueikani, P. Ohresser, R. Pentcheva, A. Barthlmy, M. Bibes, Suppression of the critical thickness threshold for conductivity at the LaAlO\(_3\)/SrTiO\(_3\) interface. Nat. Commun. 5, 4291 (2014), http://www.nature.com/doifinder/10.1038/ncomms5291
  14. 14.
    R. Pentcheva, W.E. Pickett, Avoiding the polarization catastrophe in LaAlO\(_3\) Overlayers on SrTiO\(_3\) (001) through polar distortion. Phys. Rev. Lett. 102, 107602 (2009), http://link.aps.org/doi/10.1103/PhysRevLett.102.107602
  15. 15.
    Z.S. Popovic, S. Satpathy, R.M. Martin, Origin of the two-dimensional electron gas carrier density at the LaAlO\(_3\) on SrTiO\(_3\) interface. Phys. Rev. Lett. 101, 256801 (2008), http://link.aps.org/doi/10.1103/PhysRevLett.101.256801
  16. 16.
    U. Schwingenschlgl, C. Schuster, Interface relaxation and electrostatic charge depletion in the oxide heterostructure LaAlO\(_3\)/SrTiO\(_3\). Europhysics Lett. 6, 27005 (2009), http://stacks.iop.org/0295-5075/86/i=2/a=27005?key=crossref.2c314eb51de14f37348a226e7c16b631
  17. 17.
    K. Janicka, J.P. Velev, E.Y. Tsymbal, Quantum nature of two-dimensional electron gas confinement at LaAlO\(_3\)/SrTiO\(_3\) interfaces. Phys. Rev. Lett. 102, 106803 (2009), http://link.aps.org/doi/10.1103/PhysRevLett.102.106803
  18. 18.
    J. Lee, A. Demkov, Charge origin and localization at the n-type SrTiO\(_3\)/LaAlO\(_3\) interface. Phys. Rev. B 78, 193104 (2008), http://link.aps.org/doi/10.1103/PhysRevB.78.193104
  19. 19.
    N. Pavlenko, T. Kopp, Structural relaxation and metal-insulator transition at the interface between SrTiO\(_3\) and LaAlO\(_3\). Surf. Sci. 605, 11141121 (2011), http://linkinghub.elsevier.com/retrieve/pii/S003960281100118X
  20. 20.
    R. Pentcheva, W.E. Pickett, Charge localization or itineracy at LaAlO\(_3\)/SrTiO\(_3\) interfaces: hole polarons, oxygen vacancies, and mobile electrons. Phys. Rev. B 74, 035112 (2006), http://link.aps.org/doi/10.1103/PhysRevB.74.035112
  21. 21.
    Z. Zhong, P.J. Kelly, Electronic-structure induced reconstruction and magnetic ordering at the LaAlO\(_3\)|SrTiO\(_3\) interface. Europhys. Lett. 84, 27001 (2008), http://stacks.iop.org/0295-5075/84/i=2/a=27001?key=crossref.aa208f51927f0f59a7826061a6531da2
  22. 22.
    R. Pentcheva, W.E. Pickett, Ionic relaxation contribution to the electronic reconstruction at the n-type LaAlO\(_3\)/SrTiO\(_3\) interface. Phys. Rev. B 78, 205106 (2008), http://link.aps.org/doi/10.1103/PhysRevB.78.205106
  23. 23.
    M. Stengel, First-principles modeling of electrostatically doped perovskite systems. Phys. Rev. Lett. 106, 136803 (2011), http://link.aps.org/doi/10.1103/PhysRevLett.106.136803
  24. 24.
    P. Delugas, A. Filippetti, V. Fiorentini, D.I. Bilc, D. Fontaine, Ph. Ghosez, Spontaneous 2-dimensional carrier confinement at the n-type SrTiO\(_3\)/LaAlO\(_3\) interface. Phys. Rev. Lett. 106, 166807 (2011), http://link.aps.org/doi/10.1103/PhysRevLett.106.166807
  25. 25.
    C. Cancellieri, D. Fontaine, S. Gariglio, N. Reyren, A.D. Caviglia, A. Fête, S.J. Leake, S.A. Pauli, P.R. Willmott, M. Stengel, Ph. Ghosez, J.-M. Triscone, Electrostriction at the LaAlO\(_3\)/SrTiO\(_3\) interface. Phys. Rev. Lett. 107, 056102 (2011), http://link.aps.org/doi/10.1103/PhysRevLett.107.056102
  26. 26.
