Advertisement

Bell Correlations and the Common Future

  • Ämin Baumeler
  • Julien Degorre
  • Stefan Wolf
Chapter
Part of the STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health book series (STEAM)

Abstract

Reichenbach’s principle states that in a causal structure, correlations of classical information can stem from a common cause in the common past or a direct influence from one of the events in correlation to the other. The difficulty of explaining Bell correlations through a mechanism in that spirit can be read as questioning either the principle or even its basis: causality. In the former case, the principle can be replaced by its quantum version, accepting as a common cause an entangled state, leaving the phenomenon as mysterious as ever on the classical level (on which, after all, it occurs). If, more radically, the causal structure is questioned in principle, closed space-time curves may become possible that, as is argued in the present note, can give rise to non-local correlations if to-be-correlated pieces of classical information meet in the common future—which they need to if the correlation is to be detected in the first place. The result is a view resembling Brassard and Raymond-Robichaud’s parallel-lives variant of Hermann’s and Everett’s relative-state formalism, avoiding “multiple realities.”

Notes

Acknowledgements

We thank Andrei Khrennikov, Nicolas Gisin, and Nicolas Brunner for their kind invitation to the fascinating event in Växjö. This research is supported by the Swiss National Science Foundation (SNF), the National Centre of Competence in Research Quantum Science and Technology (QSIT), the COST action on Fundamental Problems in Quantum Physics, and the Hasler Foundation.

