Advertisement

Molecular Cytology Applications on Gynecological Cytology

  • Francesca Carozzi
  • Giovanni Negri
  • Cristina Sani
Chapter

Abstract

In the last years, several new molecular techniques were introduced into cytology laboratories. The principal aim of molecular cytology tests applied to gynecology specimens is to improve the diagnostic accuracy of the Pap or HPV test and to personalize the management of women with cervical abnormalities. The use of biomarkers in cervical cytology has some potential advantages compared with histology. The cytological sampling can be easily obtained noninvasively during routine testing, while histological sampling requires colposcopy. The introduction of liquid-based samples in gynecological cytology (LBC) has strongly facilitated the development and the application of molecular techniques. LBC allows the use of biomarkers and molecular tests on the residual cellularity, adding valuable molecular informations to cell morphology potentially combining in one sample diagnosis and research. Most of these techniques are based on the detection of HPV or surrogate markers of the viral oncogenic activity. Their current and future applications will be critically analyzed.

Keywords

Pap test HPV Cervical cancer Biomarkers Molecular biology 

References

  1. 1.
    Cuzick J, Clavel C, Petry KU, et al. Overview of the European and North American studies on HPV testing in primary cervical cancer screening. Int J Cancer. 2006;119(5):1095–101.PubMedCrossRefGoogle Scholar
  2. 2.
    Nanda K, McCrory DC, Myers ER, et al. Accuracy of the Papanicolaou test in screening for and follow-up of cervical cytologic abnormalities: a systematic review. Ann Intern Med. 2000;132(10):810–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Schiffman M, Castle PE, Jeronimo J, et al. Human papillomavirus and cervical cancer. Lancet. 2007;370:890–907.PubMedCrossRefGoogle Scholar
  4. 4.
    Bernard HU. Gene expression of genital human papillomaviruses and considerations on potential antiviral approaches. Antivir Ther. 2002;7:219–37.PubMedGoogle Scholar
  5. 5.
    zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer. 2002;2:342.PubMedCrossRefGoogle Scholar
  6. 6.
    McLaughlin-Drubin ME, Meyers J, Munger K. Cancer associated human papillomaviruses. Curr Opin Virol. 2012;2:459–66.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Ghittoni R, Accardi R, Hasan U, et al. The biological properties of E6 and E7 oncoproteins from human papillo-maviruses. Virus Genes. 2010;40:1–13.PubMedCrossRefGoogle Scholar
  8. 8.
    Doorbar J. Molecular biology of human papillomavirus infection and cervical cancer. Clin Sci. 2006;110:525–41.PubMedCrossRefGoogle Scholar
  9. 9.
    Moody CA, Laimins LA. Human papillomavirus oncoproteins: path-ways to transformation. Nat Rev Cancer. 2010;10:550–60.PubMedCrossRefGoogle Scholar
  10. 10.
    Doorbar J, Quint W, Banks L, et al. The biology and life-cycle of human papillomaviruses. Vaccine. 2012;30S:55–70.CrossRefGoogle Scholar
  11. 11.
    el Awady MK, Kaplan JB, O’Brien SJ, Burk RD. Molecular analysis of integrated human papillomavirus 16 sequences in the cervical cancer cell line SiHa. Virology. 1987;159:389–98.PubMedCrossRefGoogle Scholar
  12. 12.
    Wentzensen N, Vinokurova S, Von Knebel Doeberitz M. Systematic review of genomic integration sites of human papillomavirus genomes in epithelial dysplasia and invasive cancer of the female lower genital tract. Cancer Res. 2004;64:3878–84.PubMedCrossRefGoogle Scholar
  13. 13.
    Snellenberg S, Schutze DM, Claassen-Kramer D, et al. Methylation status of the E2 binding sites ofHPV16 in cervical lesions determined with the Luminex(R) xMAP system. Virology. 2012;422:357.PubMedCrossRefGoogle Scholar
  14. 14.
    Wentzensen N, von Knebel Doeberitz M. Biomarkers in cervical cancer screening. Dis Markers. 2007;23:315–30.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Reuschenbach M, Clad A, von Knebel Doeberitz C, et al. Performance of p16INK4a-cytology, HPV mRNA, and HPV DNA testing to identify high grade cervical dysplasia in women with abnormal screening results. Gynecol Oncol. 2010;119:98–105.PubMedCrossRefGoogle Scholar
  16. 16.
    Sahasrabuddhe VV, Luhn P, Wentzensen N. Human papillomavirus and cervical cancer: biomarkers for improved prevention efforts. Future Microbiol. 2011;6:1083–98.PubMedCrossRefGoogle Scholar
  17. 17.
