Advertisement

Molecular Cytology Applications on Head and Neck

  • Marc P. Pusztaszeri
  • Joaquín J. García
  • William C. Faquin
Chapter

Abstract

Head and neck pathology is a complex subspecialty that is unique because of its diversity of tissue types within the same limited anatomic region, with a wide range of reactive, benign, low-grade, and high-grade tumors. Thyroid nodules, salivary gland tumors, and cervical lymph nodes represent three unique areas within the head and neck that are, because of their superficial nature, commonly and easily amenable to cytopathological examination through the use of fine needle aspiration (FNA). Accordingly, FNA is often the first line intervention for the diagnosis and triage of many head and neck masses. FNA is efficient, cost-effective, and overall sensitive and accurate. Nonetheless, there are limitations and challenging diagnostic areas due to cytomorphological overlap between non-neoplastic, benign, and malignant lesions. Several ancillary techniques and markers are currently available for optimizing the cytomorphological evaluation of head and neck tumors by FNA, and they can play an important role in achieving an accurate diagnosis and guiding the management of patients with head and neck lesions. The most important applications of ancillary molecular markers for FNA in the head and neck are: Indeterminate lesions of the thyroid, detection of infectious organisms (e.g., tuberculosis) using PCR, diagnosis of lymphoproliferative disorders using flow cytometry, classification of metastatic carcinomas of unknown primary site through HPV testing, and diagnosis of a subset of salivary gland tumors characterized by specific translocations. In this chapter, we review a subset of the molecular cytology applications pertaining to a variety of important head and neck lesions; thyroid, lymphoproliferative disease, and soft tissue lesions (pediatric tumors) that can also involve the head and neck are discussed in separate chapters.

Keywords

Immunocytochemistry Head and neck Cytology Fine needle aspiration HPV Salivary glands Translocation Molecular 

References

  1. 1.
    Faquin WC, Powers CN. Salivary gland cytopathology. Essentials in cytopathology series, vol. 5. New York: Springer; 2008.CrossRefGoogle Scholar
  2. 2.
    Colella G, Cannavale R, Flamminio F, et al. Fine-needle aspiration cytology of salivary gland lesions: a systematic review. J Oral Maxillofac Surg. 2010;68:2146–53.CrossRefPubMedGoogle Scholar
  3. 3.
    Schmidt RL, Hall BJ, Wilson AR, et al. A systematic review and meta-analysis of the diagnostic accuracy of fine-needle aspiration cytology for parotid gland lesions. Am J Clin Pathol. 2011;136:45–59.CrossRefPubMedGoogle Scholar
  4. 4.
    Hughes JH, Volk EE, Wilbur DC. Pitfalls in salivary gland fine-needle aspiration cytology: lessons from the College of American Pathologists Interlaboratory Comparison Program in nongynecologic cytology. Arch Pathol Lab Med. 2005;129:26–31.PubMedGoogle Scholar
  5. 5.
    Fundakowski C, Castaño J, Abouyared M, et al. The role of indeterminate fine-needle biopsy in the diagnosis of parotid malignancy. Laryngoscope. 2014;124:678–81.CrossRefPubMedGoogle Scholar
  6. 6.
    Pusztaszeri MP, García JJ, Faquin WC. Salivary gland FNA: new markers and new opportunities for improved diagnosis. Cancer Cytopathol. 2016;124:307–16.CrossRefPubMedGoogle Scholar
  7. 7.
    Pusztaszeri MP, Faquin WC. Update in salivary gland cytopathology: recent molecular advances and diagnostic applications. Semin Diagn Pathol. 2015;32:264–74.CrossRefPubMedGoogle Scholar
  8. 8.
    Wang H, Fundakowski C, Khurana JS, Jhala N. Fine-needle aspiration biopsy of salivary gland lesions. Arch Pathol Lab Med. 2015;139:1491–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Pusztaszeri MP, Sadow PM, Ushiku A, et al. MYB immunostaining is a useful ancillary test for distinguishing adenoid cystic carcinoma from pleomorphic adenoma in fine-needle aspiration biopsy specimens. Cancer Cytopathol. 2014;122:257–65.CrossRefPubMedGoogle Scholar
  10. 10.
