Advertisement

Complex Systems Modeling of Urban Development: Understanding the Determinants of Health and Growth Across Scales

Chapter

Abstract

There is growing interest in the systematic scientific understanding of cities and urbanization due to an increase in data availability about many aspects of urban life throughout the world, as well as ready access to more powerful computation and modeling capabilities. Cities are manifestly complex systems in that social, economic, health and other aspects of urban processes are interconnected in the lives of each urban dweller and depend on the nature of urban services and infrastructure over their built environments. Despite this truism, the modeling of cities as complex systems across all these interdependent dimensions is relatively new. This paper presents a primer to different modeling approaches to cities and urbanization, pointing out their realms of applicability as well as critical areas where they are currently insufficient. Specifically, I give a short introduction to five main traditions—agent-based, spatial equilibrium, contagion, life-course and growth models—and discuss how they are becoming increasingly articulated and interdependent to create more realistic and more predictive models of cities. From this perspective, I summarize a research agenda for urban theory and modeling focused on understanding issues of growth and development across scales of organization from individuals to neighborhoods, cities and urban systems.

References

  1. Acemoglu, D. (2009). Introduction to modern economic growth. Princeton: Princeton University Press.Google Scholar
  2. Adsera, A. (2005). Vanishing children: From high unemployment to low fertility in developed countries. The American Economic Review, 95(2), 189–193.CrossRefGoogle Scholar
  3. Alonso, W. (1977). Location and land use: Toward a general theory of land rent. 6. Printing. Cambridge, MA: Harvard University Press.Google Scholar
  4. Armstrong, G. L., Conn, L. A., & Pinner, R. W. (1999). Trends in infectious disease mortality in the United States during the 20th century. JAMA, 281(1), 61–66. https://doi.org/10.1001/jama.281.1.61.CrossRefGoogle Scholar
  5. Bailey, N., van Gent, W. P. C., & Musterd, S. (2017). Remaking urban segregation: Processes of income sorting and neighbourhood change: Remaking urban segregation. Population, Space and Place, 23(3), e2013. https://doi.org/10.1002/psp.2013.CrossRefGoogle Scholar
  6. Balmer, M., Axhausen, K., & Nagel, K. (2006). Agent-based demand-modeling framework for large-scale microsimulations. Transportation Research Record: Journal of the Transportation Research Board, 1985, 125–134. https://doi.org/10.3141/1985-14.CrossRefGoogle Scholar
  7. Barrett, C., Berkbigler K., Smith L., Loose V., Beckman R., Davis J., Roberts D., & Williams M. (1995). An operational description of transims, June. https://trid.trb.org/view.aspx?id=460374.
  8. Barro, R. J., & Sala-i-Martin, X. I. (2003). Economic growth (2nd ed.). Cambridge, MA: The MIT Press.Google Scholar
  9. Barthélemy, M. (2011). Spatial networks. Physics Reports, 499(1–3), 1–101. https://doi.org/10.1016/j.physrep.2010.11.002.CrossRefGoogle Scholar
  10. Batty, M. (2007). Cities and complexity: Understanding cities with cellular automata, agent-based models, and fractals. Cambridge, MA: MIT Press.Google Scholar
  11. Batty, M., Axhausen, K. W., Giannotti, F., Pozdnoukhov, A., Bazzani, A., Wachowicz, M., Ouzounis, G., & Portugali, Y. (2012). Smart cities of the future. The European Physical Journal Special Topics, 214(1), 481–518. https://doi.org/10.1140/epjst/e2012-01703-3.CrossRefGoogle Scholar
  12. Becker, G. S., & Barro, R. J. (1988). A reformulation of the economic theory of fertility. The Quarterly Journal of Economics, 103(1), 1–25. https://doi.org/10.2307/1882640.CrossRefGoogle Scholar
