Cordgrass Invasions in Mediterranean Marshes: Past, Present and Future

  • Bernardo DuarteEmail author
  • Enrique Mateos-Naranjo
  • Susana Redondo Goméz
  • João Carlos Marques
  • Isabel Caçador
Part of the Environmental History book series (ENVHIS, volume 8)


The invasion of natural communities by non-indigenous species (NIS) represents one of the most serious threats to biodiversity. While these invasive processes are rather well studied in river corridors and riparian communities, the invasiveness of non-indigenous aquatic plants in wetlands has received far less attention. Many NIS plants have been introduced more than 100 years ago, while others are more recent arrivals, with most of the introductions occurring at the end of the 19th and at the beginning of the 20th centuries. The Spartina genus (the cordgrasses) is one of the most successful among halophytes (species that can survive and complete their life cycle under saline conditions), being present in a wide range of latitudes across the globe. Typically, Mediterranean systems are inhabited by the endemic small cordgrass Spartina maritima, native from the Atlantic African and European Atlantic coasts. Alongside, and with very similar geographical distribution ranges, two invasive species from the Spartina genus have been detected in Mediterranean systems. Spartina versicolor was first described in the Mediterranean region during the 19th century. This taxon is considered to be originated in America, and was introduced to Europe in the 19th century. It is probable that this species was introduced as packing material in crates to various ports around the Mediterranean Sea. Denseflower cordgrass Spartina densiflora is an invasive grass species of South American origin that has colonized salt marshes in the Gulf of Cadiz in the southwestern Iberian Peninsula, North Africa and North America. This is a facultative halophyte species (plants that avoid the effects of high salt even though they live in a saline environment) with an amazing physiological and morphological flexibility, enabling it to cope with a very wide range of environment constraints (salinity, tidal submergence, soil types, drainage and nutrient availability). Having this knowledge in mind becomes important to review the history of the introduction of these NIS along with their current colonization status and physiological characteristics. In the present chapter, this approach will be integrated with future scenarios of global change and increased anthropogenic pressures to achieve a better understanding of the impact of these NIS in Mediterranean estuarine systems.


Salt marshes Invasive Spartina Wetland biodiversity Mediterranean estuaries 



This work has been co-funded by Oficina de Cooperación Universidad de Sevilla (Conv. Ay. Act. y Proy. Coop. Des. Mod. 2, 2014/15-2015/2016) and Ministerio de Economía y Competitividad (MINECO Project CGL2016-75550-R cofunded by FEDER). The authors would also like to thank to the “Fundação para a Ciência e Tecnologia (FCT)” for funding the research in the Marine and Environmental Sciences Centre (MARE) throughout the project UID/MAR/04292/2013. The authors would also like thank to the MAR 2020 program through the project RESTAURA2020 (16-01-04-FMP-0014). B. Duarte investigation was supported by FCT throughout a Posdoctoral grant (SFRH/BPD/115162/2016).