    Hudson JB, Collins BT. MYB gene abnormalities t(6;9) in adenoid cystic carcinoma fine-needle aspiration biopsy using fluorescence in situ hybridization. Arch Pathol Lab Med. 2014;138:403–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Fulciniti F, Pia Curcio M, Liguori G, et al. Hyalinizing clear cell carcinoma of the parotid gland: report of a recurrent case with aggressive cytomorphology and behavior diagnosed on fine-needle cytology sample. Diagn Cytopathol. 2014;42:63–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Foo WC, Jo VY, Krane JF. Usefulness of translocation-associated immunohistochemical stains in the fine-needle aspiration diagnosis of salivary gland neoplasms. Cancer Cytopathol. 2016;124:397–405.CrossRefPubMedGoogle Scholar
  13. 13.
    Weinreb I. Translocation-associated salivary gland tumors: a review and update. Adv Anat Pathol. 2013;20:367–77.CrossRefPubMedGoogle Scholar
  14. 14.
    Stenman G, Persson F, Andersson MK. Diagnostic and therapeutic implications of new molecular biomarkers in salivary gland cancers. Oral Oncol. 2014;50:683–90.CrossRefPubMedGoogle Scholar
  15. 15.
    Andersson MK, Stenman G. The landscape of gene fusions and somatic mutations in salivary gland neoplasms–implications for diagnosis and therapy. Oral Oncol. 2016;57:63–9.CrossRefPubMedGoogle Scholar
  16. 16.
    El-Naggar AK, Huvos AG. Tumours of the salivary glands. In: Barnes L, Eveson JW, Reichart P, Sidransky D, editors. World health organization classification of tumours. Pathology and genetics of head and neck tumours. Lyon: IARC Press; 2005. p. 209–81.Google Scholar
  17. 17.
    Voz ML, Aström AK, Kas K, et al. The recurrent translocation t(5;8)(p13;q12) in pleomorphic adenomas results in upregulation of PLAG1 gene expression under control of the LIFR promoter. Oncogene. 1998;16:1409–16.CrossRefPubMedGoogle Scholar
  18. 18.
    Kas K, Voz ML, Röijer E, et al. Promoter swapping between the genes for a novel zinc finger protein and beta-catenin in pleiomorphic adenomas with t(3;8)(p21;q12) translocations. Nat Genet. 1997;15:170–4.CrossRefPubMedGoogle Scholar
  19. 19.
    Aström AK, Voz ML, Kas K, et al. Conserved mechanism of PLAG1 activation in salivary gland tumors with and without chromosome 8q12 abnormalities: identification of SII as a new fusion partner gene. Cancer Res. 2009;59:918–23.Google Scholar
  20. 20.
    Debiec-Rychter M, Van Valckenborgh I, Van den Broeck C, et al. Histologic localization of PLAG1 (pleomorphic adenoma gene 1) in pleomorphic adenoma of the salivary gland: cytogenetic evidence of common origin of phenotypically diverse cells. Lab Investig. 2001;81:1289–97.CrossRefPubMedGoogle Scholar
  21. 21.
    Queimado L, Lopes CS, Reis AM. WIF1, an inhibitor of the Wnt pathway, is rearranged in salivary gland tumors. Genes Chromosomes Cancer. 2007;46:215–25.CrossRefPubMedGoogle Scholar
  22. 22.
    Persson F, Andrén Y, Winnes M, et al. High-resolution genomic profiling of adenomas and carcinomas of the salivary glands reveals amplification, rearrangement, and fusion of HMGA2. Genes Chromosomes Cancer. 2009;48:69–82.CrossRefPubMedGoogle Scholar
  23. 23.
    Röijer E, Nordkvist A, Ström AK, et al. Translocation, deletion/amplification, and expression of HMGIC and MDM2 in a carcinoma ex pleomorphic adenoma. Am J Pathol. 2002;160:433–40.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hashimoto K, Yamamoto H, Shiratsuchi H, et al. HER-2/neu gene amplification in carcinoma ex pleomorphic adenoma in relation to progression and prognosis: a chromogenic in-situ hybridization study. Histopathology. 2012;60:E131–42.CrossRefPubMedGoogle Scholar
  25. 25.
    Nishijima T, Yamamoto H, Nakano T, et al. Dual gain of HER2 and EGFR gene copy numbers impacts the prognosis of carcinoma ex pleomorphic adenoma. Hum Pathol. 2015;46:1730–43.CrossRefPubMedGoogle Scholar
  26. 26.