  13. Benguigui, L., Czamanski, D., Marinov, M., & Portugali, Y. (2000). When and where is a city fractal? Environment and Planning B: Planning and Design, 27(4), 507–519. https://doi.org/10.1068/b2617.CrossRefGoogle Scholar
  14. Bettencourt, L. M. A. (2013). The origins of scaling in cities. Science, 340(6139), 1438–1441. https://doi.org/10.1126/science.1235823.CrossRefGoogle Scholar
  15. Bettencourt, L. M. A. (2014). The uses of big data in cities. Big Data, 2(1), 12–22. https://doi.org/10.1089/big.2013.0042.CrossRefGoogle Scholar
  16. Bettencourt, L. M. A., & Ribeiro, R. M. (2008). Real time Bayesian estimation of the epidemic potential of emerging infectious diseases. PLoS One, 3(5), e2185. https://doi.org/10.1371/journal.pone.0002185.CrossRefGoogle Scholar
  17. Bettencourt, L., & West, G. (2010). A unified theory of urban living. Nature, 467(7318), 912–913. https://doi.org/10.1038/467912a.CrossRefGoogle Scholar
  18. Bettencourt, L. M. A., Lobo, J., Helbing, D., Kuhnert, C., & West, G. B. (2007). Growth, innovation, scaling, and the pace of life in cities. Proceedings of the National Academy of Sciences, 104(17), 7301–7306. https://doi.org/10.1073/pnas.0610172104.CrossRefGoogle Scholar
  19. Bolay, J.-C. (2012). What sustainable development for the cities of the south? Urban issues for a third millennium. International Journal of Urban Sustainable Development, 4(1), 76–93. https://doi.org/10.1080/19463138.2011.626170.CrossRefGoogle Scholar
  20. Brelsford, C., Lobo, J., Hand, J., & Bettencourt, L. M. A. (2017). Heterogeneity and scale of sustainable development in cities.” Proceedings of the National Academy of Sciences, May, 201606033. https://doi.org/10.1073/pnas.1606033114.
  21. Briggs, de S., Xavier, R. P., & Rubin, V. (2015). Inclusive economic growth in America’s cities: What’s the playbook and the score?. SSRN Scholarly Paper ID 2621876. Rochester, NY: Social Science Research Network. https://papers.ssrn.com/abstract=2621876.
  22. Britton, T. (2010). Stochastic epidemic models: A survey. Mathematical Biosciences, 225(1), 24–35. https://doi.org/10.1016/j.mbs.2010.01.006.CrossRefGoogle Scholar
  23. Browning, C. R., Cagney, K. A., & Boettner, B. (2016). Neighborhood, place, and the life course. In M. J. Shanahan, J. T. Mortimer, & M. K. Johnson (Eds.), Handbook of the life course, Handbooks of sociology and social research (pp. 597–620). New York: Springer International Publishing. http://link.springer.com/chapter/10.1007/978-3-319-20880-0_26.CrossRefGoogle Scholar
  24. Bruch, E. E. (2014). How population structure shapes neighborhood segregation. American Journal of Sociology, 119(5), 1221–1278. https://doi.org/10.1086/675411.CrossRefGoogle Scholar
  25. Bruch, E. E., & Mare, R. D. (2006). Neighborhood choice and neighborhood change. American Journal of Sociology, 112(3), 667–709. https://doi.org/10.1086/507856.CrossRefGoogle Scholar
  26. Buch, C. M., Kleinert, J., & Toubal, F. (2004). The distance puzzle: On the interpretation of the distance coefficient in gravity equations. Economics Letters, 83(3), 293–298. https://doi.org/10.1016/j.econlet.2003.10.022.CrossRefGoogle Scholar
  27. Bush, W., & Grayson, M.. (2009). Critical infrastructure resilience final report and recommendations. .National Infrastructure Advisory Council. http://www.dhs.gov/xlibrary/assets/niac/niac_critical_infrastructure_resilience.pdf.Google Scholar
  28. Castellano, C., & Pastor-Satorras, R. (2010). Thresholds for epidemic spreading in networks. Physical Review Letters, 105(21), 218701. https://doi.org/10.1103/PhysRevLett.105.218701.CrossRefGoogle Scholar
  29. Cesaretti, R., Lobo, J., Bettencourt, L. M. A., Ortman, S., Smith, M. (2016). Population-area relationship in medieval European cities. Santa Fe Institute. Retrieved October 20, 2015, from http://www.santafe.edu/research/working-papers/abstract/6c15cd3a937adc784c0ed8385e1be3ad/.