  1. Abbas AM, Lambert AM, Rubio-Casal AE, De Cires A, Figueroa ME, Castillo JM (2015) Competition from hydrophytes reduces establishment and growth of invasive dense flowered cordgrass (Spartina densiflora). Peer J 3:e1260CrossRefPubMedGoogle Scholar
  2. Ainouche M, Baumel A, Salmon A, Yannic G (2003) Hybridization, polyploidy and speciation in Spartina (Poaceae). New Phytol 161:165–172CrossRefGoogle Scholar
  3. Allen JRL (2000) Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe. Quat Sci Rev 19:1155–1231CrossRefGoogle Scholar
  4. Álvarez R, Castillo JM, Mateos-Naranjo E, Gandullo J, Rubio-Casal AE, Moreno FJ, Figuero ME (2010) Ecotypic variations in phosphoenolpyruvate carboxylase activity of the cordgrass Spartina densiflora throughout its latitudinal distribution range. Plant Biol 12:154–160CrossRefPubMedGoogle Scholar
  5. An SQ, Gu BH, Zhou CF, Wang ZS, Deng ZF, Zhi YB, Li HL, Chen L, Yu DH, Liu YH (2007) Spartina invasion in China: implications for invasive species management and future research Weed Res 47:183–191CrossRefGoogle Scholar
  6. Anderson LWJ (2005) Potential for sediment-applied acetic acid for control of invasive Spartina alterniflora. J Aquat Plant Manage 45:100–105Google Scholar
  7. Ayres DR, Smith DL, Zaremba K, Klohr S, Strong DR (2004) Spread of exotic cordgrasses and hybrids (Spartina sp.) in the tidal marshes of San Francisco Bay, California, USA. Biol Invasions 6:221–231CrossRefGoogle Scholar
  8. Baumel A, Rousseau-Gueutin M, Sapienza-Bianchi C, Gareil A, Duong N, Rousseau H, Coriton O, Amirouche R, Sciandrello S, Duarte B, Caçador I, Castillo JM, Ainouche M (2016) Spartina versicolor Fabre: another case of Spartina trans-Atlantic introduction? Biol Invasions 18:2123CrossRefGoogle Scholar
  9. Bolòs O, Vigo J (2001) Flora dels Pa¨ısos Catalans 4 (Monocotiled`onies). Editorial Barcino, BarcelonaGoogle Scholar
  10. Borja A, Dauer DM (2008) Assessing the environmental quality status in estuarine and coastal systems: comparing methodologies and indices. Ecol Ind 8:331–337CrossRefGoogle Scholar
  11. Bortolus A (2006) The austral cordgrass Spartina densiflora Brong.: its taxonomy, biogeography and natural history. J Biogeogr 33:158–168CrossRefGoogle Scholar
  12. Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C (2006) The carbon balance of North American wetlands. Wetlands 26:889–916CrossRefGoogle Scholar
  13. Bueno A (1997) Flora y vegetación de los estuarios asturianos. Cuadernos de Medio Ambiente. Naturaleza 3. Consejería de Agricultura, Principado de AsturiasGoogle Scholar
  14. Cabezudo B, Talavera S, Blanca G, Salazar C, Cueto M, Valdés B, Hernández-Bermejo JE, Herrera C, Rodríguez-Hiraldo C, Nava D (2005) Lista roja de la flora vascular de Andalucía. Consejería de Medio Ambiente, Junta de Andalucía, SevillaGoogle Scholar
  15. Caçador I, Tibério S, Cabral H (2007) Species zonation in Corroios salt marsh in the Tagus estuary (Portugal) and its dynamics in the past fifty years. Hydrobiologia 587:205–211CrossRefGoogle Scholar
  16. Caçador I, Caetano M, Duarte B, Vale C (2009) Stock and losses of trace metals from salt marsh plants. Mar Environ Res 67:75–82CrossRefPubMedGoogle Scholar
  17. Caçador I, Costa JL, Duarte B, Silva G, Medeiros JP, Azeda C, Castro N, Freitas J, Cabral H, Costa MJ (2012) Macroinvertebrates and fishes as biomonitors of heavy metal concentration in the Seixal Bay (Tagus estuary): which species perform better? Ecol Ind 19:184–190CrossRefGoogle Scholar