    Joseph TP, Joseph CP, Jayalakshmy PS, Poothiode U. Diagnostic challenges in cytology of mucoepidermoid carcinoma: report of 6 cases with histopathological correlation. J Cytol. 2015;32:21–4.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Tonon G, Modi S, Wu L, et al. t(11;19)(q21;p13) translocation in mucoepidermoid carcinoma creates a novel fusion product that disrupts a notch signaling pathway. Nat Genet. 2003;33:208–13.CrossRefPubMedGoogle Scholar
  28. 28.
    Behboudi A, Enlund F, Winnes M, et al. Molecular classification of mucoepidermoid carcinomas-prognostic significance of the MECT1-MAML2 fusion oncogene. Genes Chromosomes Cancer. 2006;45:470–81.CrossRefPubMedGoogle Scholar
  29. 29.
    Seethala RR, Dacic S, Cieply K, et al. A reappraisal of the MECT1/MAML2 translocation in salivary mucoepidermoid carcinomas. Am J Surg Pathol. 2010;34:1106–21.CrossRefPubMedGoogle Scholar
  30. 30.
    Okabe M, Miyabe S, Nagatsuka H, et al. MECT1-MAML2 fusion transcript defines a favorable subset of mucoepidermoid carcinoma. Clin Cancer Res. 2006;12:3902–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Okumura Y, Miyabe S, Nakayama T, et al. Impact of CRTC1/3–MAML2 fusions on histological classification and prognosis of mucoepidermoid carcinoma. Histopathology. 2011;59:90–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Nagao T, Gaffey TA, Kay PA, et al. Dedifferentiation in low-grade mucoepidermoid carcinoma of the parotid gland. Hum Pathol. 2003;34:1068–72.CrossRefPubMedGoogle Scholar
  33. 33.
    Ishibashi K, Ito Y, Masaki A, et al. Warthin-like mucoepidermoid carcinoma: a combined study of fluorescence in situ hybridization and whole-slide imaging. Am J Surg Pathol. 2015;39:1479–87.CrossRefPubMedGoogle Scholar
  34. 34.
    Nakayama T, Miyabe S, Okabe M, et al. Clinicopathological significance of the CRTC3-MAML2 fusion transcript in mucoepidermoid carcinoma. Mod Pathol. 2009;22(12):1575–81.CrossRefPubMedGoogle Scholar
  35. 35.
    Fehr A, Röser K, Heidorn K, Hallas C, Löning T, Bullerdiek J. A new type of MAML2 fusion in mucoepidermoid carcinoma. Genes Chromosomes Cancer. 2008;47:203–6.CrossRefPubMedGoogle Scholar
  36. 36.
    Stanley MW, Horwitz CA, Rollins SD, et al. Basal cell (monomorphic) and minimally pleomorphic adenomas of the salivary glands. Distinction from the solid (anaplastic) type of adenoid cystic carcinoma in fine-needle aspiration. Am J Clin Pathol. 1996;106:35–41.CrossRefPubMedGoogle Scholar
  37. 37.
    Lee SS, Cho KJ, Jang JJ, et al. Differential diagnosis of adenoid cystic carcinoma from pleomorphic adenoma of the salivary gland on fine needle aspiration cytology. Acta Cytol. 1996;40:1246–52.CrossRefPubMedGoogle Scholar
  38. 38.
    Persson M, Andrén Y, Mark J, et al. Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck. Proc Natl Acad Sci U S A. 2009;106:18740–1874.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Persson M, Andrén Y, Moskaluk CA, et al. Clinically significant copy number alterations and complex rearrangements of MYB and NFIB in head and neck adenoid cystic carcinoma. Genes Chromosomes Cancer. 2012;51:805–17.CrossRefPubMedGoogle Scholar
  40. 40.
    Nordkvist A, Mark J, Gustafsson H, et al. Non-random chromosome rearrangements in adenoid cystic carcinoma of the salivary glands. Genes Chromosomes Cancer. 1994;10:115–21.CrossRefPubMedGoogle Scholar
  41. 41.
    Brill LB 2nd, Kanner WA, Fehr A, et al. Analysis of MYB expression and MYB-NFIB gene fusions in adenoid cystic carcinoma and other salivary neoplasms. Mod Pathol. 2011;24:1169–76.CrossRefGoogle Scholar
  42. 42.