    Nayar R, Wilbur DC. The bethesda system for reporting cervical cytology. 3rd ed. New York: Springer; 2014.Google Scholar
  18. 18.
    Izadi-Mood N, Sarmadi S, Eftekhar Z, et al. Immunohistochemical expression of p16 and HPV L1 capsid proteins as predictive markers in cervical lesions. Arch Gynecol Obstet. 2014;289(6):1287–92.  https://doi.org/10.1007/s00404-013-3124-1.CrossRefPubMedGoogle Scholar
  19. 19.
    ALTS Group. Human papillomavirus testing for triage of women with cytologic evidence of low-grade squamous intraepithelial lesions: baseline data from a randomized trial. The Atypical Squamous Cells of Undetermined Significance/Low-Grade Squamous Intraepithelial Lesions Triage Study (ALTS) Group. J Natl Cancer Inst. 2000;92(5):397–402.CrossRefGoogle Scholar
  20. 20.
    Clifford GM, Rana RK, Franceschi S, et al. Human papillomavirus genotype distribution in low-grade cervical lesions: comparison by geographic region and with cervical cancer. Cancer Epidemiol Biomark Prev. 2005;14(5):1157–64.CrossRefGoogle Scholar
  21. 21.
    Doorbar J. The papillomavirus life cycle. J Clin Virol. 2005;32(Suppl 1):S7–15.PubMedCrossRefGoogle Scholar
  22. 22.
    Guan P, Howell-Jones R, Li N, et al. Human papillomavirus types in 115,789 HPV-positive women: a meta-analysis from cervical infection to cancer. Int J Cancer. 2012;131(10):2349–59.  https://doi.org/10.1002/ijc.27485.CrossRefPubMedGoogle Scholar
  23. 23.
    Doorbar J. Papillomavirus life cycle organization and biomarker selection. Dis Markers. 2007;23(4):297–313.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Stoler M, Bergeron C, Colgan TJ, et al. Squamous cell tumours and precursors. In: Kurman RJ, Carcangiu ML, Herrington CS, Young RH, editors. WHO classification of tumours of female reproductive organs. Lyon: IARC; 2014.Google Scholar
  25. 25.
    Negri G, Moretto G, Menia E, Vittadello F, et al. Immunocytochemistry of p16INK4a in liquid-based cervicovaginal specimens with modified papanicolaou counterstaining. J Clin Pathol. 2006;59(8):827–30.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Holl K, Nowakowski AM, Powell N, et al. Human papillomavirus prevalence and type-distribution in cervical glandular neoplasias: results from a European multinational epidemiological study. Int J Cancer. 2015;137(12):2858–68.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Negri G, Egarter-Vigl E, Kasal A, et al. p16INK4a is a useful marker for the diagnosis of adenocarcinoma of the cervix uteri and its precursors: an immunohistochemical study with immunocytochemical correlations. Am J Surg Pathol. 2003;27(2):187–93.PubMedCrossRefGoogle Scholar
  28. 28.
    Ravarino A, Nemolato S, Macciocu E, et al. CINtec PLUS immunocytochemistry as a tool for the cytologic diagnosis of glandular lesions of the cervix uteri. Am J Clin Pathol. 2012;138(5):652–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Verdoodt F, Jiang X, Williams M, et al. High-risk HPV testing in the management of atypical glandular cells: a systematic review and meta-analysis. Int J Cancer. 2016;138(2):303–10.PubMedCrossRefGoogle Scholar
  30. 30.
    Pacchiarotti A, Ferrari F, Bellardini P, et al. Prognostic value of p16-INK4A protein in women with negative or CIN1 histology result: a follow-up study. Int J Cancer. 2014;134(4):897–904.PubMedCrossRefGoogle Scholar
  31. 31.
    Mehlhorn G, Obermann E, Negri G, et al. HPV L1 detection discriminates cervical precancer from transient HPV infection: a prospective international multicenter study. Mod Pathol. 2013;26(7):967–74.PubMedCrossRefGoogle Scholar
  32. 32.
    Grapsa D, Frangou-Plemenou M, Kondi-Pafiti A, et al. Immunocytochemical expression of P53, PTEN, FAS (CD95), P16INK4A and HPV L1 major capsid proteins in ThinPrep cervical samples with squamous intraepithelial lesions. Diagn Cytopathol. 2014;42(6):465–75.PubMedCrossRefGoogle Scholar
  33. 33.