    M.L. Reinle-Schmitt, C. Cancellieri, D. Li, D. Fontaine, M. Medarde, E. Pomjakushina, C.W. Schneider, S. Gariglio, Ph. Ghosez, J.-M. Triscone, P.R. Willmott, Tunable conductivity threshold at polar oxide interfaces. Nat. Commun. 3, 932 (2012), http://www.nature.com/doifinder/10.1038/ncomms1936
  27. 27.
    F. Cossu, U. Schwingenschlogl, V. Eyert, Metal-insulator transition at the LaAlO\(_3\)/SrTiO\(_3\) interface revisited: a hybrid functional study. Phys. Rev. B 88, 045119 (2013), http://link.aps.org/doi/10.1103/PhysRevB.88.045119
  28. 28.
    L. Yu, A. Zunger, A polarity-induced defect mechanism for conductivity and magnetism at polar nonpolar oxide interfaces. Nat. Commun. 5, 5118 (2014), http://www.nature.com/doifinder/10.1038/ncomms6118
  29. 29.
    W.-C. Lee, A.H. MacDonald, Electronic interface reconstruction at polar-nonpolar Mott-insulator heterojunctions. Phys. Rev. B 76, 075339 (2007), http://link.aps.org/doi/10.1103/PhysRevB.76.075339
  30. 30.
    K. Yada, S. Onari, Y. Tanaka, J.-I. Inoue, Electrically controlled super-conducting states at the heterointerface SrTiO\(_3\)/LaAlO\(_3\). Phys. Rev. B 80, 140509 (2009), http://link.aps.org/doi/10.1103/PhysRevB.80.140509
  31. 31.
    N.C. Bristowe, Ph. Ghosez, P.B. Littlewood, E. Artacho, The origin of two-dimensional electron gases at oxide interfaces: insights from theory. J. Phys. Condens. Matter 26, 143201 (2014), http://stacks.iop.org/0953-8984/26/i=14/a=143201?key=crossref.f7d9ccb17419daab8029060acecb0b0e
  32. 32.
    M. Stengel, D. Vanderbilt, Berry-phase theory of polar discontinuities at oxide-oxide interfaces. Phys. Rev. B 80, 241103 (2009), http://link.aps.org/doi/10.1103/PhysRevB.80.241103
  33. 33.
    R.D. King-Smith, D. Vanderbilt, Theory of polarization of crystalline solids. Phys. Rev. B 47, 1651–1654 (1993), http://link.aps.org/doi/10.1103/PhysRevB.47.1651
  34. 34.
    S.A. Pauli, S.J. Leake, B. Delley, M. Bjorck, C.W. Schneider, C.M. Schleputz, D. Martoccia, S. Paetel, J. Mannhart, P.R. Willmott, Evolution of the interfacial structure of LaAlO\(_3\) on SrTiO\(_3\). Phys. Rev. Lett. 106, 036101 (2011), http://link.aps.org/doi/10.1103/PhysRevLett.106.036101
  35. 35.
    C. Cancellieri, A.S. Mishchenko, U. Aschauer, A. Filippetti, C. Faber, O.S. Barii, V.A. Rogalev, T. Schmitt, N. Nagaosa, V.N. Strocov, Polaronic metal state at the LaAlO\(_3\)/SrTiO\(_3\) interface. Nat. Commun. 7, 10386 (2016), http://www.nature.com/doifinder/10.1038/ncomms10386
  36. 36.
    I. Pallecchi, F. Telesio, D. Li, A. Fête, S. Gariglio, J.-M. Triscone, A. Filippetti, P. Delugas, V. Fiorentini, D. Marré, Giant oscillating thermopower at oxide interfaces. Nat. Commun. 6, 6678 (2015), http://www.nature.com/doifinder/10.1038/ncomms7678
  37. 37.