References

  1. 1.
    Aaronson, S., Watrous, J.: Closed timelike curves make quantum and classical computing equivalent. Proc. R. Soc. A: Math. Phys. Eng. Sci. 465(2102), 631–647 (2009).  https://doi.org/10.1098/rspa.2008.0350 MathSciNetCrossRefGoogle Scholar
  2. 2.
    Allen, J.M.A., Barrett, J., Horsman, D.C., Lee, C.M., Spekkens, R.W.: Quantum common causes and quantum causal models. Phys. Rev. X 7, 031021 (2017).  https://doi.org/10.1103/PhysRevX.7.031021 Google Scholar
  3. 3.
    Bacon, D.: Quantum computational complexity in the presence of closed timelike curves. Phys. Rev. A 70, 032309 (2004).  https://doi.org/10.1103/PhysRevA.70.032309 CrossRefGoogle Scholar
  4. 4.
    Bancal, J.D., Pironio, S., Acin, A., Liang, Y.C., Scarani, V., Gisin, N.: Quantum non-locality based on finite-speed causal influences leads to superluminal signalling. Nat. Phys. 8(12), 867–870 (2012).  https://doi.org/10.1038/nphys2460 CrossRefGoogle Scholar
  5. 5.
    Barnea, T.J., Bancal, J.D., Liang, Y.C., Gisin, N.: Tripartite quantum state violating the hidden-influence constraints. Phys. Rev. A 88, 022123 (2013).  https://doi.org/10.1103/PhysRevA.88.022123 CrossRefGoogle Scholar
  6. 6.
    Barrett, J., Gisin, N.: How much measurement independence is needed to demonstrate nonlocality? Phys. Rev. Lett. 106, 100406 (2011).  https://doi.org/10.1103/PhysRevLett.106.100406 CrossRefGoogle Scholar
  7. 7.
    Baumeler, Ä.,Wolf, S.: Causality - complexity - consistency: can space-time be based on logic 289 and computation? In: Renner, R., Stupar, S. (eds.) Time in Physis, Birkhäuser, Cham (2017). https://doi.org/10.1007/978-3-319-68655-4_6
  8. 8.
    Baumeler, Ä., Wolf, S.: Device-independent test of causal order and relations to fixed-points. New J. Phys. 18(3), 035014 (2016). https://doi.org/10.1088/1367-2630/18/3/035014 CrossRefGoogle Scholar
  9. 9.
    Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1(3), 195–200 (1964)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bell, J.S.: The theory of local beables. Technical report, CERN (1975). https://doi.org/10.1111/j.1746-8361.1985.tb01249.x. Presented at the sixth GIFT Seminar, Jaca, 2–7 June 1975, and reproduced in Epistemological Letters, March 1976, and in dialectica, June 1985
  11. 11.
    Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992).  https://doi.org/10.1103/PhysRevLett.69.2881 MathSciNetCrossRefGoogle Scholar
  12. 12.
    Brans, C.H.: Bell’s theorem does not eliminate fully causal hidden variables. Int. J. Theor. Phys. 27(2), 219–226 (1988). https://doi.org/10.1007/BF00670750 CrossRefGoogle Scholar
  13. 13.
    Brassard, G., Raymond-Robichaud, P.: Can free will emerge from determinism in quantum theory? In: Suarez, A., Adams, P. (eds.) Is Science Compatible with Free Will?, Chap. 4, pp. 41–61. Springer New York, New York (2013). https://doi.org/10.1007/978-1-4614-5212-6_4 CrossRefGoogle Scholar
  14. 14.
    Brown, H.R., Timpson, C.G.: Bell on bell’s theorem: the changing face of nonlocality. In: Bell, M., Gao, S.E. (eds.) Quantum Nonlocality and Reality: 50 Years of Bell’s Theorem, p. 91123. Cambridge University Press, Cambridge (2016).  https://doi.org/10.1017/CBO9781316219393.008 Google Scholar
  15. 15.
    Cavalcanti, E.G.: Quantum nonlocality and contextuality as fine-tuning (2017). Preprint arXiv:1705.05961v1 [quant-ph]Google Scholar
  16. 16.
    Cavalcanti, E.G., Lal, R.: On modifications of Reichenbach’s principle of common cause in light of Bell’s theorem. J. Phys. A: Math. Theor. 47(42), 424018 (2014). https://doi.org/10.1088/1751-8113/47/42/424018 MathSciNetCrossRefGoogle Scholar
  17. 17.
    Cerf, N.J., Gisin, N., Massar, S., Popescu, S.: Simulating maximal quantum entanglement without communication. Phys. Rev. Lett. 94(22), 220403 (2005).  https://doi.org/10.1103/PhysRevLett.94.220403 CrossRefGoogle Scholar
  18. 18.