    Yemelyanova A, Gravitt PE, Ronnett BM, et al. Immunohistochemical detection of human papillomavirus capsid proteins L1 and L2 in squamous intraepithelial lesions: potential utility in diagnosis and management. Mod Pathol. 2013;26(2):268–74.PubMedCrossRefGoogle Scholar
  34. 34.
    Gatta LB, Berenzi A, Balzarini P, et al. Diagnostic implications of L1, p16, and Ki-67 proteins and HPV DNA in low-grade cervical intraepithelial neoplasia. Int J Gynecol Pathol. 2011;30(6):597–604.PubMedCrossRefGoogle Scholar
  35. 35.
    Galgano MT, Castle PE, Atkins KA, et al. Using biomarkers as objective standards in the diagnosis of cervical biopsies. Am J Surg Pathol. 2010;34(8):1077–87.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Griesser H, Sander H, Walczak C, Hilfrich RA. HPV vaccine protein L1 predicts disease outcome of high-risk HPV+ early squamous dysplastic lesions. Am J Clin Pathol. 2009;132(6):840–5.PubMedCrossRefGoogle Scholar
  37. 37.
    Yoshida T, Sano T, Kanuma T, et al. Immunochemical analysis of HPV L1 capsid protein and p16 protein in liquid-based cytology samples from uterine cervical lesions. Cancer. 2008;114(2):83–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Xiao W, Bian M, Ma L, et al. Immunochemical analysis of human papillomavirus L1 capsid protein in liquid-based cytology samples from cervical lesions. Acta Cytol. 2010;54(5):661–7.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Huang MZ, Li HB, Nie XM, et al. An analysis on the combination expression of HPV L1 capsid protein and p16INK4a in cervical lesions. Diagn Cytopathol. 2010;38(8):573–8.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Shroyer KR, Homer P, Heinz D, Singh M. Validation of a novel immunocytochemical assay for topoisomerase II-alpha and minichromosome maintenance protein 2 expression in cervical cytology. Cancer. 2006;108(5):324–30.PubMedCrossRefGoogle Scholar
  41. 41.
    Pinto AP, Degen M, Villa LL, Cibas ES. Immunomarkers in gynecologic cytology: the search for the ideal biomolecular papanicolaou test. Acta Cytol. 2012;56(2):109–21.PubMedCrossRefGoogle Scholar
  42. 42.
    Kelly D, Kincaid E, Fansler Z, et al. Detection of cervical high-grade squamous intraepithelial lesions from cytologic samples using a novel immunocytochemical assay (ProEx C). Cancer. 2006;108(6):494–500.PubMedCrossRefGoogle Scholar
  43. 43.
    Depuydt CE, Makar AP, Ruymbeke MJ. Benoy et al. BD-ProExC as adjunct molecular marker for improved detection of CIN2+ after HPV primary screening. Cancer Epidemiol Biomark Prev. 2011;20(4):628–37.CrossRefGoogle Scholar
  44. 44.
    Alaghehbandan R, Fontaine D, Bentley J, et al. Performance of ProEx C and PreTect HPV-Proofer E6/E7 mRNA tests in comparison with the hybrid capture 2 HPV DNA test for triaging ASCUS and LSIL cytology. Diagn Cytopathol. 2013;41(9):767–75.PubMedCrossRefGoogle Scholar
  45. 45.
    Beccati MD, Buriani C, Pedriali M, et al. Quantitative detection of molecular markers ProEx C (minichromosome maintenance protein 2 and topoisomerase IIa) and MIB-1 in liquid-based cervical squamous cell cytology. Cancer. 2008;114(3):196–203.PubMedCrossRefGoogle Scholar
  46. 46.
    Oberg TN, Kipp BR, Vrana JA, et al. Comparison of p16INK4a and ProEx C immunostaining on cervical ThinPrep cytology and biopsy specimens. Diagn Cytopathol. 2010;38(8):564–72.PubMedGoogle Scholar
  47. 47.
    Klaes R, Friedrich T, Spitkovsky D, et al. Overexpression of p16(INK4A) as a specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri. Int J Cancer. 2001;92(2):276–84.PubMedCrossRefGoogle Scholar
  48. 48.
    Tsoumpou I, Arbyn M, Kyrgiou M, et al. p16(INK4a) immunostaining in cytological and histological specimens from the uterine cervix: a systematic review and meta-analysis. Cancer Treat Rev. 2009;35(3):210–20.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Negri G, Bellisano G, Carico E, et al. Usefulness of p16ink4a, ProEX C, and Ki-67 for the diagnosis of glandular dysplasia and adenocarcinoma of the cervix uteri. Int J Gynecol Pathol. 2011;30(4):407–13.PubMedCrossRefGoogle Scholar
  50. 50.