    G. Berner, S. Glawion, J. Walde, F. Pfaff, H. Hollmark, L.-C. Duda, S. Paetel, C. Richter, J. Mannhart, M. Sing, R. Claessen, LaAlO/SrTiO oxide heterostructures studied by resonant inelastic X-ray scattering. Phys. Rev. B 82, 241405 (2010), http://link.aps.org/doi/10.1103/PhysRevB.82.241405
  38. 38.
    A. Dubroka, M. Rössle, K.W. Kim, V.K. Malik, L. Schultz, S. Thiel, C.W. Schneider, J. Mannhart, G. Herranz, O. Copie, M. Bibes, A. Barthlmy, C. Bernhard, Dynamical response and confinement of the electrons at the LaAlO\(_3\)/SrTiO\(_3\) interface. Phys. Rev. Lett. 104, 156807 (2010), http://link.aps.org/doi/10.1103/PhysRevLett.104.156807
  39. 39.
    A. Filippetti, V. Fiorentini, Double-exchange driven ferromagnetic metal-paramagnetic insulator transition in Mn-doped CuO. Phys. Rev. B 74, 220401 (2006), http://link.aps.org/doi/10.1103/PhysRevB.74.220401
  40. 40.
    A. Filippetti, V. Fiorentini, Magnetic ordering under strain and spin-Peierls dimerization in GeCuO3. Phys. Rev. Lett. 98, 196403 (2007), http://link.aps.org/doi/10.1103/PhysRevLett.98.196403
  41. 41.
    G. Colizzi, A. Filippetti, V. Fiorentini, Multiferroicity and orbital ordering in Pr0.5Ca0.5MnO3 from first principles. Phys. Rev. B 82, 140101 (2010), http://link.aps.org/doi/10.1103/PhysRevB.82.140101
  42. 42.
    D. Puggioni, A. Filippetti, V. Fiorentini, Ordering and multiple phase transitions in ultrathin nickelate superlattices. Phys. Rev. B 86, 195132 (2012), http://dx.doi.org/10.1103/PhysRevB.86.195132
  43. 43.
    L. Zhang, X.-F. Zhou, H.-T. Wang, J.-J. Xu, J. Li, E.G. Wang, S.-H. Wei, Origin of insulating behavior of the p-type LaAlO\(_3\)/SrTiO\(_3\) interface: polarization-induced asymmetric distribution of oxygen vacancies. Phys. Rev. B 82, 125412 (2010), http://link.aps.org/doi/10.1103/PhysRevB.82.125412
  44. 44.
    A. Kalabukhov, R. Gunnarsson, J. Borjesson, E. Olsson, T. Claeson, D. Winkler, Effect of oxygen vacancies in the SrTiO\(_3\) substrate on the electrical properties of the LaAlO\(_3\)/SrTiO\(_3\) interface. Phys. Rev. B 75, 121404 (2007), http://link.aps.org/doi/10.1103/PhysRevB.75.121404
  45. 45.
    W. Siemons, G. Koster, H. Yamamoto, W. Harrison, G. Lucovsky, T.H. Geballe, D.H. Blank, M.R. Beasley, Origin of charge density at LaAlO\(_3\) on SrTiO\(_3\) heterointerfaces: possibility of intrinsic doping. Phys. Rev. Lett. 98, 196802 (2007), http://link.aps.org/doi/10.1103/PhysRevLett.98.196802
  46. 46.
    Y. Li, S.N. Phattalung, S. Limpijumnong, J. Kim, J. Yu, Formation of oxygen vacancies and charge carriers induced in the n-type interface of a LaAlO3 overlayer on SrTiO\(_3\) (001). Phys. Rev. B 84, 245307 (2011), http://link.aps.org/doi/10.1103/PhysRevB.84.245307
  47. 47.
    N.C. Bristowe, P.B. Littlewood, E. Artacho, Surface defects and conduction in polar oxide heterostructures. Phys. Rev. B 83, 205405 (2011), http://link.aps.org/doi/10.1103/PhysRevB.83.205405
  48. 48.
    W.-J. Son, E. Cho, J. Lee, S. Han, Hydrogen adsorption and carrier generation in LaAlO\(_3\)-SrTiO\(_3\) heterointerfaces: a first-principles study. J. Phys. Condens. Matter 22, 315501 (2010), http://stacks.iop.org/0953-8984/22/i=31/a=315501?key=crossref.b074a735f655a7211eedde5a0f98bc00
  49. 49.