    Mitani Y, Li J, Rao PH, et al. Comprehensive analysis of the MYB-NFIB gene fusion in salivary adenoid cystic carcinoma: incidence, variability, and clinicopathologic significance. Clin Cancer Res. 2010;16:4722–31.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Mitani Y, Rao PH, Futreal PA, et al. Novel chromosomal rearrangements and break points at the t(6;9) in salivary adenoid cystic carcinoma: association with MYB-NFIB chimeric fusion, MYB expression, and clinical outcome. Clin Cancer Res. 2011;17:7003–14.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Rettig EM, Talbot CC Jr, Sausen M, et al. Whole-genome sequencing of salivary gland adenoid cystic carcinoma. Cancer Prev Res (Phila). 2016;9:265–74.Google Scholar
  45. 45.
    Rutherford S, Yu Y, Rumpel CA, Frierson HF Jr, Moskaluk CA. Chromosome 6 deletion and candidate tumor suppressor genes in adenoid cystic carcinoma. Cancer Lett. 2006;18(236):309–17.CrossRefGoogle Scholar
  46. 46.
    Patel TD, Vazquez A, Marchiano E, Park RC, Baredes S, Eloy JA. Polymorphous low-grade adenocarcinoma of the head and neck: a population-based study of 460 cases. Laryngoscope. 2015;125:1644–9.CrossRefGoogle Scholar
  47. 47.
    Weinreb I, Piscuoglio S, Martelotto LG, et al. Hotspot activating PRKD1 somatic mutations in polymorphous low-grade adenocarcinomas of the salivary glands. Nat Genet. 2014;46:1166–9.CrossRefGoogle Scholar
  48. 48.
    Weinreb I, Zhang L, Tirunagari LM, et al. Novel PRKD gene rearrangements and variant fusions in cribriform adenocarcinoma of salivary gland origin. Genes Chromosomes Cancer. 2014;53:845–56.CrossRefPubMedGoogle Scholar
  49. 49.
    Piscuoglio S, Fusco N, Ng CK, et al. Lack of PRKD2 and PRKD3 kinase domain somatic mutations in PRKD1 wild-type classic polymorphous low-grade adenocarcinomas of the salivary gland. Histopathology. 2016;68:1055–62.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Skalova A, Vanecek T, Sima R, et al. Mammary analogue secretory carcinoma of salivary glands, containing the ETV6-NTRK3 fusion gene: a hitherto undescribed salivary gland tumor entity. Am J Surg Pathol. 2010;34:599–608.PubMedGoogle Scholar
  51. 51.
    Connor A, Perez-Ordoñez B, Shago M, et al. Mammary analog secretory carcinoma of salivary gland origin with the ETV6 gene rearrangement by FISH: expanded morphologic and immunohistochemical spectrum of a recently described entity. Am J Surg Pathol. 2012;36:27–34.CrossRefPubMedGoogle Scholar
  52. 52.
    Chiosea SI, Griffith C, Assaad A, et al. Clinicopathological characterization of mammary analogue secretory carcinoma of salivary glands. Histopathology. 2012;61:387–94.CrossRefPubMedGoogle Scholar
  53. 53.
    Dalin MG, Desrichard A, Katabi N, et al. Comprehensive molecular characterization of salivary duct carcinoma reveals actionable targets and similarity to apocrine breast cancer. Clin Cancer Res. 2016;22(18):4623–33.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Bishop JA, Yonescu R, Batista D, et al. Most nonparotid “acinic cell carcinomas” represent mammary analog secretory carcinomas. Am J Surg Pathol. 2013;37:1053–7.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Oza N, Sanghvi K, Shet T, et al. Mammary analogue secretory carcinoma of parotid: is preoperative cytological diagnosis possible? Diagn Cytopathol. 2016;44:519–25.CrossRefPubMedGoogle Scholar
  56. 56.
    Milchgrub S, Gnepp DR, Vuitch F, et al. Hyalinizing clear cell carcinoma of salivary gland. Am J Surg Pathol. 1994;18:74–82.CrossRefPubMedGoogle Scholar
  57. 57.
