Systems Immunology

  • Melissa Lever
  • Thiago C. Hirata
  • Pedro S. T. Russo
  • Helder I. NakayaEmail author
Part of the Computational Biology book series (COBO, volume 27)


The advance of systems biology approaches now means that much of the immune response to pathogens and vaccines can be assessed. Modern immunologists have at their disposal an arsenal of high-throughput technologies and tools that generate data relating the quantities of genes, metabolites and proteins within immune cells. The challenge posed is how to interpret this abundance of data to accurately understand and predict the immune response. Systems immunology is the discipline that uses computational and mathematical approaches to integrate these measurements and explain the nonintuitive interactions between biological components. In this chapter we will provide an overview of this interdisciplinary approach, its challenges, and highlight some of the applications of systems biology to assess the complexity of our immune system.


  1. 1.
    Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol. 2015;16:343–53.CrossRefGoogle Scholar
  2. 2.
    Chaplin DD. Overview of the immune response. J Allergy Clin Immunol. 2010;125:S3–23.CrossRefGoogle Scholar
  3. 3.
    Smith-Garvin JE, Koretzky GA, Jordan MS. T cell activation. Annu Rev Immunol. 2009;27:591–619.CrossRefGoogle Scholar
  4. 4.
    Metz PJ, Arsenio J, Kakaradov B, Kim SH, Remedios KA, Oakley K, et al. Regulation of asymmetric division and CD8+ T lymphocyte fate specification by protein kinase Cζ and protein kinase Cλ/ι. J Immunol. 2015;194:2249–59.CrossRefGoogle Scholar
  5. 5.
    von Andrian UH, Mempel TR. Homing and cellular traffic in lymph nodes. Nat Rev Immunol. 2003;3:867–78.CrossRefGoogle Scholar
  6. 6.
    Krummel MF, Bartumeus F, Gérard A. T cell migration, search strategies and mechanisms. Nat Rev Immunol. 2016;16:193–201.CrossRefGoogle Scholar
  7. 7.
    Gonzalez SF, Degn SE, Pitcher LA, Woodruff M, Heesters BA, Carroll MC. Trafficking of B cell antigen in lymph nodes. Annu Rev Immunol. 2011;29:215–33.CrossRefGoogle Scholar
  8. 8.
    Hoffman W, Lakkis FG, Chalasani G. B cells, antibodies, and more. Clin J Am Soc Nephrol. 2016;11:137–54.CrossRefGoogle Scholar
  9. 9.
    Allman D, Pillai S. Peripheral B cell subsets. Curr Opin Immunol. 2008;20:149–57.CrossRefGoogle Scholar
  10. 10.
    Golubovskaya V, Wu L. Different subsets of T cells, memory, effector functions, and CAR-T immunotherapy. Cancers (Basel). 2016;8:E36.CrossRefGoogle Scholar
  11. 11.
    Vidal M, Cusick ME, Barabási A-L. Interactome networks and human disease. Cell. 2011;144:986–98.CrossRefGoogle Scholar
  12. 12.
    Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell. 2007;128:635–8.CrossRefGoogle Scholar
  13. 13.
    Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 2014;157:77–94.CrossRefGoogle Scholar
  14. 14.
    de Sousa AR, Penalva LO, Marcotte EM, Vogel C. Global signatures of protein and mRNA expression levels. Mol BioSyst. 2009;5:1512–26.Google Scholar
  15. 15.
    Soon WW, Hariharan M, Snyder MP. High-throughput sequencing for biology and medicine. Mol Syst Biol. 2013;9:640.CrossRefGoogle Scholar
  16. 16.
    Elhanati Y, Murugan A, Callan CG, Mora T, Walczak AM. Quantifying selection in immune receptor repertoires. Proc Natl Acad Sci U S A. 2014;111:9875–80.CrossRefGoogle Scholar
  17. 17.
    Roy B, Neumann RS, Snir O, Iversen R, Sandve GK, Lundin KEA, et al. High-throughput single-cell analysis of B cell receptor usage among autoantigen-specific plasma cells in celiac disease. J Immunol. 2017;199:782–91.CrossRefGoogle Scholar
  18. 18.