    Riethdorf L, Riethdorf S, Lee KR, et al. Human papillomaviruses, expression of p16, and early endocervical glandular neoplasia. Hum Pathol. 2002;33(9):899–904.PubMedCrossRefGoogle Scholar
  51. 51.
    Tringler B, Gup CJ, Singh M, et al. Evaluation of p16INK4a and pRb expression in cervical squamous and glandular neoplasia. Hum Pathol. 2004;35(6):689–96.PubMedCrossRefGoogle Scholar
  52. 52.
    Carleton C, Hoang L, Sah S, et al. A Detailed immunohistochemical analysis of a large series of cervical and vaginal gastric-type adenocarcinomas. Am J Surg Pathol. 2016;40(5):636–44.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Park KJ, Kiyokawa T, Soslow RA, et al. Unusual endocervical adenocarcinomas: an immunohistochemical analysis with molecular detection of human papillomavirus. Am J Surg Pathol. 2011;35(5):633–46.PubMedCrossRefGoogle Scholar
  54. 54.
    Negri G, Vittadello F, Romano F, et al. p16INK4a expression and progression risk of low-grade intraepithelial neoplasia of the cervix uteri. Virchows Arch. 2004;445(6):616–20.PubMedCrossRefGoogle Scholar
  55. 55.
    Cortecchia S, Galanti G, Sgadari C, et al. Follow-up study of patients with cervical intraepithelial neoplasia grade 1 overexpressing p16Ink4a. Int J Gynecol Cancer. 2013;23(9):1663–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Liao GD, Sellors JW, Sun HK, et al. p16INK4A immunohistochemical staining and predictive value for progression of cervical intraepithelial neoplasia grade 1: a prospective study in China. Int J Cancer. 2014;134(7):1715–24.PubMedCrossRefGoogle Scholar
  57. 57.
    Darragh TM, Colgan TJ, Cox JT, Members of LAST Project Work Groups, et al. The Lower anogenital squamous terminology standardization project for HPV-associated lesions: background and consensus recommendations from the college of American pathologists and the American society for colposcopy and cervical pathology. Arch Pathol Lab Med. 2012;136(10):1266–97.PubMedCrossRefGoogle Scholar
  58. 58.
    Roelens J, Reuschenbach M, von Knebel Doeberitz M, et al. p16INK4a immunocytochemistry versus human papillomavirus testing for triage of women with minor cytologic abnormalities: a systematic review and meta-analysis. Cancer Cytopathol. 2012;120(5):294–307.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Carozzi F, Confortini M, Dalla Palma P, New Technologies for Cervival Cancer Screening (NTCC) Working Group, et al. Use of p16-INK4A overexpression to increase the specificity of human papillomavirus testing: a nested substudy of the NTCC randomised controlled trial. Lancet Oncol. 2008;9(10):937–45.PubMedCrossRefGoogle Scholar
  60. 60.
    Carozzi F, Gillio-Tos A, Confortini M, et al. NTCC working group. Risk of high-grade cervical intraepithelial neoplasia during follow-up in HPV-positive women according to baseline p16-INK4A results: a prospective analysis of a nested substudy of the NTCC randomised controlled trial. Lancet Oncol. 2013;14(2):168–76.PubMedCrossRefGoogle Scholar
  61. 61.
    Murphy N, Heffron CC, King B, et al. p16INK4A positivity in benign, premalignant and malignant cervical glandular lesions: a potential diagnostic problem. Virchows Arch. 2004;445(6):610–5.PubMedCrossRefGoogle Scholar
  62. 62.
    Schmidt D, Bergeron C, Denton KJ, Ridder R, European CINtec Cytology Study Group. p16/ki-67 dual-stain cytology in the triage of ASCUS and LSIL papanicolaou cytology: results from the European equivocal or mildly abnormal Papanicolaou cytology study. Cancer Cytopathol. 2011;119(3):158–66.PubMedCrossRefGoogle Scholar
  63. 63.
    Ikenberg H, Bergeron C, Schmidt D, PALMS Study Group, et al. Screening for cervical cancer precursors with p16/Ki-67 dual-stained cytology: results of the PALMS study. J Natl Cancer Inst. 2013;105(20):1550–7.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Wentzensen N, Fetterman B, Tokugawa D, et al. Interobserver reproducibility and accuracy of p16/Ki-67 dual-stain cytology in cervical cancer screening. Cancer Cytopathol. 2014;122(12):914–20.PubMedCrossRefGoogle Scholar
  65. 65.