  18. Caçador I, Neto JM, Duarte B, Barroso DV, Pinto M, Marques JC (2013) Development of an Angiosperm Quality Assessment Index (AQuA—Index) for ecological quality evaluation of Portuguese water bodies—a multi-metric approach. Ecol Ind 25:141–148CrossRefGoogle Scholar
  19. Callaway JC (2005) The challenge of restoring functioning salt marsh ecosystems. J Coast Res 40:24–36Google Scholar
  20. Cambrollé J, Redondo-Gómez S, Mateos-Naranjo E, Figueroa ME (2008) Comparison of the role of two Spartina species in terms of phytostabilization and bioaccumulation of metals in the estuarine sediment. Mar Poll Bull 56:2037–2042CrossRefGoogle Scholar
  21. Castellanos EM, Figueroa ME, Davy AJ (1994) Nucleation and facilitation in saltmarsh succession: interactions between Spartina matitima and Arthrocnemum perenne. J Ecol 82:239–248CrossRefGoogle Scholar
  22. Castellanos EM, Heredia C, Figueroa M, Davy AJ (1998) Tiller dynamics of Spartina maritima in successional and non-successional mediterranean salt marsh. Plant Ecol 137:213–225CrossRefGoogle Scholar
  23. Castellanos EM, Luque CJ, Mateos-Naranjo E, Redondo-Gómez S, Figueroa ME (2002) Ecological implications of the invasion of the alien cordgrass Spartina densiflora in the tidal marshes of the Gulf of Cádiz. Neobiota, pp 192–200Google Scholar
  24. Castillo JM, Figueroa ME (2009) Effect of abiotic factors on the life span of the invasive cordgrass Spartina densiflora and the native Spartina maritima at low salt marshes. Aquat Ecol 43:1–60CrossRefGoogle Scholar
  25. Castillo JM, Fernández-Baco L, Castellanos EM, Luque CJ, Figueroa ME, Davy AJ (2000) Lower limits of Spartina densiflora and S. maritima in a Mediterranean salt marsh determined by different ecophysiological tolerances. J Ecol 88:801–812CrossRefGoogle Scholar
  26. Castillo JM, Rubio-Casal AE, Redondo S, Álvarez-López AA, Luque T, Luque CJ, Nieva FJ, Castellanos EM, Figueroa ME (2005) Short-term response to salinity of an invasive cordgrass. Biol Inv 7:29–35CrossRefGoogle Scholar
  27. Castillo JM, Leira-Doce P, Rubio-Casal AE, Figueroa ME (2008) Spatial and temporal variations in aboveground and belowground biomass of Spartina maritima (small cordgrass) in created and natural marshes. Estuar Coast Mar Sci 78:819–826CrossRefGoogle Scholar
  28. Castillo JM, Ayres DR, Leira-Doce P, Bailey J, Blum M, Strong DR, Luque T, Figueroa ME (2010) The production of hybrids with high ecological amplitude between exotic Spartina densiflora and native S. maritima in the Iberian Peninsula. Divers Distrib 16:547–558CrossRefGoogle Scholar
  29. Castillo JM, Grewell BJ, Pickart A, Bortolus A, Pena C, Figueroa ME, Systma M (2014) Phenotypic plasticity of invasive Spartina densiflora (Poaceae) along a broad latitudinal gradient on the pacific coast of North America. Am J Bot 101:448–458CrossRefPubMedGoogle Scholar
  30. Chen ZY, Li B, Chen ZY, Chen JK (2004) Local competitive effects of introduced Spartina alterniflora on Scirpus mariqueter at Dongtan of Chongming Island, the Yangtze River estuary and their potential ecological consequences. Hydrobiologia 528:99–106CrossRefGoogle Scholar
  31. Chevalier A (1923) Note sur les Spartina de la flore française. Bulletin de la Société botanique de France 70:54–63CrossRefGoogle Scholar
  32. Cobo MD, Sánchez-Gullón E, García Murillo, P (2003) Datos acerca de la presencia y gestión de especies invasoras y xenófitas en un espacio protegido europeo paradigmático. En Contribuciones al conocimiento de las especies invasoras en España G.E.I., Serie TécnicaGoogle Scholar