    Raha D, Hong M, Snyder M. ChIP-Seq: a method for global identification of regulatory elements in the genome. Curr Protoc Mol Biol. 2010;Chapter 21:Unit 21.19.1-14.
  19. 19.
    Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10:57–63.CrossRefGoogle Scholar
  20. 20.
    Martinez FO, Gordon S, Locati M, Mantovani A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol. 2006;177:7303–11.CrossRefGoogle Scholar
  21. 21.
    Zhang JA, Mortazavi A, Williams BA, Wold BJ, Rothenberg EV. Dynamic transformations of genome-wide epigenetic marking and transcriptional control establish T cell identity. Cell. 2012;149:467–82.CrossRefGoogle Scholar
  22. 22.
    Watchmaker PB, Lahl K, Lee M, Baumjohann D, Morton J, Kim SJ, et al. Comparative transcriptional and functional profiling defines conserved programs of intestinal DC differentiation in humans and mice. Nat Immunol. 2014;15:98–108.CrossRefGoogle Scholar
  23. 23.
    Isoda T, Moore AJ, He Z, Chandra V, Aida M, Denholtz M, et al. Non-coding transcription instructs chromatin folding and compartmentalization to dictate enhancer-promoter communication and T cell fate. Cell. 2017;171:103–19. e18CrossRefGoogle Scholar
  24. 24.
    Wu H, Neilson JR, Kumar P, Manocha M, Shankar P, Sharp PA, et al. miRNA profiling of naïve, effector and memory CD8 T cells. PLoS One. 2007;2:e1020.CrossRefGoogle Scholar
  25. 25.
    Gutiérrez-Vázquez C, Rodríguez-Galán A, Fernández-Alfara M, Mittelbrunn M, Sánchez-Cabo F, Martínez-Herrera DJ, et al. miRNA profiling during antigen-dependent T cell activation: a role for miR-132-3p. Sci Rep. 2017;7:3508.CrossRefGoogle Scholar
  26. 26.
    Lu Y, Liu X, Xie M, Liu M, Ye M, Li M, et al. The NF-κB-responsive long noncoding RNA FIRRE regulates posttranscriptional regulation of inflammatory gene expression through interacting with hnRNPU. J Immunol. 2017;199:3571–82.CrossRefGoogle Scholar
  27. 27.
    Rieckmann JC, Geiger R, Hornburg D, Wolf T, Kveler K, Jarrossay D, et al. Social network architecture of human immune cells unveiled by quantitative proteomics. Nat Immunol. 2017;18:583–93.CrossRefGoogle Scholar
  28. 28.
    Veenstra TD. Metabolomics: the final frontier? Genome Med. 2012;4:40.CrossRefGoogle Scholar
  29. 29.
    Jung J, Kim SH, Lee HS, Choi GS, Jung YS, Ryu DH, et al. Serum metabolomics reveals pathways and biomarkers associated with asthma pathogenesis. Clin Exp Allergy. 2013;43:425–33.CrossRefGoogle Scholar
  30. 30.
    Stephens NS, Siffledeen J, Su X, Murdoch TB, Fedorak RN, Slupsky CM. Urinary NMR metabolomic profiles discriminate inflammatory bowel disease from healthy. J Crohns Colitis. 2013;7:e42–8.CrossRefGoogle Scholar
  31. 31.
    Menni C, Fauman E, Erte I, Perry JRB, Kastenmüller G, Shin S-Y, et al. Biomarkers for type 2 diabetes and impaired fasting glucose using a nontargeted metabolomics approach. Diabetes. 2013;62:4270–6.CrossRefGoogle Scholar
  32. 32.
    Spitzer MH, Nolan GP. Mass cytometry: single cells, many features. Cell. 2016;165:780–91.CrossRefGoogle Scholar
  33. 33.
    Bruggeman FJ, Westerhoff HV. The nature of systems biology. Trends Microbiol. 2007;15:45–50.CrossRefGoogle Scholar
  34. 34.
    Davis MM, Tato CM, Furman D. Systems immunology: just getting started. Nat Immunol. 2017;18:725–32.CrossRefGoogle Scholar
  35. 35.