    Wentzensen N, Fetterman B, Castle PE, et al. p16/Ki-67 dual stain cytology for detection of cervical precancer in HPV-positive women. J Natl Cancer Inst. 2015;107(12):djv257.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Akpolat I, Smith DA, Ramzy I, et al. The utility of p16INK4a and Ki-67 staining on cell blocks prepared from residual thin-layer cervicovaginal material. Cancer. 2004;102(3):142–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Shidham VB, Mehrotra R, Varsegi G, et al. p16 immunocytochemistry on cell blocks as an adjunct to cervical cytology: potential reflex testing on specially prepared cell blocks from residual liquid-based cytology specimens. Cytojournal. 2011;8:1.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Tawfik O, Davis M, Diaz FJ, Fan F. Cell block preparation versus liquid-based thin-layer cervical cytology: a comparative study evaluating human papillomavirus testing by hybrid capture-2/cervista, in situ hybridization and p16 immunohistochemistry. Acta Cytol. 2016;60(2):145–53.PubMedCrossRefGoogle Scholar
  69. 69.
    Keyhani-Rofagha S, Vesey-Shecket M. Diagnostic value, feasibility, and validity of preparing cell blocks from fluid-based gynecologic cytology specimens. Cancer. 2002;96(4):204–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Clarke MA, Wentzensen N, Mirabello L, et al. Human papillomavirus DNA methylation as a potential biomarker for cervical cancer. Cancer Epidemiol Biomark Prev. 2012;21(12):2125–37.  https://doi.org/10.1158/1055-9965.EPI-12-0905.CrossRefGoogle Scholar
  71. 71.
    Ronco G, Giorgi-Rossi P, Carozzi F, New Technologies for Cervical Cancer screening (NTCC) Working Group, et al. Efficacy of human papillomavirus testing for the detection of invasive cervical cancers and cervical intraepithelial neoplasia: a randomised controlled trial. Lancet Oncol. 2010;11:249–25.PubMedCrossRefGoogle Scholar
  72. 72.
    Rodríguez AC, Schiffman M, Herrero R, et al. Longitudinal study of human papillomavirus persistence and cervical intraepithelial neoplasia grade 2/3: critical role of duration of infection. J Natl Cancer Inst. 2010;102:315–24.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    McCredie MR, Sharples KJ, Paul C, et al. Natural history of cervical neoplasia and risk of invasive cancer in women with cervical intraepithelial neoplasia 3: a retrospective cohort study. Lancet Oncol. 2008;9:425–34.PubMedCrossRefGoogle Scholar
  74. 74.
    Carozzi F, De Marco L, Gillio-Tos A, NTCC Working Group, et al. Age and geographic variability of human papillomavirus high-risk genotype distribution in a large unvaccinated population and of vaccination impact on HPV prevalence. J Clin Virol. 2014;60(3):257–63.PubMedCrossRefGoogle Scholar
  75. 75.
    Tarkowski TA, Rajeevan MS, Lee DR, Unger ER. Improved detection of viral RNA isolated from liquid-based cytology samples. Mol Diagn. 2001;6:125–30.PubMedCrossRefGoogle Scholar
  76. 76.
    Cuschieri KS, Beattie G, Hassan S, et al. Assessment of human papillomavirus mRNA detection over time in cervical specimens collected in liquid d based cytology medium. J Virol Methods. 2005;124:211–5.PubMedCrossRefGoogle Scholar
  77. 77.
    Murphy PG, Henderson DT, Adams MD, et al. Isolation of RNA from cell lines and cervical cytology specimens stored in BD SurePath preservative fluid and downstream detection of housekeeping gene and HPV E6 expression using real time RT-PCR. J Virol Methods. 2009;156:138–44.PubMedCrossRefGoogle Scholar
  78. 78.
    Dixon EP, Lenz KL, Doobay H, et al. Recovery of DNA from BD SurePath cytology specimens and compatibility with the Roche AMPLICOR human papillomavirus (HPV) test. J Clin Virol. 2010;48:31–5.PubMedCrossRefGoogle Scholar
  79. 79.
    Carozzi F, Ronco G, Confortini M, et al. Prediction of high-grade cervical intraepithelial neoplasia in cytologically normal women by human papillomavirus testing. Br J Cancer. 2000;83(11):1462–7.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Canfell K, Gray W, Snijders P, et al. Factors predicting successful DNA recovery from archival cervical smear samples. Cytopathology. 2004;15:276–82.PubMedCrossRefGoogle Scholar
  81. 81.