    C. Cazorla, M. Stengel, First-principles modeling of Pt/LaAlO\(_3\)/SrTiO\(_3\) capacitors under an external bias potential. Phys. Rev. B 85, 075426 (2012), http://link.aps.org/doi/10.1103/PhysRevB.85.075426
  50. 50.
    V. Vonk, J. Huijben, D. Kukuruznyak, A. Stierle, H. Hilgenkamp, A. Brinkman, S. Harkema, Polar-discontinuity-retaining A-site intermixing and vacancies at SrTiO\(_3\)/LaAlO\(_3\) interfaces. Phys. Rev. B 85, 045401 (2012), http://link.aps.org/doi/10.1103/PhysRevB.85.045401
  51. 51.
    P.R. Willmott, S.A. Pauli, R. Herger, C.M. Schleputz, D. Martoccia, B.D. Patterson, B. Delley, R. Clarke, D. Kumah, C. Cionca, Y. Yacoby, Structural basis for the conducting interface between LaAlO\(_3\) and SrTiO\(_3\). Phys. Rev. Lett. 99, 155502 (2007), http://link.aps.org/doi/10.1103/PhysRevLett.99.155502
  52. 52.
    G. Berner, A. Mller, F. Pfaff, J. Walde, C. Richter, J. Mannhart, S. Thiess, A. Gloskovskii, W. Drube, M. Sing, R. Claessen, Band alignment in LaAlO/SrTiO oxide heterostructures inferred from hard X-ray photoelectron spectroscopy. Phys. Rev. B 88, 115111 (2013), http://link.aps.org/doi/10.1103/PhysRevB.88.115111
  53. 53.
    C. Cancellieri, M.L. Reinle-Schmitt, M. Kobayashi, V.N. Strocov, P.R. Willmott, D. Fontaine, Ph. Ghosez, A. Filippetti, P. Delugas, V. Fiorentini, Doping-dependent band structure of LaAlO\(_3\)/SrTiO\(_3\) interfaces by soft X-ray polarization-controlled resonant angle-resolved photoemission. Phys. Rev. B 89, 121412 (2014), http://link.aps.org/doi/10.1103/PhysRevB.89.121412
  54. 54.
    M. Salluzzo, J.C. Cezar, N.B. Brookes, V. Bisogni, G.M. De Luca, C. Richter, S. Thiel, J. Mannhart, M. Huijben, A. Brinkman, G. Rijnders, G. Ghiringhelli, Orbital reconstruction and the two-dimensional electron gas at the LaAlO\(_3\)/SrTiO\(_3\) interface. Phys. Rev. Lett. 102, 166804 (2009), http://link.aps.org/doi/10.1103/PhysRevLett.102.166804
  55. 55.
    M. Salluzzo, S. Gariglio, X. Torrelles, Z. Ristic, R. Di Capua, J. Drnec, M. Moretti Sala, G. Ghiringhelli, R. Felici, N.B. Brookes, Structural and electronic reconstructions at the LaAlO\(_3\)/SrTiO\(_3\) interface. Adv. Mater. 25, 2333–2338 (2013), http://doi.wiley.com/10.1002/adma.201204555
  56. 56.
    A. Fête, S. Gariglio, C. Berthod, D. Li, D. Stornaiuolo, M. Gabay, J.M. Triscone, Large modulation of the Shubnikov-de Haas oscillations by the Rashba interaction at the LaAlO\(_3\)/SrTiO\(_3\) interface. New J. Phys. 16, 112002 (2014), http://stacks.iop.org/1367-2630/16/i=11/a=112002?key=crossref.36462db5f9e2db63f1445d97256dabe0
  57. 57.
    A. Fête, C. Cancellieri, D. Li, D. Stornaiuolo, A.D. Caviglia, S. Gariglio, J.-M. Triscone, Growth-induced electron mobility enhancement at the LaAlO\(_3\)/SrTiO\(_3\) interface. Appl. Phys. Lett. 106, 051604 (2015), http://scitation.aip.org/content/aip/journal/apl/106/5/10.1063/1.4907676
  58. 58.