    Cirel’son, B.S.: Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 4(2), 93–100 (1980). https://doi.org/10.1007/BF00417500 MathSciNetCrossRefGoogle Scholar
  19. 19.
    Coretti, S., Hänggi, E., Wolf, S.: Nonlocality is transitive. Phys. Rev. Lett. 107, 100402 (2011).  https://doi.org/10.1103/PhysRevLett.107.100402 CrossRefGoogle Scholar
  20. 20.
    Costa de Beauregard, O.: Une réponse à l’argument dirigé par Einstein, Podolsky et Rosen contre l’interprétation Bohrienne des phénomènes quantiques. C. R. Seances Acad. Sci. 236, 1632–1634 (1953)Google Scholar
  21. 21.
    Costa de Beauregard, O.: Time symmetry and interpretation of quantum mechanics. Found. Phys. 6(5), 539–559 (1976). https://doi.org/10.1007/BF00715107 CrossRefGoogle Scholar
  22. 22.
    Costa de Beauregard, O.: Time symmetry and the Einstein paradox. Il Nuovo Cimento B 42(1), 41–64 (1977). https://doi.org/10.1007/BF02906749 CrossRefGoogle Scholar
  23. 23.
    Costa de Beauregard, O.: Interview with Olivier Costa de Beauregard by Solange Collery. Tonus, 2 Novembre 1981Google Scholar
  24. 24.
    Degorre, J., Laplante, S., Roland, J.: Simulating quantum correlations as a distributed sampling problem. Phys. Rev. A 72(6), 062314 (2005).  https://doi.org/10.1103/PhysRevA.72.062314 CrossRefGoogle Scholar
  25. 25.
    Deutsch, D.: Quantum mechanics near closed timelike lines. Phys. Rev. D 44(10), 3197–3217 (1991).  https://doi.org/10.1103/PhysRevD.44.3197 MathSciNetCrossRefGoogle Scholar
  26. 26.
    Deutsch, D.: The Fabric of Reality: The Science of Parallel Universes and Its Implications. Viking Adult, New York (1997)Google Scholar
  27. 27.
    Deutsch, D., Hayden, P.: Information flow in entangled quantum systems. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 456(1999), 1759–1774 (2000).  https://doi.org/10.1098/rspa.2000.0585 MathSciNetCrossRefGoogle Scholar
  28. 28.
    DeWitt, B.S.: Quantum mechanics and reality. Phys. Today 23(9), 30–35 (1970). https://doi.org/10.1063/1.3022331 CrossRefGoogle Scholar
  29. 29.
    Everett, H.: “Relative state” formulation of quantum mechanics. Rev. Mod. Phys. 29(3), 454–462 (1957).  https://doi.org/10.1103/RevModPhys.29.454 MathSciNetCrossRefGoogle Scholar
  30. 30.
    Everett, H.: The theory of the universal wave function. In: The Many-Worlds Interpretation of Quantum Mechanics, pp.3–140. Princeton University Press, Princeton (1973).Google Scholar
  31. 31.
    Feldmann, M.: New loophole for the Einstein-Podolsky-Rosen paradox. Found. Phys. Lett. 8, 41–53 (1995). https://doi.org/10.1007/BF02187530 MathSciNetCrossRefGoogle Scholar
  32. 32.
    Gödel, K.: An example of a new type of cosmological solutions of Einstein’s field equations of gravitation. Rev. Mod. Phys. 21(3), 447–450 (1949).  https://doi.org/10.1103/RevModPhys.21.447 MathSciNetCrossRefGoogle Scholar
  33. 33.
    Hall, M.J.W.: The significance of measurement independence for Bell inequalities and locality. In: Asselmeyer-Maluga, T. (ed.) At the Frontier of Spacetime: Scalar-Tensor Theory, Bell’s Inequality, Mach’s Principle, Exotic Smoothness, pp. 189–204. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-31299-6_11 CrossRefGoogle Scholar
  34. 34.
    Henry-Hermann, G.: Die Kausalität in der Physik. Stud. Gen. 1(6), 375–383 (1948)zbMATHGoogle Scholar
  35. 35.
    Hermann, G.: Die naturphilosophischen Grundlagen der Quantenmechanik. In: Meyerhof, O., Oppenheimer, F., Specht, M. (eds.) Abhandlungen der Fries’schen Schule. Neue Folge., Chap. III, vol. 6.2, pp. 69–152. Verlag “Öffentliches Leben”, Berlin (1935)CrossRefGoogle Scholar
  36. 36.
    Hermann, G.: Zum Vortrag Schlicks. Erkenntnis 6, 342–343 (1936)Google Scholar
  37. 37.
    Kofler, J., Paterek, T., Brukner, Č.: Experimenter’s freedom in Bell’s theorem and quantum cryptography. Phys. Rev. A 73, 022104 (2006).  https://doi.org/10.1103/PhysRevA.73.022104 CrossRefGoogle Scholar
  38. 38.