    Castle PE, Stoler MH, Wright TC Jr, et al. Performance of carcinogenic human papillomavirus (HPV) testing and HPV16 or HPV18 genotyping for cervical cancer screening of women aged 25 years and older: a subanalysis of the ATHENA study. Lancet Oncol. 2011;12:880–90.PubMedCrossRefGoogle Scholar
  82. 82.
    Kjaer S, Høgdall E, Frederiksen K, et al. The absolute risk of cervical abnormalities in high-risk human papillomavirus-positive, cytologically normal women over a 10-year period. Cancer Res. 2006;66:10630–6.PubMedCrossRefGoogle Scholar
  83. 83.
    Kjaer SK, Frederiksen K, Munk C, Iftner T. Long-term absolute risk of cervical intraepithelial neoplasia grade 3 or worse following human papillomavirus infection: role of persistence. J Natl Cancer Inst. 2010;102(19):1478–88.  https://doi.org/10.1093/jnci/djq356.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Bouvard V, Baan R, Straif K, et al. WHO International Agency for Research on Cancer Monograph Working Group A review of human carcinogens--Part B: biological agents. Lancet Oncol. 2009;10(4):321–2.PubMedCrossRefGoogle Scholar
  85. 85.
    Wentzensen N, Schiffman M, Palmer T, Arbyn M. Triage of HPV positive women in cervical cancer screening. J Clin Virol. 2016;76(Suppl 1):S49–55.  https://doi.org/10.1016/j.jcv.2015.11.015.CrossRefPubMedGoogle Scholar
  86. 86.
    Johansson H, Bjelkenkrantz K, Darlin L, et al. Presence of high-risk HPV mRNA in relation to future high-grade lesions among high-risk HPV DNA positive women with minor cytological abnormalities. PLoS One. 2015;10(4):e0124460.  https://doi.org/10.1371/journal.pone.0124460.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Cattani P, et al. Clinical performance of human papillomavirus E6 and E7 mRNA testing for high-grade lesions of the cervix. J Clin Microbiol. 2009;47(12):3895–901.  https://doi.org/10.1128/JCM.01275-09.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Monsonego J, et al. Risk assessment and clinical impact of liquid-based cytology, oncogenic human papillomavirus (HPV) DNA and mRNA testing in primary cervical cancer screening (The FASE Study). Gynecol Oncol. 2012;125(1):175–80.  https://doi.org/10.1016/j.ygyno.2012.01.002.CrossRefPubMedGoogle Scholar
  89. 89.
    Ratnam S, et al. Clinical performance of the PreTect HPV-Proofer E6/E7 mRNA assay in comparison with that of the Hybrid Capture 2 test for identification of women at risk of cervical cancer. J Clin Microbiol. 2010;48(8):2779–85.  https://doi.org/10.1128/JCM.00382-10.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Rijkaart DC, et al. High-risk human papillomavirus (hrHPV) E6/E7 mRNA testing by PreTect HPV-proofer for detection of cervical high-grade intraepithelial neoplasia and cancer among hrHPV DNA-positive women with normal cytology. J Clin Microbiol. 2012;50:2390–6.  https://doi.org/10.1128/JCM.06587-11.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Munkhdelger J, et al. Performance of HPV E6/E7 mRNA RT-qPCR for screening and diagnosis of cervical cancer with ThinPrep® Pap test samples. Exp Mol Pathol. 2014;97(2):279–84.  https://doi.org/10.1016/j.yexmp.2014.08.004.CrossRefPubMedGoogle Scholar
  92. 92.
    Verdoodt F, et al. Triage of women with minor abnormal cervical cytology: meta-analysis of the accuracy of an assay targeting messenger ribonucleic acid of 5 high-risk human papillomavirus types. Cancer Cytopathol. 2013;121(12):675–87.  https://doi.org/10.1002/cncy.21325.CrossRefPubMedGoogle Scholar
  93. 93.
    Arbyn M, et al. The APTIMA HPV assay versus the Hybrid Capture 2 test in triage of women with ASC-US or LSIL cervical cytology: a meta-analysis of the diagnostic accuracy. Int J Cancer. 2013;132(1):101–8.  https://doi.org/10.1002/ijc.27636.CrossRefPubMedGoogle Scholar
  94. 94.
    Dalstein V, Riethmuller D, Pretet JL, et al. Persistence and load of high-risk HPV are predictors for development of high-grade cervical lesions: a longitudinal French cohort study. Int J Cancer. 2003;106:396–403.PubMedCrossRefGoogle Scholar
  95. 95.