  30. Coale, A. J. (1989). Demographic transition. In Social economics (pp. 16–23). London: The New Palgrave. Palgrave Macmillan. https://link.springer.com/chapter/10.1007/978-1-349-19806-1_4.CrossRefGoogle Scholar
  31. Colwell, R. R. (1996). Global climate and infectious disease: The cholera paradigm. Science, 274(5295), 2025–2031.CrossRefGoogle Scholar
  32. Corburn, J. (2004). Confronting the challenges in reconnecting urban planning and public health. American Journal of Public Health, 94(4), 541–546. https://doi.org/10.2105/AJPH.94.4.541.CrossRefGoogle Scholar
  33. Crutzen, P. J. (2006). The ‘Anthropocene’. In Earth system science in the anthropocene (pp. 13–18). Berlin, Heidelberg: Springer. https://doi.org/10.1007/3-540-26590-2_3.CrossRefGoogle Scholar
  34. D’Addio, A. C., & d’Ercole, M. M. (2005). Trends and determinants of fertility rates: The role of policies. 27. OECD social, employment and migration working papers. OECD Publishing. https://ideas.repec.org/p/oec/elsaab/27-en.html.
  35. Dye, C. (2008). Health and urban living. Science, 319(5864), 766–769. https://doi.org/10.1126/science.1150198.CrossRefGoogle Scholar
  36. Elder, G. H. (1998). The life course as developmental theory. Child Development, 69(1), 1–12. https://doi.org/10.1111/j.1467-8624.1998.tb06128.x.CrossRefGoogle Scholar
  37. Ellis, E. C. (2015). Ecology in an anthropogenic biosphere. Ecological Monographs, 85(3), 287–331. https://doi.org/10.1890/14-2274.1.CrossRefGoogle Scholar
  38. Epstein, J. M. (1999). Agent-based computational models and generative social science. Complexity, 4(5), 41–60. https://doi.org/10.1002/(SICI)1099-0526(199905/06)4:5<41::AID-CPLX9>3.0.CO;2-F.CrossRefGoogle Scholar
  39. Frejka, T., Hoem, J., & Sobotka, T.. (2008). Childbearing trends and policies in Europe. BoD – Books on Demand.Google Scholar
  40. Fujita, M.. (1990). Urban economic theory: Land use and city size. 1, paperback ed. Cambridge: Cambridge University Press.Google Scholar
  41. Fujita, M., Krugman, P., & Venables, A. J. (2001). The spatial economy: Cities, regions, and international trade. Cambridge, MA: The MIT Press.Google Scholar
  42. Galea, S., & Vlahov, D. (2005). URBAN HEALTH: Evidence, challenges, and directions. Annual Review of Public Health, 26(1), 341–365. https://doi.org/10.1146/annurev.publhealth.26.021304.144708.CrossRefGoogle Scholar
  43. Gilbert, N.. (2008). Agent-based models. SAGE.CrossRefGoogle Scholar
  44. Glaeser, E. L. (2008). Cities, agglomeration, and spatial equilibrium. Lindahl lectures. Oxford: Oxford University Press.Google Scholar
  45. Glaeser, E. L., Scheinkman, J. A., & Shleifer, A. (1995). Economic growth in a cross-section of cities. Journal of Monetary Economics, 36(1), 117–143. https://doi.org/10.1016/0304-3932(95)01206-2.CrossRefGoogle Scholar
  46. Greenwood, M. J. (1997). Chapter 12: Internal migration in developed countries. In M. R. Rosenzweig & O. Stark (Eds.), Handbook of population and family economics. 1. Part B (pp. 647–720). Amsterdam: Elsevier. http://www.sciencedirect.com/science/article/pii/S1574003X97800049.CrossRefGoogle Scholar
  47. Greenwood, M. J., & Hunt, G. L. (2003). The early history of migration research. International Regional Science Review, 26(1), 3–37. https://doi.org/10.1177/0160017602238983.CrossRefGoogle Scholar
  48. Hannon, L. (2003). Poverty, delinquency, and educational attainment: Cumulative disadvantage or disadvantage saturation? Sociological Inquiry, 73(4), 575–594. https://doi.org/10.1111/1475-682X.00072.CrossRefGoogle Scholar
  49. Helbing, D. (2012). Agent-based modeling. In Social self-organization, Understanding complex systems (pp. 25–70). Berlin, Heidelberg: Springer. https://link.springer.com/chapter/10.1007/978-3-642-24004-1_2.CrossRefGoogle Scholar