    A. Joshua, S. Pecker, J. Ruhman, E. Altman, S. Ilani, A universal critical density underlying the physics of electrons at the LaAlO\(_3\)/SrTiO\(_3\) interface. Nat. Commun. 3, 1129 (2012), http://www.nature.com/doifinder/10.1038/ncomms2116
  59. 59.
    A.D. Caviglia, M. Gabay, S. Gariglio, N. Reyren, C. Cancellieri, J.-M. Triscone, Tunable Rashba spin-orbit interaction at oxide interfaces. Phys. Rev. Lett. 104, 126803 (2010), http://link.aps.org/doi/10.1103/PhysRevLett.104.126803
  60. 60.
    A. Fête, S. Gariglio, A.D. Caviglia, J.-M. Triscone, M. Gabay, Rashba induced magnetoconductance oscillations in the LaAlO\(_3\)-SrTiO\(_3\) heterostructure. Phys. Rev. B 86, 201105 (2012), http://link.aps.org/doi/10.1103/PhysRevB.86.201105
  61. 61.
    P.B. Allen, Boltzmann theory and resistivity of metals, in Quantum Theory of Real Materials, ed. J.R. Chelikowsky, S.G. Louie (Kluwer, Boston, 1996), pp. 219–250Google Scholar
  62. 62.
    G. Madsen, D. Singh, BoltzTraP, a code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67 (2006), http://linkinghub.elsevier.com/retrieve/pii/S0010465506001305
  63. 63.
    P. Delugas, A. Filippetti, M.J. Verstraete, I. Pallecchi, D. Marré, V. Fiorentini, Doping-induced dimensional crossover and thermopower burst in Nb-doped SrTiO\(_3\) superlattices. Phys. Rev. B 88, 045310 (2013), http://link.aps.org/doi/10.1103/PhysRevB.88.045310
  64. 64.
    A. Filippetti, P. Delugas, M.J. Verstraete, I. Pallecchi, A. Gadaleta, D. Marré, D.F. Li, S. Gariglio, V. Fiorentini, Thermopower in oxide heterostructures: the importance of being multiple-band conductors. Phys. Rev. B 86, 195301 (2012), http://link.aps.org/doi/10.1103/PhysRevB.86.195301
  65. 65.
    S. Altunz, H. Celik, M. Cankurtaran, Temperature and electric field dependences of the mobility of electrons in vertical transport in GaAs/Ga1-yAlyAs barrier structures containing quantum wells. Cent. Eur. J. Phys. 6, 479–490 (2008), http://www.springerlink.com/content/q60113w8rl723807/
  66. 66.
    D.R. Anderson, N.A. Zakhleniuk, M. Babiker, B.K. Ridley, C.R. Bennett, Polar-optical phonon-limited transport in degenerate GaN-based quantum wells. Phys. Rev. B 63, 245313 (2001), http://link.aps.org/abstract/PRB/v63/e245313
  67. 67.
    P. Delugas, V. Fiorentini, A. Mattoni, A. Filippetti, Intrinsic origin of two-dimensional electron gas at the (001) surface of SrTiO\(_3\). Phys. Rev. B 91, 115315 (2015), http://link.aps.org/doi/10.1103/PhysRevB.91.115315
  68. 68.
    K. Kaasbjerg, K.S. Thygesen, A.-P. Jauho, Acoustic phonon limited mobility in two-dimensional semiconductors: deformation potential and piezoelectric scattering in monolayer MoS2 from first principles. Phys. Rev. B 87, 235312 (2013), http://link.aps.org/doi/10.1103/PhysRevB.87.235312
  69. 69.
    S. Su, J. Ho You, C. Lee, Electron transport at interface of LaAlO\(_3\) and SrTiO\(_3\) band insulators. J. Appl. Phys. 113, 093709 (2013), http://scitation.aip.org/content/aip/journal/jap/113/9/10.1063/1.4794057
  70. 70.
    M.P. Vaughan, B.K. Ridley, Solution of the Boltzmann equation for calculating the Hall mobility in bulk GaNxAs1-x. Phys. Rev. B 72, 075211 (2005), http://link.aps.org/doi/10.1103/PhysRevB.72.075211
  71. 71.
    J. Zhou, X. Li, G. Chen, R. Yang, Semiclassical model for thermoelectric transport in nanocomposites. Phys. Rev. B 82, 115308 (2010), http://link.aps.org/doi/10.1103/PhysRevB.82.115308
  72. 72.