  33. Cooper MA (1993) The status of Spartina maritima in Suffolk. Suffolk Naturalist´ Society. Transactions 29:48–54Google Scholar
  34. Cosson E, de Maisonneuve MCD (1867) Introduction á la flore d’Algérie. Phanérogamie. Groupe des Glumacées (seu descriptio glumacearum in Algeria nascentium). Exploration Scientifique de l’Algérie, publiée par ordre du Gouvernement. Sciences Naturelles, Botanique. Imprimerie Impériale, ParisGoogle Scholar
  35. Coste H-J (1906) Flore descriptive et illustrée de la France 3. Librairie des Sciences naturelles Paul Klincksieck, ParisGoogle Scholar
  36. Craft C, Clough J, Ehman J, Joye S, Park R, Pennings S, Guo H, Machmuller M (2009) Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Front Ecol Environ 7:73–78CrossRefGoogle Scholar
  37. Curado G, Figueroa E, Sanchez MI, Castillo JM (2013) Avian communities in Spartina maritima restored and non-restored salt marshes. Bird Study 60:185–194CrossRefGoogle Scholar
  38. Curado G, Sanchez-Moyano JE, Figueroa ME, Castillo JM (2014) Do Spartina maritima plantations enhance the macroinvertebrate community in European salt marshes? Estuaries Coasts 37:589–601CrossRefGoogle Scholar
  39. Daehler C, Anttila C, Ayres D, Strong D (1999) Evolution of a new ecotype of Spartina alterniflora (Poaceae) in San Francisco Bay, California, USA. Am J Bot 86:543–546CrossRefPubMedGoogle Scholar
  40. Daveau J (1897) La flore littorale du Portugal. Boletim da Sociedade Broteriana 14:4–54Google Scholar
  41. Duarte B, Raposo P, Caçador I (2009) Spartina maritima (cordgrass) rhizosediment extracellular enzymatic activity and its role on organic matter dec omposition and metal speciation processes. Mar Ecol 30:65–73CrossRefGoogle Scholar
  42. Duarte B, Caetano M, Almeida P, Vale C, Caçador I (2010) Accumulation and biological cycling of heavy metal in the root-sediment system of four salt marsh species, from Tagus estuary (Portugal). Environ Poll 158:1661–1668CrossRefGoogle Scholar
  43. Duarte B, Freitas J, Caçador I (2011) The role of organic acids in assisted phytoremediation processes of salt marsh sediments. Hydrobiologia 674:169–177CrossRefGoogle Scholar
  44. Duarte B, Couto T, Freitas J, Valentim J, Silva H, Marques JC, Dias JM, Caçador I (2013a) Abiotic modulation of Spartina maritima photosynthetic ecotypic variations in different latitudinal populations. Estuar Coast Mar Sci 130:127–137CrossRefGoogle Scholar
  45. Duarte B, Caçador I, Marques JC, Croudace I (2013b) Tagus Estuary salt marshes feedback to sea level rise over a 40-year period: insights from the application of geochemical indices. Ecol Ind 34:268–276CrossRefGoogle Scholar
  46. Duarte B, Santos D, Marques JC, Caçador I (2013c) Ecophysiological adaptations of two halophytes to salt stress: photosynthesis, PS II photochemistry and anti-oxidant feedback—implications for resilience in climate change. Plant Physiol Biochem 67:178–188CrossRefPubMedGoogle Scholar
  47. Duarte B, Santos D, Silva H, Marques JC, Caçador I (2014) Photochemical and Biophysical feedbacks of C3 and C4 Mediterranean halophytes to atmospheric CO2 enrichment confirmed by their stable isotope signatures. Plant Physiol Biochem 80:10–22CrossRefPubMedGoogle Scholar
  48. Duarte B, Baeta A, Rousseau-Gueutin M, Ainouche M, Marques JC, Caçador I (2015a) A tale of two Spartinas: Climatic, photobiological and isotopic insights on the fitness of non-indigenous versus native species. Estuar Coast Mar Sci 167:178–190CrossRefGoogle Scholar