  50. Henderson, J. V. (1991). Urban development: Theory, fact, and illusion. New York: Oxford Universiyt Press.Google Scholar
  51. Hoornweg, D., & Pope, K. (2017). Population predictions for the world’s largest cities in the 21st century. Environment and Urbanization, 29(1), 195–216. https://doi.org/10.1177/0956247816663557.CrossRefGoogle Scholar
  52. Ioannides, Y. M., & Topa, G. (2010). Neighborhood effects: Accomplishments and looking beyond them. Journal of Regional Science, 50(1), 343–362. https://doi.org/10.1111/j.1467-9787.2009.00638.x.CrossRefGoogle Scholar
  53. Jacobs, J.. (1992). The death and life of great American cities. Vintage, Books ed. New York: Vintage Books.Google Scholar
  54. Jones, C. I. (1999). Growth: With or without scale effects? The American Economic Review, 89(2), 139–144.CrossRefGoogle Scholar
  55. Jones, C. I. (2005). Chapter 16: Growth and ideas. In P. Aghion & S. N. Durlauf (Eds.), Handbook of economic growth. 1. Part B (pp. 1063–1111). Amsterdam: Elsevier. http://www.sciencedirect.com/science/article/pii/S1574068405010166.CrossRefGoogle Scholar
  56. Jones, C., & Romer, P. (2009). The new kaldor facts: Ideas, institutions, population, and human capital. w15094. Cambridge, MA: National Bureau of Economic Research. http://www.nber.org/papers/w15094.pdf.CrossRefGoogle Scholar
  57. Keivani, R. (2010). A review of the main challenges to urban sustainability. International Journal of Urban Sustainable Development, 1(1–2), 5–16. https://doi.org/10.1080/19463131003704213.CrossRefGoogle Scholar
  58. Krugman, P. (1991). Increasing returns and economic geography. Journal of Political Economy, 99(3), 483–499. https://doi.org/10.1086/261763.CrossRefGoogle Scholar
  59. Lichtenberg, F. R. (2002). Sources of U.S. longevity increase, 1960–1997. Working Paper 8755. National Bureau of Economic Research. http://www.nber.org/papers/w8755.
  60. Lichter, D. T., Parisi, D., & Taquino, M. C. (2012). The geography of exclusion: Race, segregation, and concentrated poverty. Social Problems, 59(3), 364–388. https://doi.org/10.1525/sp.2012.59.3.364.CrossRefGoogle Scholar
  61. Lynch, K. (1984). Good city form. Cambridge, MA: MIT Press.Google Scholar
  62. de Marchi, S., & Page, S. E. (2014). Agent-based models. Annual Review of Political Science, 17(1), 1–20. https://doi.org/10.1146/annurev-polisci-080812-191558.CrossRefGoogle Scholar
  63. Mathers, C. D., & Loncar, D. (2006). Projections of global mortality and burden of disease from 2002 to 2030. PLoS Medicine, 3(11), e442. https://doi.org/10.1371/journal.pmed.0030442.CrossRefGoogle Scholar
  64. McDonald, P. (2000). Gender equity in theories of fertility transition. Population and Development Review, 26(3), 427–439. https://doi.org/10.1111/j.1728-4457.2000.00427.x.CrossRefGoogle Scholar
  65. Mcdonald, P. (2006). Low fertility and the state: The efficacy of policy. Population and Development Review, 32(3), 485–510. https://doi.org/10.1111/j.1728-4457.2006.00134.x.CrossRefGoogle Scholar
  66. Mniszewski, S. M., Del Valle, S. Y., Stroud, P. D., Riese, J. M., & Sydoriak, S. J. (2008a). Pandemic simulation of antivirals + school closures: Buying time until strain-specific vaccine is available. Computational and Mathematical Organization Theory, 14(3), 209–221. https://doi.org/10.1007/s10588-008-9027-1.CrossRefGoogle Scholar
  67. Mniszewski, S. M., Del Valle, S. Y., Stroud, P. D., Riese, J. M., & Sydoriak, S. J. (2008b). EpiSimS simulation of a multi-component strategy for pandemic influenza. In Proceedings of the 2008 spring simulation multiconference (pp. 556–563). SpringSim ‘08. San Diego, CA, USA: Society for Computer Simulation International. http://dl.acm.org/citation.cfm?id=1400549.1400636.