    T. Okuda, K. Nakanishi, S. Miyasaka, Y. Tokura, Thermoelectric response of metallic perovskites. Phys. Rev. B 63, 113104 (2001), http://link.aps.org/doi/10.1103/PhysRevB.63.113104
  73. 73.
    S. Ohta, T. Nomura, H. Ohta, K. Koumoto, High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO\(_3\) single crystals. J. of Appl. Phys. 97, 034106 (2005), http://scitation.aip.org/content/aip/journal/jap/97/3/10.1063/1.1847723
  74. 74.
    M. Ben Shalom, A. Ron, A. Palevski, Y. Dagan, Shubnikov-de Haas oscillations in SrTiO\(_3\)/LaAlO\(_3\) interface. Phys. Rev. Lett. 105, 206401 (2010), http://link.aps.org/doi/10.1103/PhysRevLett.105.206401
  75. 75.
    A. Jost, V.K. Guduru, S. Wiedmann, J.C. Maan, U. Zeitler, S. Wenderich, A. Brinkman, H. Hilgenkamp, Transport and thermoelectric properties of the LaAlO\(_3\)/SrTiO\(_3\) interface. Phys. Rev. B 91, 045304 (2015), http://link.aps.org/doi/10.1103/PhysRevB.91.045304
  76. 76.
    S. Lerer, M. Ben Shalom, G. Deutscher, Y. Dagan, Low-temperature dependence of the thermomagnetic transport properties of the SrTiO\(_3\)/LaAlO\(_3\) interface. Phys. Rev. B 84, 075423 (2011), http://link.aps.org/doi/10.1103/PhysRevB.84.075423
  77. 77.
    H.J. Harsan Ma, Z. Huang, W.M. Lu, A. Annadi, S.W. Zeng, L.M. Wong, S.J. Wang, T. Venkatesan, Tunable bilayer two-dimensional electron gas in LaAlO\(_3\)/SrTiO\(_3\) superlattices. Appl. Phys. Lett. 105, 011603 (2014), http://scitation.aip.org/content/aip/journal/apl/105/1/10.1063/1.4887235
  78. 78.
    T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge, Quantum dot superlattice thermoelectric materials and devices. Science 297, 2229 (2002), http://www.sciencemag.org/cgi/doi/10.1126/science.1072886
  79. 79.
    R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597 (2001), http://www.nature.com/doifinder/10.1038/35098012
  80. 80.
    K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414 (2012), http://www.nature.com/doifinder/10.1038/nature11439
  81. 81.
    H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono, K. Koumoto, Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO\(_3\). Nat. Mater. 6, 129–134 (2007), http://www.nature.com/doifinder/10.1038/nmat1821
  82. 82.
    H. Ohta, Y. Masuoka, R. Asahi, T. Kato, Y. Ikuhara, K. Nomura, H. Hosono, Field-modulated thermopower in SrTiO\(_3\)-based field-effect transistors with amorphous 12CaO 7Al\(_2\)O\(_3\) glass gate insulator. Appl. Phys. Lett. 95, 113505 (2009), http://scitation.aip.org/content/aip/journal/apl/95/11/10.1063/1.3231873
  83. 83.
    S. Shimizu, S. Ono, T. Hatano, Y. Iwasa, Y. Tokura, Enhanced cryogenic thermopower in SrTiO\(_3\) by ionic gating. Phys. Rev. B 92, 165304 (2015), http://link.aps.org/doi/10.1103/PhysRevB.92.165304
  84. 84.
    I. Pallecchi, M. Codda, E. Galleani d’Agliano, D. Marré, A.D. Caviglia, N. Reyren, S. Gariglio, J.-M. Triscone, Seebeck effect in the conducting LaAlO\(_3\)/SrTiO\(_3\) interface. Phys. Rev. B 81, 085414 (2010), http://link.aps.org/doi/10.1103/PhysRevB.81.085414
  85. 85.
    A. Rastogi, S. Tiwari, J.J. Pulikkotil, Z. Hossain, D. Kumar, R.C. Budhani, Doped LaAlO\(_3\)-SrTiO\(_3\) interface: electrical transport and characterization of the interface potential. Europhys. Lett. 106, 57002 (2014), http://stacks.iop.org/0295-5075/106/i=5/a=57002?key=crossref.25dd2df3a410e21729789524c7dc9874
  86. 86.