  49. Duarte B, Santos D, Marques JC, Caçador I (2015b) Ecophysiological constraints of two invasive plant species under a saline gradient: halophytes versus glycophytes. Estuar Coast Mar Sci 167:154–165CrossRefGoogle Scholar
  50. Duarte B, Marques JC, Caçador I (2015c) Impact of extreme heat and cold events on the energetic metabolism of the C3 halophyte Halimione portulacoides. Estuar Coast Mar Sci 167:166–177CrossRefGoogle Scholar
  51. Duarte B, Goessling JW, Marques JC, Caçador I (2015d) Ecophysiological constrains of Aster tripolium under extreme thermal events impacts: merging biophysical, biochemical and genetic insights. Plant Physiol Biochem 97:217–228CrossRefPubMedGoogle Scholar
  52. Duarte B, Marques JC, Caçador I (2016) Ecophysiological responses of native and invasive Spartina species to extreme temperature events in Mediterranean marshes. Biol Inv 18:2189–2205CrossRefGoogle Scholar
  53. Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol Evolut 14:135–139CrossRefGoogle Scholar
  54. Espinar JL (2009) Pastizales de Spartina (Spartinion maritime). Ministerio de Medio Ambiente, y Medio Rural y Marino, MadridGoogle Scholar
  55. Fabre ME (1849) Description d’une nouvelle espèce de Spartina, abondante sur une portion du littoral méditerranéen. Annales des Sciencies Naturelles 3:22–125Google Scholar
  56. Fenu G, Bacchetta G (2008) La flora vascolare della Penisola del Sinis (Sardegna Occidentale). Acta Bot Malacitana 33:1–34Google Scholar
  57. Ferrandis Pomés C (2002) Ampliación del aeropuerto de Barcelona. Medidas de integración ambiental en la 3S¸ pista. I Congreso de Ingeniería Civil, Territorio y Medio Ambiente, Madrid, 13–15 Feb 2002, pp 1349–1362Google Scholar
  58. Figueroa ME, Castellanos EM (1988) Vertical structure of Spartina maritima and Spartina densiflora in mediterranean marshes. Plant form and vegetation structure. In: Werger MJA, van der Aart PJM, During HJ, Verhoeven JTA (eds) SPB Academic Publishing, The Hague, The Netherlands, pp 105–108Google Scholar
  59. Figueroa ME, Castillo JM, Redondo S, Luque T, Castellanos EM, Nieva FJ, Luque CJ, Rubio-Casal AE, Davy AJ (2003) Facilitated invasion by hybridization of Sarcocornia species in a salt-marsh succession. J Ecol 91:616–626CrossRefGoogle Scholar
  60. Fiori A, Paoletti G (1896–1908) Flora analitica d’Italia 1. Tipografia del Seminario. PaduaGoogle Scholar
  61. Fraga P, García O, Pons M (2003) Notes i contribucions al coneixement de la flora de Menorca (V). Bolletí de la Societat d’Història Natural de les Balears 46:51–66Google Scholar
  62. Gallego-Fernández JB, García-Novo F (2007) High-intensity versus low-intensity restoration alternatives of a tidal marsh in Guadalquivir estuary, SW Spain. Ecol Eng 30:112–121CrossRefGoogle Scholar
  63. Gamisans J, Deschâtres R, Paradis G, Lambinon J (1989) Spartina versicolor Fabre. In: Jeanmonod D, Burdet HM (eds) Notes et contributions à la flore de Corse, IV, vol 44. Candollea, pp 367–368Google Scholar
  64. Goulletquer P, Bachelet G, Sauriau PG, Noel P (2002) Open Atlantic coast of Europe—A century of introduced species into French waters. In: Leppakoski E et al (eds) Invasive aquatic species of Europe. Kluwer Academie Publishers, NetherlandsCrossRefGoogle Scholar
  65. Gray A (2004) Will Spartina anglica invade northwards with changing climate? Third international conference on invasive Spartina, San Francisco, CA, 8–10 Nov 2004Google Scholar
  66. Guinochet M, Vilmorin R (1978) Flore de France, 3rd edn. Éditions du Centre National de la Recherche Scientifique, ParisGoogle Scholar