    Germain RN. Will systems biology deliver its promise and contribute to the development of new or improved vaccines? What really constitutes the study of “systems biology” and how might such an approach facilitate vaccine design. Cold Spring Harb Perspect Biol. 2017.
  36. 36.
    Lever M, Lim H-S, Kruger P, Nguyen J, Trendel N, Abu-Shah E, et al. Architecture of a minimal signaling pathway explains the T-cell response to a 1 million-fold variation in antigen affinity and dose. Proc Natl Acad Sci U S A. 2016;113:E6630–8.CrossRefGoogle Scholar
  37. 37.
    François P, Voisinne G, Siggia ED, Altan-Bonnet G, Vergassola M. Phenotypic model for early T-cell activation displaying sensitivity, specificity, and antagonism. Proc Natl Acad Sci U S A. 2013;110:E888–97.CrossRefGoogle Scholar
  38. 38.
    Mukhopadhyay H, de Wet B, Clemens L, Maini PK, Allard J, van der Merwe PA, et al. Multisite phosphorylation modulates the T cell receptor ζ-chain potency but not the Switchlike response. Biophys J. 2016;110:1896–906.CrossRefGoogle Scholar
  39. 39.
    Chevrier N, Mertins P, Artyomov MN, Shalek AK, Iannacone M, Ciaccio MF, et al. Systematic discovery of TLR signaling components delineates viral-sensing circuits. Cell. 2011;147:853–67.CrossRefGoogle Scholar
  40. 40.
    Yosef N, Shalek AK, Gaublomme JT, Jin H, Lee Y, Awasthi A, et al. Dynamic regulatory network controlling TH17 cell differentiation. Nature. 2013;496:461–8.CrossRefGoogle Scholar
  41. 41.
    Kowalczyk MS, Tirosh I, Heckl D, Rao TN, Dixit A, Haas BJ, et al. Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. Genome Res. 2015;25:1860–72.CrossRefGoogle Scholar
  42. 42.
    Shay T, Jojic V, Zuk O, Rothamel K, Puyraimond-Zemmour D, Feng T, et al. Conservation and divergence in the transcriptional programs of the human and mouse immune systems. Proc Natl Acad Sci U S A. 2013;110:2946–51.CrossRefGoogle Scholar
  43. 43.
    Brandes M, Klauschen F, Kuchen S, Germain RN. A systems analysis identifies a feedforward inflammatory circuit leading to lethal influenza infection. Cell. 2013;154:197–212.CrossRefGoogle Scholar
  44. 44.
    Nakaya HI, Pulendran B. Vaccinology in the era of high-throughput biology. Philos Trans R Soc Lond Ser B Biol Sci. 2015;370:20140146.CrossRefGoogle Scholar
  45. 45.
    Querec TD, Akondy RS, Lee EK, Cao W, Nakaya HI, Teuwen D, et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat Immunol. 2009;10:116–25.CrossRefGoogle Scholar
  46. 46.
    Ravindran R, Khan N, Nakaya HI, Li S, Loebbermann J, Maddur MS, et al. Vaccine activation of the nutrient sensor GCN2 in dendritic cells enhances antigen presentation. Science. 2014;343:313–7.CrossRefGoogle Scholar
  47. 47.
    Nakaya HI, Wrammert J, Lee EK, Racioppi L, Marie-Kunze S, Haining WN, et al. Systems biology of vaccination for seasonal influenza in humans. Nat Immunol. 2011;12:786–95.CrossRefGoogle Scholar
  48. 48.
    Bucasas KL, Franco LM, Shaw CA, Bray MS, Wells JM, Niño D, et al. Early patterns of gene expression correlate with the humoral immune response to influenza vaccination in humans. J Infect Dis. 2011;203:921–9.CrossRefGoogle Scholar
  49. 49.
    Zak DE, Andersen-Nissen E, Peterson ER, Sato A, Hamilton MK, Borgerding J, et al. Merck Ad5/HIV induces broad innate immune activation that predicts CD8+ T-cell responses but is attenuated by preexisting Ad5 immunity. Proc Natl Acad Sci U S A. 2012;109:E3503–12.CrossRefGoogle Scholar
  50. 50.