    Josefsson AM, Magnusson PK, Ylitalo N, et al. Viral load of human papilloma virus 16 as a determinant for development of cervical carcinoma in situ: a nested case-control study. Lancet. 2000;355:2189–93.PubMedCrossRefGoogle Scholar
  96. 96.
    Pett M, Coleman N. Integration of high-risk human papillomavirus: a key event in cervical carcinogenesis? J Pathol. 2007;212:356–67.PubMedCrossRefGoogle Scholar
  97. 97.
    Pett MR, Herdman MT, Palmer RD, et al. Selection of cervical keratinocytes containing integrated HPV16 associates with episome loss and an endogenous antiviral response. Proc Natl Acad Sci U S A. 2006;103:3822–7.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Lorincz AT, Castle PE, Sherman ME, et al. Viral load of human papillomavirus and risk of CIN3 or cervical cancer. Lancet. 2002;360:228–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Woodman CB, Collins SI, Young LS. The natural history of cervical HPV infection: unresolved issues. Nat Rev Cancer. 2007;7:11–22.PubMedCrossRefGoogle Scholar
  100. 100.
    Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 2003;2042(54):349.Google Scholar
  101. 101.
    Jurkowska RZ, Jurkowski TP, Jeltsch A. Structure and function of mammalian DNA methyltransferases. Chembiochem. 2011;12:206.PubMedCrossRefGoogle Scholar
  102. 102.
    Stein RA. DNA methylation pro filing: a promising tool and a long road ahead for clinical applications. Int J Clin Pract. 2011;65:1212–3.PubMedCrossRefGoogle Scholar
  103. 103.
    Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev. 2011;25:1010–22.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Illingworth RS, Bird AP. CpG islands—a rough guide. FEBS Lett. 2009;583:1713–20.PubMedCrossRefGoogle Scholar
  105. 105.
    Rodriguez-Paredes M, Esteller M. Cancer epigenetics reaches main- stream oncology. Nat Med. 2011;17:330–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Galvan SC, Martinez-Salazar M, Galvan VM, et al. Analysis of CpG methylation sites and CGI among human papillomavirus DNA genomes. BMC Genomics. 2011;12:580.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Vinokurova S, von Knebel Doeberitz M. Differential methylation of the HPV 16 upstream regulatory region during epithelial differentiation and neoplastic transformation. PLoS ONE. 2011;6:e24451.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Mirabello L, Sun C, Ghosh A, et al. Methylation of human papillomavirus type 16 genome and risk of cervical precancer in a costa rican population. J Natl Cancer Inst. 2012;104:556.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Wentzensen N, Sun C, Ghosh A, et al. Methylation of HPV18, HPV31, and HPV45 genomes and cervical intraepithelial neoplasia grade 3. J Natl Cancer Inst. 2012;104(22):1738–49.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Xi LF, Jiang M, Shen Z, et al. Inverse association between methylation of human papillomavirus type 16 DNA and risk of cervical intraepithelial neoplasia grades 2 or 3. PLoS ONE. 2011;6:e23897–65.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Hong D, Ye F, Lu W, et al. Methylation status of the long control region of HPV 16 in clinical cervical specimens. Mol Med Rep. 2008;1:555–60.PubMedGoogle Scholar
  112. 112.
    Wiley DJ, Huh J, Rao JY, et al. Methylation of human papillomavirus genomes in cells of anal epithelia of HIV-infected men. J Acquir Immune Defic Syndr. 2005;39:143.PubMedGoogle Scholar
  113. 113.
    Kalantari M, Villa LL, Calleja-Macias IE, Bernard HU. Human papillomavirus-16 and -18 in penile carcinomas: DNA methylation, chromo-somal recombination and genomic variation. Int J Cancer. 2008;123:1832–40.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Balderas-Loaeza A, Anaya-Saavedra G, Ramirez-Amador VA, et al. Human papilloma-virus-16 DNA methylation patterns support a causal association of the virus with oral squamous cell carcinomas. Int J Cancer. 2007;120:2165–9.PubMedCrossRefGoogle Scholar
  115. 115.
    Park IS, Chang X, Loyo M, et al. Characterization of the methylation patterns in human papillomavirus type 16 viral DNA in head and neck cancers. Cancer Prev Res (Phila). 2011;4:207–17.CrossRefGoogle Scholar
  116. 116.
    Wentzensen N, et al. Utility of methylation markers in cervical cancer early detection. Gynecol Oncol. 2009;112:293.PubMedCrossRefGoogle Scholar
  117. 117.
    Mirabello L, Schiffman M, Ghosh A, et al. Elevated methylation of HPV16 DNA is associated with the development of high grade cervical intraepithelial neoplasia. Int J Cancer. 2013;132:1412.PubMedCrossRefGoogle Scholar
  118. 118.