  67. Hammond MER, Cooper A (2002) Spartina anglica eradication and inter-tidal recovery in Northern Ireland estuaries. Turning the tide: the Eeradication of invasive species. Proceedings of the International Conference On Eradication of Island Invasives. Veitch CR, Clout MN (eds), IUCN SSC Invasive Species Specialist Group. IUCN, Gland, Switzerland and Cambridge (UK)Google Scholar
  68. Han B, Wang XK, Ouyang ZY (2005) Saturation levels and carbon sequestration potentials of soil carbon pools in farmland ecosystems of China. Rural Eco-Environment 21:6–11Google Scholar
  69. Hatch M (1992) C4 photosynthesis: an unlikely process full of surprise. Plant Cell Physiol 33:333–342Google Scholar
  70. Hedge P, Kriwoken LK, Patten K (2003) A review of Spartina management in Washington State US. J Aquat Plant Manage 41:82–90Google Scholar
  71. Heide O (2005) Ecotypic variation among European arctic and alpine populations of Oxyda digyna. Arctic Antarctic Alpine Res 37:233–238CrossRefGoogle Scholar
  72. Hodgkin E, Hamilton B (1998) Changing estuarine wetlands: a long term perspective for management. In A. J. McComb and J. A. Davis (eds), Wetlands for the Future. 243–255 Adelaide, GleneaglesGoogle Scholar
  73. Hughes RG, Paramor OLA (2004) The effects of bioturbation and herbivory by the polychaete Nereis diversicolor on loss of saltmarsh in south-east England. J Appl Ecol 41:440–448CrossRefGoogle Scholar
  74. Idazkin YL, Bortolus A, Bouza P (2010) Ecological processes shaping Central Patagonian salt marsh landscapes. Austral Ecology 36(1):59–67Google Scholar
  75. Intergovernmental Panel on Climate Change (IPCC) (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of Working Groups I and II of the intergovernmental panel on climate change. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G.-K, Allen SK., Tignor M and Midgley PM (eds) Cambridge University Press, CambridgeGoogle Scholar
  76. Intergovernmental Panel on Climate Change (IPCC) (2014) Climate change 2014: impacts, adaptation and vulnerability. Contribution of working group II to the fifth assessment report of the IPCCGoogle Scholar
  77. Kittelson PM, Boyd MJ (1997) Mechanisms of expansion for an introduced species of cordgrass, Spartina densiflora, in Humboldt Bay, California. Estuaries 20:770–778CrossRefGoogle Scholar
  78. Kriwoken LK, Hedge P (2000) Exotic species and estuaries: managing Spartina anglica in Tasmania, Australia. Ocean Coast Manag 43:573–584CrossRefGoogle Scholar
  79. Kueffer C, Kull CA (2017) Non-native species and the Aesthetics of nature. In: Vilà M, Hulme PE (eds) Impact of biological invasions on ecosystem services, invading nature—Springer series in invasion ecology, vol 12. Springer International Publishing SwitzerlandCrossRefGoogle Scholar
  80. Lefeuvre JC, Laffaille P, Feunteun E, Bouchard V, Radureau A (2003) Biodiversity in salt marshes: from patrimonial value to ecosystem functioning. The case study of the Mont-Saint-Michel bay. C R Biol 326:125–131CrossRefGoogle Scholar
  81. Lessmann J, Mendelssohn I, Hester M, McKee K (1997) Population variation in growth response to flooding of three marsh grasses. Ecol Eng 8:31–47CrossRefGoogle Scholar
  82. Li H, Zhang L (2008) An experimental study on physical controls of an exotic plant Spartina alterniflora in Shanghai, China. Ecol Eng 32:11–21CrossRefGoogle Scholar
  83. Liebhold AM, Tobin PC (2008) Population ecology of insect invasions and their management. Annu Rev Entomol 53:387–408CrossRefPubMedGoogle Scholar