    M. Basletic, J.-L. Maurice, C. Carrtro, G. Herranz, O. Copie, M. Bibes, E. Jacquet, K. Bouzehouane, S. Fusil, A. Barthlmy, Mapping the spatial distribution of charge carriers in LaAlO\(_3\)/SrTiO\(_3\) heterostructures. Nat. Mater. 7, 621 (2008), http://www.nature.com/doifinder/10.1038/nmat2223
  87. 87.
    O. Copie, V. Garcia, C. Bdefeld, C. Carrétéro, M. Bibes, G. Herranz, E. Jacquet, J.-L. Maurice, B. Vinter, S. Fusil, K. Bouzehouane, H. Jaffrs, Barthlmy, Towards two-dimensional metallic behavior at LaAlO\(_3\)/SrTiO\(_3\) interfaces. Phys. Rev. Lett. 102, 216804 (2009), http://link.aps.org/doi/10.1103/PhysRevLett.102.216804
  88. 88.
    I. Pallecchi, F. Telesio, D. Marré, D. Li, S. Gariglio, J.-M. Triscone, A. Filippetti, Large phonon-drag enhancement induced by narrow quantum confinement at the LaAlO\(_3\)/SrTiO\(_3\) interface. Phys. Rev. B 93, 195309 (2016), http://link.aps.org/doi/10.1103/PhysRevB.93.195309
  89. 89.
    M. Bailyn, Phonon-drag part of the thermoelectric power in metals. Phys. Rev. 157, 480–485 (1967), https://doi.org/10.1103/PhysRev.157.480
  90. 90.
    D.G. Cantrell, P.N. Butcher, A calculation of the phonon-drag contribution to the thermopower of quasi-2D electrons coupled to 3D phonons. I. General theory. J. Phys. C: Solid State Phys. 28, 1087 (1985), http://stacks.iop.org/0022-3719/20/i=13/a=014?key=crossref.8bab983124e4b525af037ec6f81b5eb2
  91. 91.
    D.G. Cantrell, P.N. Butcher, A calculation of the phonon-drag contribution to the thermopower of quasi-2D electrons coupled to 3D phonons: II. Applications. J. Phys. C: Solid State Phys. 28, 1993–2003 (1987), http://stacks.iop.org/0022-3719/20/i=13/a=014?key=crossref.8bab983124e4b525af037
  92. 92.
    Y. Yamada, H.K. Sato, Y. Hikita, H.Y. Hwang, Y. Kanemitsu, Measurement of the femtosecond optical absorption of LaAlO\(_3\)/SrTiO\(_3\) heterostructures: evidence for an extremely slow electron relaxation at the interface. Phys. Rev. Lett. 111, 047403 (2013), http://link.aps.org/doi/10.1103/PhysRevLett.111.047403
  93. 93.
    W. Liu, S. Gariglio, A. Fte, D. Li, M. Boselli, D. Stornaiuolo, J.-M. Triscone, Magneto-transport study of top- and back-gated LaAlO\(_3\)/SrTiO\(_3\) heterostructures. APL Mater. 3, 062805 (2015), http://scitation.aip.org/content/aip/journal/aplmater/3/6/10.1063/1.4921068
  94. 94.
    Y. Mune, H. Ohta, K. Koumoto, T. Mizoguchi, Y. Ikuhara, Enhanced Seebeck coefficient of quantum-confined electrons in SrTiO\(_3\)/SrTi0.8Nb0.2O3 superlattices. Appl. Phys. Lett. 91, 192105 (2007), http://scitation.aip.org/content/aip/journal/apl/91/19/10.1063/1.2809364
  95. 95.
    B.K. Ridley, Polar-optical-phonon and electron-electron scattering in large-bandgap semiconductors. J. Phys.: Condens. Matter 10, 6717–6726 (1998), http://stacks.iop.org/0953-8984/10/i=30/a=011?key=crossref.62f4e46fbffe8e1ec0e9dbdece463b64

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CNR-IOM Cagliari and Physics DepartmentUniversity of CagliariMonserratoItaly

Personalised recommendations