  68. Molho, I. (1986). Theories of migration: A review. Scottish Journal of Political Economy, 33(4), 396–419. https://doi.org/10.1111/j.1467-9485.1986.tb00901.x.CrossRefGoogle Scholar
  69. Montgomery, M. R. (2008). The urban transformation of the developing world. Science, 319(5864), 761–764. https://doi.org/10.1126/science.1153012.CrossRefGoogle Scholar
  70. Murray, E. T., Mishra, G. D., Kuh, D., Guralnik, J., Black, S., & Hardy, R. (2011). Life course models of socioeconomic position and cardiovascular risk factors: 1946 birth cohort. Annals of Epidemiology, 21(8), 589–597. https://doi.org/10.1016/j.annepidem.2011.04.005.CrossRefGoogle Scholar
  71. Nagel, K., & Rickert, M. (2001). Parallel implementation of the TRANSIMS micro-simulation. Parallel Computing, Applications of Parallel Computing in Transportation, 27(12), 1611–1639. https://doi.org/10.1016/S0167-8191(01)00106-5.CrossRefGoogle Scholar
  72. Nagel, K., Beckman, R., & Barrett, C.. (1999). TRANSIMS for urban planning.Google Scholar
  73. Newman, M. E. J. (2002). Spread of epidemic disease on networks. Physical Review E, 66(1), 016128. https://doi.org/10.1103/PhysRevE.66.016128.CrossRefGoogle Scholar
  74. O’Rand, A. M. (1996). The precious and the precocious: Understanding cumulative disadvantage and cumulative advantage over the life course. The Gerontologist, 36(2), 230–238. https://doi.org/10.1093/geront/36.2.230.CrossRefGoogle Scholar
  75. Oeppen, J., & Vaupel, J. W. (2002). Broken limits to life expectancy. Science, 296(5570), 1029–1031. https://doi.org/10.1126/science.1069675.CrossRefGoogle Scholar
  76. Ortman, S. G., Cabaniss, A. H. F., Sturm, J. O., & Bettencourt, L. M. A. (2014). The pre-history of urban scaling. PLoS One, 9(2), e87902. https://doi.org/10.1371/journal.pone.0087902.CrossRefGoogle Scholar
  77. Ortman, S. G., Cabaniss, A. H. F., Sturm, J. O., & Bettencourt, L. M. A. (2015). Settlement scaling and increasing returns in an ancient society. Science Advances, 1(1), e1400066. https://doi.org/10.1126/sciadv.1400066.CrossRefGoogle Scholar
  78. Ortman, S. G., Davis, K. E., Lobo, J., Smith, M. E., Bettencourt, L. M. A., & Trumbo, A. (2016). Settlement scaling and economic change in the Central Andes. Journal of Archaeological Science, 73, 94–106. https://doi.org/10.1016/j.jas.2016.07.012.CrossRefGoogle Scholar
  79. Peters, O., & Gell-Mann, M. (2016). Evaluating gambles using dynamics. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(2), 023103. https://doi.org/10.1063/1.4940236.CrossRefGoogle Scholar
  80. Romer, P. M. (1986). Increasing returns and long-run growth. Journal of Political Economy, 94(5), 1002–1037. https://doi.org/10.1086/261420.CrossRefGoogle Scholar
  81. Romer, P. (1989). Endogenous technological change, w3210. Cambridge, MA: National Bureau of Economic Research. http://www.nber.org/papers/w3210.pdf.CrossRefGoogle Scholar
  82. Rosenberg, C. E. (2009). The cholera years: The United States in 1832, 1849, and 1866. Chicago, IL: University of Chicago Press.Google Scholar