    Vahey MT, Wang Z, Kester KE, Cummings J, Heppner DG, Nau ME, et al. Expression of genes associated with immunoproteasome processing of major histocompatibility complex peptides is indicative of protection with adjuvanted RTS,S malaria vaccine. J Infect Dis. 2010;201:580–9.CrossRefGoogle Scholar
  51. 51.
    Reif DM, Motsinger-Reif AA, McKinney BA, Rock MT, Crowe JE, Moore JH. Integrated analysis of genetic and proteomic data identifies biomarkers associated with adverse events following smallpox vaccination. Genes Immun. 2009;10:112–9.CrossRefGoogle Scholar
  52. 52.
    Gunawardena J. Beware the tail that wags the dog: informal and formal models in biology. Mol Biol Cell. 2014;25:3441–4.CrossRefGoogle Scholar
  53. 53.
    Motta S, Pappalardo F. Mathematical modeling of biological systems. Brief Bioinf. 2013;14:411–22.CrossRefGoogle Scholar
  54. 54.
    Le Novère N. Quantitative and logic modelling of molecular and gene networks. Nat Rev Genet. 2015;16:146–58.CrossRefGoogle Scholar
  55. 55.
    Hawkins DM. The problem of overfitting. J Chem Inf Comput Sci. 2004;44:1–12.CrossRefGoogle Scholar
  56. 56.
    Morris MK, Saez-Rodriguez J, Sorger PK, Lauffenburger DA. Logic-based models for the analysis of cell signaling networks. Biochemistry. 2010;49:3216–24.CrossRefGoogle Scholar
  57. 57.
    Hoffmann A, Levchenko A, Scott ML, Baltimore D. The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. Science. 2002;298:1241–5.CrossRefGoogle Scholar
  58. 58.
    Altan-Bonnet G, Germain RN. Modeling T cell antigen discrimination based on feedback control of digital ERK responses. PLoS Biol. 2005;3:e356.CrossRefGoogle Scholar
  59. 59.
    Bains I, Thiébaut R, Yates AJ, Callard R. Quantifying thymic export: combining models of naive T cell proliferation and TCR excision circle dynamics gives an explicit measure of thymic output. J Immunol. 2009;183:4329–36.CrossRefGoogle Scholar
  60. 60.
    Mayer H, Zaenker KS, An Der Heiden U. A basic mathematical model of the immune response. Chaos. 1995;5:155–61.CrossRefGoogle Scholar
  61. 61.
    Polak ME, Ung CY, Masapust J, Freeman TC, Ardern-Jones MR. Petri Net computational modelling of Langerhans cell interferon regulatory factor network predicts their role in T cell activation. Sci Rep. 2017;7:668.CrossRefGoogle Scholar
  62. 62.
    Mendoza L. A network model for the control of the differentiation process in Th cells. Biosystems. 2006;84:101–14.CrossRefGoogle Scholar
  63. 63.
    Zhang R, Shah MV, Yang J, Nyland SB, Liu X, Yun JK, et al. Network model of survival signaling in large granular lymphocyte leukemia. Proc Natl Acad Sci U S A. 2008;105:16308–13.CrossRefGoogle Scholar
  64. 64.
    Terfve C, Cokelaer T, Henriques D, MacNamara A, Goncalves E, Morris MK, et al. CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms. BMC Syst Biol. 2012;6:133.CrossRefGoogle Scholar
  65. 65.
    Batt G, Besson B, Ciron P-E, de Jong H, Dumas E, Geiselmann J, et al. Genetic network analyzer: a tool for the qualitative modeling and simulation of bacterial regulatory networks. Methods Mol Biol. 2012;804:439–62.CrossRefGoogle Scholar
  66. 66.
    Müssel C, Hopfensitz M, Kestler HA. BoolNet – an R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics. 2010;26:1378–80.CrossRefGoogle Scholar
  67. 67.
    Benoist C, Germain RN, Mathis D. A plaidoyer for “systems immunology”. Immunol Rev. 2006;210:229–34.CrossRefGoogle Scholar
  68. 68.