    Lanczos, K.: Über eine stationäre Kosmologie im Sinne der Einsteinschen Gravitationstheorie. Z. Phys. 21(1), 73–110 (1924). https://doi.org/10.1007/BF01328251 CrossRefGoogle Scholar
  39. 39.
    Lévy-Leblond, J.M.: Towards a proper quantum theory (hints for a recasting). Dialectica 30(2–3), 161–196 (1976). https://doi.org/10.1111/j.1746-8361.1976.tb00727.x CrossRefGoogle Scholar
  40. 40.
    Oreshkov, O., Costa, F., Brukner, Č.: Quantum correlations with no causal order. Nat. Commun. 3, 1092 (2012).  https://doi.org/10.1038/ncomms2076 CrossRefGoogle Scholar
  41. 41.
    Page, D.N., Wootters, W.K.: Evolution without evolution: dynamics described by stationary observables. Phys. Rev. D 27(12), 2885–2892 (1983).  https://doi.org/10.1103/PhysRevD.27.2885 CrossRefGoogle Scholar
  42. 42.
    Pienaar, J., Ralph, T.C., Myers, C.R.: Open timelike curves violate Heisenberg’s uncertainty principle. Phys. Rev. Lett. 110(6), 60501 (2013).  https://doi.org/10.1103/PhysRevLett.110.060501 CrossRefGoogle Scholar
  43. 43.
    Popescu, S., Rohrlich, D.: Quantum nonlocality as an axiom. Found. Phys. 24(3), 379–385 (1994). https://doi.org/10.1007/BF02058098 MathSciNetCrossRefGoogle Scholar
  44. 44.
    Price, H.: A neglected route to realism about quantum mechanics. Mind 103(411), 303–336 (1994).  https://doi.org/10.1093/mind/103.411.303 MathSciNetCrossRefGoogle Scholar
  45. 45.
    Price, H., Wharton, K.: Disentangling the quantum world. Entropy 17(11), 7752–7767 (2015). https://doi.org/10.3390/e17117752 CrossRefGoogle Scholar
  46. 46.
    Reichenbach, H.: The principle of the common cause. In: Reichenbach, M. (ed.) The Direction of Time, Chap. 19, pp. 157–167. University of California Press, Berkeley (1956)Google Scholar
  47. 47.
    Roland, J., Szegedy, M.: Amortized communication complexity of distributions, pp. 738–749. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-02927-1_61 CrossRefGoogle Scholar
  48. 48.
    Stefanov, A., Zbinden, H., Gisin, N., Suarez, A.: Quantum correlations with spacelike separated beam splitters in motion: experimental test of multisimultaneity. Phys. Rev. Lett. 88, 120404 (2002).  https://doi.org/10.1103/PhysRevLett.88.120404 CrossRefGoogle Scholar
  49. 49.
    Toner, B.F., Bacon, D.: Communication cost of simulating Bell correlations. Phys. Rev. Lett. 91(18), 187904 (2003).  https://doi.org/10.1103/PhysRevLett.91.187904 CrossRefGoogle Scholar
  50. 50.
    von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Julius Springer, Berlin (1932)zbMATHGoogle Scholar
  51. 51.
    Wheeler, J.A.: Information, physics, quantum: the search for links. In: Zurek, W. (ed.) Complexity, Entropy, and the Physics of Information: The Proceedings of the Workshop Held May–June, 1989, in Santa Fe, NM, pp. 3–28. Avalon Publishing, New York (1990)Google Scholar
  52. 52.
    Wood, C.J., Spekkens, R.W.: The lesson of causal discovery algorithms for quantum correlations: causal explanations of Bell-inequality violations require fine-tuning. New J. Phys. 17(3), 033002 (2015). https://doi.org/10.1088/1367-2630/17/3/033002 CrossRefGoogle Scholar
  53. 53.
    Wootters, W.K.: “Time” replaced by quantum correlations. Int. J. Theor. Phys. 23(8), 701–711 (1984). https://doi.org/10.1007/BF02214098 MathSciNetCrossRefGoogle Scholar
  54. 54.
    Yuan, X., Assad, S.M., Thompson, J., Haw, J.Y., Vedral, V., Ralph, T.C., Lam, P.K., Weedbrook, C., Gu, M.: Replicating the benefits of Deutschian closed timelike curves without breaking causality. NPJ Quantum Inf. 1, 15007 (2015).  https://doi.org/10.1038/npjqi.2015.7 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ämin Baumeler
    • 1
    • 2
  • Julien Degorre
    • 1
    • 2
  • Stefan Wolf
    • 1
    • 2
  1. 1.Faculty of InformaticsUniversità della Svizzera italianaLuganoSwitzerland
  2. 2.Facoltà indipendente di GandriaLunga scalaGandriaSwitzerland

Personalised recommendations