  83. Sampson, R. J. (1997). Neighborhoods and violent crime: A multilevel study of collective efficacy. Science, 277(5328), 918–924. https://doi.org/10.1126/science.277.5328.918.CrossRefGoogle Scholar
  84. Sampson, R. J. (2012). Great American City: Chicago and the enduring neighborhood effect. Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
  85. Sampson, R. J., & Laub, J. H. (1990). Crime and deviance over the life course: The salience of adult social bonds. American Sociological Review, 55(5), 609–627. https://doi.org/10.2307/2095859.CrossRefGoogle Scholar
  86. Schelling, T. C. (2006). Micromotives and macrobehavior (new ed.) with a new preface and the Nobel lecture. Fels lectures on public policy analysis. New York: Norton.Google Scholar
  87. Schlapfer, M., Bettencourt, L. M. A., Grauwin, S., Raschke, M., Claxton, R., Smoreda, Z., West, G. B., & Ratti, C. (2014). The scaling of human interactions with city size. Journal of the Royal Society Interface, 11(98), –20130789. https://doi.org/10.1098/rsif.2013.0789.CrossRefGoogle Scholar
  88. Shen, G. (2002). Fractal dimension and fractal growth of urbanized areas. International Journal of Geographical Information Science, 16(5), 419–437. https://doi.org/10.1080/13658810210137013.CrossRefGoogle Scholar
  89. Shuey, K. M., & Willson, A. E. (2008). Cumulative disadvantage and black-white disparities in life-course health trajectories. Research on Aging, 30(2), 200–225. https://doi.org/10.1177/0164027507311151.CrossRefGoogle Scholar
  90. Smith, L., Beckman, R., Anson, D., Nagel, K., & Williams, M.. (1995). Transims: Transportation analysis and simulation system. LA-UR-95-1664; CONF-9504197-1. Los Alamos National Lab., NM (United States). https://www.osti.gov/scitech/biblio/111917.
  91. Storper, M. (2013). Keys to the city: How economics, institutions, social interactions, and politics shape development. Princeton: Princeton University Press.Google Scholar
  92. UN-Habitat. (2003). The challenge of slums: Global report on human settlements. UN-HABITAT. http://mirror.unhabitat.org/pmss/listItemDetails.aspx?publicationID=1156.
  93. UN-Habitat. (2012). State of the world’s cities 2012/2013 , prosperity of cities. State of the world’s cities. UN-Habitat. http://mirror.unhabitat.org/pmss/listItemDetails.aspx?publicationID=3387.
  94. Warr, M. (1998). Life-course transitions and desistance from crime. Criminology, 36(2), 183–216. https://doi.org/10.1111/j.1745-9125.1998.tb01246.x.CrossRefGoogle Scholar
  95. Willekens, F. J. (1999). The life course: Models and analysis. In Population issues, The plenum series on demographic methods and population analysis (pp. 23–51). Dordrecht: Springer. https://link.springer.com/chapter/10.1007/978-94-011-4389-9_2.CrossRefGoogle Scholar
  96. Zhao, Y. (2003). The role of migrant networks in labor migration: The case of China. Contemporary Economic Policy, 21(4), 500–511. https://doi.org/10.1093/cep/byg028.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mansueto Institute for Urban Innovation and Department of Ecology and EvolutionUniversity of ChicagoChicagoUSA
  2. 2.Santa Fe InstituteSanta FeUSA

Personalised recommendations