    Mo W, Tong C, Zhang Y, Lu H. microRNAs’ differential regulations mediate the progress of Human Papillomavirus (HPV)-induced Cervical Intraepithelial Neoplasia (CIN). BMC Syst Biol. 2015;9:4.  https://doi.org/10.1186/s12918-015-0145-3.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Gadducci A, Guerrieri ME, Greco C. Tissue biomarkers as prognostic variables of cervical cancer. Crit Rev Oncol Hematol. 2012;86(2):104–29.PubMedCrossRefGoogle Scholar
  120. 120.
    Cheung TH, Man KN, Yu MY, et al. Dysregulated microRNAs in the pathogenesis and progression of cervical neoplasm. Cell Cycle. 2012;11(15):2876–84.PubMedCrossRefGoogle Scholar
  121. 121.
    Li Y, Liu J, Yuan C, et al. High-risk human papillomavirus reduces the expression of microRNA-218 in women with cervical intraepithelial neoplasia. J Int Med Res. 2010;38:1730–6.PubMedCrossRefGoogle Scholar
  122. 122.
    Martin DH. The microbiota of the vagina and its influence on women’s health and disease. Am J Med Sci. 2012;343:2.  https://doi.org/10.1097/MAJ.0b013e31823ea228.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Boskey ER, Cone RA, Whaley KJ, Moench TR. Origins of vaginal acidity: high D/L lactate ratio is consistent with bacteria being the primary source. Hum Reprod. 2001;16:1809–13.PubMedCrossRefGoogle Scholar
  124. 124.
    McMillan A, et al. Disruption of urogenital biofilms by lactobacilli. Colloids Surf B Biointerfaces. 2011;86(1):58–64.  https://doi.org/10.1016/j.colsurfb.2011.03.016.CrossRefPubMedGoogle Scholar
  125. 125.
    Boris S, Barbes C. Role played by lactobacilli in controlling the population of vaginal pathogens. Microbes Infect. 2000;2:543–6.PubMedCrossRefGoogle Scholar
  126. 126.
    Aroutcheva A, et al. Defense factors of vaginal lactobacilli. Am J Obstet Gynecol. 2001;185(2):375–9.  https://doi.org/10.1067/mob.2001.115867.CrossRefPubMedGoogle Scholar
  127. 127.
    Ocana VS, Pesce De Ruiz Holgado AA, Nader-Macias ME. Characterization of a bacteriocin-like substance produced by a vaginal Lactobacillus salivarius strain. Appl Environ Microbiol. 1999;65:5631–5.PubMedPubMedCentralGoogle Scholar
  128. 128.
    Gajer P, et al. Temporal dynamics of the human vaginal microbiota. Sci Transl Med. 2012;4(132):132ra52.  https://doi.org/10.1126/scitranslmed.3003605.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    MacIntyre DA, et al. The vaginal microbiome during pregnancy and the postpartum period in a European population. Sci Rep. 2015;5:8988.  https://doi.org/10.1038/srep08988.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Romero R, et al. The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome. 2014;2:4.  https://doi.org/10.1186/2049-2618-2-4.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Dejea CM, Wick EC, Hechenbleikner EM, et al. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc Natl Acad Sci U S A. 2014;111(51):18321–6.  https://doi.org/10.1073/pnas.1406199111.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Chase D, Goulder A, Zenhausern F, et al. The vaginal and gastrointestinal microbiomes in gynecologic cancers: a review of applications in etiology, symptoms and treatment. Gynecol Oncol. 2015;138(1):190–200.  https://doi.org/10.1016/j.ygyno.2015.04.036PMID:25957158.PubMedCrossRefGoogle Scholar
  133. 133.
    Ito Y, Kishishita M, Yanase S. Induction of Epstein-Barr virus antigens in human lymphoblastoid P3HR1 cells with culture fluid of Fusobacterium nucleatum. Cancer Res. 1980;40(11):4329–30.PubMedGoogle Scholar
  134. 134.
    Han YW. Fusobacterium nucleatum: a commensal-turned pathogen. Curr Opin Microbiol. 2015;23:141.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Francesca Carozzi
    • 1
  • Giovanni Negri
    • 2
  • Cristina Sani
    • 1
  1. 1.Institute for cancer research, prevention and clinical network, Cancer Prevention Laboratory, HPV Laboratory and Molecular Oncology UnitFlorenceItaly
  2. 2.Department of PathologyCentral Hospital BolzanoBolzanoItaly

Personalised recommendations