  84. Luque CJ, Alvarez AA, Rubio AE, Muñoz J, Redondo S, Castillo J, Castellanos EM, Figueroa ME (2004) Memoria de Vegetación: Parque Natural Bahía de Cádiz. Informe para la Consejería de Medio Ambiente, Junta de Andalucía, SevillaGoogle Scholar
  85. Magenheimer JF, Moore TR, Chmura GL, Daoust RJ (1996) Methane and carbon dioxide flux from a macrotidal salt marsh, Bay of Fundy, New Brunswick. Estuaries 19:139–145CrossRefGoogle Scholar
  86. Major III WW, Crue CE, Grassley JM, Conquest LL, (2003) Mechanical and chemical control of smooth cordgrass in Willapa Bay, Washington. J Aquat Plant Manag 41:6–12Google Scholar
  87. Marchant C, Goodman P (1969) Spartina maritima (Curtis) Fernald. J Ecol 57:287–291CrossRefGoogle Scholar
  88. Marinucci AC (1982) Trophic importance of Spartina alterniflora production and decomposition to the marsh estuarine ecosystem. Biol Conserv 22:35–58CrossRefGoogle Scholar
  89. Mateos-Naranjo E (2008) Hacia una metodología de gestión de la especie invasora Spartina densiflora Brongn.: Estado de invasión, avances ecofisiológicos y control. Universidad de Sevilla, SevillaGoogle Scholar
  90. Mateos-Naranjo E, Redondo-Gómez S, Silva J, Santos R, Figueroa ME (2007) Effect of prolonged flooding on the invader Spartina densiflora Brong. J Aquat Plant Manage 45:121–123Google Scholar
  91. Mateos-Naranjo E, Redondo-Gomez S, Cambrolle J, Luque T, Figueroa ME (2008) Growth and photosynthetic responses to zinc stress of an invasive cordgrass, Spartina densiflora. Plant Biol 10:754–762CrossRefPubMedGoogle Scholar
  92. Mateos-Naranjo E, Redondo-Gómez S, Andrades-Moreno L Davy A (2010a) Growth and photosynthetic responses of the cordgrass Spartina maritima to CO2 enrichment and salinity. Chemosphere 81:725–731CrossRefPubMedGoogle Scholar
  93. Mateos-Naranjo E, Redondo-Gómez S, Alvarez R, Cambrollé J, Gandullo J, Figueroa E (2010b) Synergic effect of salinity and CO2 enrichment on growth and photosynthetic responses of the invasive cordgrass Spartina densiflora. J Exp Bot 61:1643–1654CrossRefPubMedPubMedCentralGoogle Scholar
  94. Mateos-Naranjo E, Andrades-Moreno L, Redondo-Gómez S (2011) Comparison of germination, growth, photosynthetic responses and metal uptake between three populations of Spartina densiflora under different soil pollution conditions. Ecotox Environ Safety 74:2040–2049CrossRefGoogle Scholar
  95. Nieva FJ (1996) Aspectos ecológicos en Spartina densiflora Brongn. Tesis Doctoral. Universidad de Sevilla, EspañaGoogle Scholar
  96. Nieva FJ, Díaz-Espejo A, Castellanos EM, Figueroa ME (2001) Field variability of invading populations of Spartina densiflora Brongn. In different habitats of the Odiel Marshes (SW Spain). Estuar Coast Mar Sci 52:515–527CrossRefGoogle Scholar
  97. Otero X, Sanchez J, Macías F (2000) Nutrient status in tall and short forms of Spartina maritima in the salt marshes of Ortigueira (NW Iberian Peninsula) as related to physicochemical properties of the soils. Wetlands 20:461–469CrossRefGoogle Scholar
  98. Page HM, Lastra M, Rodil IF, Briones MJI MJI, Garrido J (2010) Effects of non-native Spartina patens on plant and sediment organic matter carbon incorporation into the local invertebrate community. Biol Inv 12:3825–3838CrossRefGoogle Scholar
  99. Parlatore F (1848–1850) Flora italiana I. Tipografia Le Monnier. FirenzeGoogle Scholar
  100. Pignatti S (1982) Flora d’Italia 3. Edagricole, BolognaGoogle Scholar