    Bansal M, Belcastro V, Ambesi-Impiombato A, di Bernardo D. How to infer gene networks from expression profiles. Mol Syst Biol. 2007;3:78.CrossRefGoogle Scholar
  69. 69.
    Barabási A-L, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet. 2004;5:101–13.CrossRefGoogle Scholar
  70. 70.
    Carter SL, Brechbühler CM, Griffin M, Bond AT. Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics. 2004;20:2242–50.CrossRefGoogle Scholar
  71. 71.
    Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 2005;4:17.MathSciNetCrossRefGoogle Scholar
  72. 72.
    Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–50.CrossRefGoogle Scholar
  73. 73.
    Amar D, Safer H, Shamir R. Dissection of regulatory networks that are altered in disease via differential co-expression. PLoS Comput Biol. 2013;9:e1002955.CrossRefGoogle Scholar
  74. 74.
    Watson M. CoXpress: differential co-expression in gene expression data. BMC Bioinform. 2006;7:509.CrossRefGoogle Scholar
  75. 75.
    Ha MJ, Baladandayuthapani V, Do K-A. DINGO: differential network analysis in genomics. Bioinformatics. 2015;31:3413–20.CrossRefGoogle Scholar
  76. 76.
    Croft D, O’Kelly G, Wu G, Haw R, Gillespie M, Matthews L, et al. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res. 2011;39:D691–7.CrossRefGoogle Scholar
  77. 77.
    Dolinski K, Troyanskaya OG. Implications of Big Data for cell biology. Mol Biol Cell. 2015;26:2575–8.CrossRefGoogle Scholar
  78. 78.
    Li B, Tsoi LC, Swindell WR, Gudjonsson JE, Tejasvi T, Johnston A, et al. Transcriptome analysis of psoriasis in a large case-control sample: RNA-seq provides insights into disease mechanisms. J Invest Dermatol. 2014;134:1828–38.CrossRefGoogle Scholar
  79. 79.
    Gardinassi LG, Garcia GR, Costa CHN, Costa Silva V, de Miranda Santos IKF. Blood transcriptional profiling reveals immunological signatures of distinct states of infection of humans with Leishmania infantum. PLoS Negl Trop Dis. 2016;10:e0005123.CrossRefGoogle Scholar
  80. 80.
    Pandey G, Cohain A, Miller J, Merad M. Decoding dendritic cell function through module and network analysis. J Immunol Methods. 2013;387:71–80.CrossRefGoogle Scholar
  81. 81.
    Berry MPR, Graham CM, McNab FW, Xu Z, Bloch SAA, Oni T, et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature. 2010;466:973–7.CrossRefGoogle Scholar
  82. 82.
    Mejias A, Dimo B, Suarez NM, Garcia C, Suarez-Arrabal MC, Jartti T, et al. Whole blood gene expression profiles to assess pathogenesis and disease severity in infants with respiratory syncytial virus infection. PLoS Med. 2013;10:e1001549.CrossRefGoogle Scholar
  83. 83.
    Wang S, Sun H, Ma J, Zang C, Wang C, Wang J, et al. Target analysis by integration of transcriptome and ChIP-seq data with BETA. Nat Protoc. 2013;8:2502–15.CrossRefGoogle Scholar
  84. 84.
    Jee J, Rozowsky J, Yip KY, Lochovsky L, Bjornson R, Zhong G, et al. ACT: aggregation and correlation toolbox for analyses of genome tracks. Bioinformatics. 2011;27:1152–4.CrossRefGoogle Scholar
  85. 85.
    Hunter PJ, Crampin EJ, Nielsen PMF. Bioinformatics, multiscale modeling and the IUPS Physiome project. Brief Bioinf. 2008;9:333–43.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Melissa Lever
    • 1
  • Thiago C. Hirata
    • 1
  • Pedro S. T. Russo
    • 1
  • Helder I. Nakaya
    • 1
    Email author
  1. 1.Department of Clinical and Toxicological Analyses, School of Pharmaceutical SciencesUniversity of São PauloSão PauloBrazil

Personalised recommendations