  101. Proffitt C, Chiasson R, Owens A, Edwards K, Travis S (2005) Spartina alterniflora genotype influences facilitation and suppression of high marsh species colonizing an early successional salt marsh. J Ecol 93:404–416CrossRefGoogle Scholar
  102. Riddin T, van Wyk E, Adams J (2016) The rise and fall of an invasive estuarine grass. S Afr J Bot 107:74–79CrossRefGoogle Scholar
  103. Rubio JC (1985) Ecología de las Marismas del Odiel. Tesis doctoral. Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, EspañaGoogle Scholar
  104. Saarela JM (2012) Taxonomic synopsis of invasive and native Spartina (Poaceae, Chloridoideae) in the Pacific Northwest (British Columbia, Washington and Oregon), including the first report of Spartina x townsendii for British Columbia, Canada. Phytokeys 10:25–82CrossRefGoogle Scholar
  105. Saint-Yves A (1932) Monographia Spartinarum. Candollea 5:19–100Google Scholar
  106. Salgueiro N, Caçador I (2007) Short-term sedimentation in Tagus estuary, Portugal: influence of salt marsh plants. Hydrobiologia 587:187–193CrossRefGoogle Scholar
  107. SanLeon DG, Izco J, Sanchez JM (1999) Spartina patens: a weed in Galician saltmarshes (NW Iberian Peninsula). Hydrobiologia 15:213–222CrossRefGoogle Scholar
  108. Seliskar D, Gallagher J, Burdick D, Mutz L (2002) The regulation of ecosystem functions by ecotypic variation in the dominant plant: a Spartina alterniflora salt-marsh case study. J Ecol 90:1–11CrossRefGoogle Scholar
  109. Sousa AI, Lillebo AI, Pardal MA, Caçador I (2010) The influence of S. maritima on carbon retention capacity in salt marshes from warm-temperate estuaries. Mar Poll Bull 61:215–223CrossRefGoogle Scholar
  110. Stephenson D, Oliver L, Burgos N, Gbur E (2006) Identification and characterization of pitted morning glory (Ipomoea lacunose) ecotypes. Weed Sci 54:78–86CrossRefGoogle Scholar
  111. Taylor CM, Hastings A (2004) Finding optimal control strategies for invasive species: a density-structured model for Spartina alterniflora. J Appl Ecol 41:1049–1057CrossRefGoogle Scholar
  112. Teixeira A, Duarte B, Caçador I (2014) Salt marshes and Biodiversity. In: Khan MA, Böer B, Öztürk M, Al Abdessalaam TZ, Clüsener-Godt M, Gul B (eds) Tasks for vegetation science, vol 47. Sabkha ecosystems: volume IV: cash crop halophytes and biodiversity conservation. Springer, BerlinGoogle Scholar
  113. Tutin TG (1980) Spartina Schreber. In: Tutin TG et al (eds) Flora Europaea vol 5. Cambridge University Press, Cambridge, pp 259–260Google Scholar
  114. Yannic G, Baumel A, Ainouche M (2004) Uniformity of the nuclear and chloroplast genomes of Spartina maritima (Poaceae), a salt-marsh species in decline along the Western European Coast. Heredity 93:182–188CrossRefPubMedGoogle Scholar
  115. Zhang RS, Shen YM, Lu LY, Yan SG, Wang YH, Li JL, Zhang ZL (2004) Formation of Spartina alterniflora salt marshes on the coast of Jiangsu Province, China. Ecol Eng 23:95–105CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Bernardo Duarte
    • 1
    Email author
  • Enrique Mateos-Naranjo
    • 2
  • Susana Redondo Goméz
    • 2
  • João Carlos Marques
    • 3
  • Isabel Caçador
    • 1
  1. 1.MARE—Marine and Environmental Sciences CentreFaculty of Sciences, University of LisbonCampo GrandePortugal
  2. 2.Departamento ‬de ‬Biología ‬Vegetal ‬y ‬Ecología, ‬Facultad ‬de ‬BiologíaUniversidad ‬de ‬SevillaSevillaSpain
  3. 3.MARE—Marine and Environmental Sciences Centrec/o Department of Zoology, Faculty of Sciences and Technology, University of CoimbraCoimbraPortugal

Personalised recommendations