    Milchgrub S, Vuitch F, Saboorian MH, et al. Hyalinizing clear cell carcinoma of salivary glands in fine needle aspiration. Diagn Cytopathol. 2000;23:333–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Antonescu CR, Katabi N, Zhang L, et al. EWSR1-ATF1 fusion is a novel and consistent finding in hyalinizing clear-cell carcinoma of salivary gland. Genes Chromosomes Cancer. 2011;50:559–70.CrossRefPubMedGoogle Scholar
  59. 59.
    Bilodeau EA, Weinreb I, Antonescu CR, et al. Clear cell odontogenic carcinomas show EWSR1 rearrangements: a novel finding and a biological link to salivary clear cell carcinomas. Am J Surg Pathol. 2013;37:1001–5.CrossRefPubMedGoogle Scholar
  60. 60.
    Shah AA, LeGallo RD, van Zante A, et al. EWSR1 genetic rearrangements in salivary gland tumors: a specific and very common feature of hyalinizing clear cell carcinoma. Am J Surg Pathol. 2013;37:571–8.CrossRefPubMedGoogle Scholar
  61. 61.
    Thway K, Fisher C. Tumors with EWSR1-CREB1 and EWSR1-ATF1 fusions: the current status. Am J Surg Pathol. 2012;36:e1-e11.PubMedGoogle Scholar
  62. 62.
    Bishop JA, French CA, Ali SZ. Cytopathologic features of NUT midline carcinoma: a series of 26 specimens from 13 patients. Cancer Cytopathol. 2016;124(12):901–8.CrossRefPubMedGoogle Scholar
  63. 63.
    Matsuyama A, Hisaoka M, Nagao Y, et al. Aberrant PLAG1 expression in pleomorphic adenomas of the salivary gland: a molecular genetic and immunohistochemical study. Virchows Arch. 2011;458:583–92.CrossRefPubMedGoogle Scholar
  64. 64.
    Rotellini M, Palomba A, Baroni G, Franchi A. Diagnostic utility of PLAG1 immunohistochemical determination in salivary gland tumors. Appl Immunohistochem Mol Morphol. 2014;22:390–4.CrossRefPubMedGoogle Scholar
  65. 65.
    Bahrami A, Dalton JD, Shivakumar B, et al. PLAG1 alteration in carcinoma ex pleomorphic adenoma: immunohistochemical and fluorescence in situ hybridization studies of 22 cases. Head Neck Pathol. 2012;6:328–35.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Moon A, Cohen C, Siddiqui MT. MYB expression: potential role in separating adenoid cystic carcinoma (ACC) from pleomorphic adenoma (PA). Diagn Cytopathol. 2016;44(10):799–804.CrossRefPubMedGoogle Scholar
  67. 67.
    Rooper L, Sharma R, Bishop JA. Polymorphous low grade adenocarcinoma has a consistent p63+/p40− immunophenotype that helps distinguish it from adenoid cystic carcinoma and cellular pleomorphic adenoma. Head Neck Pathol. 2015;9:79–84.CrossRefGoogle Scholar
  68. 68.
    Argyris PP, Wetzel SL, Greipp P, et al. Clinical utility of myb rearrangement detection and p63/p40 immunophenotyping in the diagnosis of adenoid cystic carcinoma of minor salivary glands: a pilot study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;121:282–9.CrossRefPubMedGoogle Scholar
  69. 69.
    Skálová A, Simpson RH, Lehtonen H, Leivo I. Assessment of proliferative activity using the MIB1 antibody help to distinguish polymorphous low grade adenocarcinoma from adenoid cystic carcinoma of salivary glands. Pathol Res Pract. 1997;193:695–703.CrossRefGoogle Scholar
  70. 70.
    Jo VY, Sholl LM, Krane JF. Distinctive patterns of CTNNB1 (β-catenin) alterations in salivary gland basal cell adenoma and basal cell adenocarcinoma. Am J Surg Pathol. 2016;40:1143–50.CrossRefPubMedGoogle Scholar
  71. 71.
    Wilson TC, Ma D, Tilak A, Tesdahl B, Robinson RA. Next-generation sequencing in salivary gland basal cell adenocarcinoma and basal cell adenoma. Head Neck Pathol. 2016;10(4):494–500.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Schmitt AC, McCormick R, Cohen C, Siddiqui MT. DOG1, p63, and S100 protein: a novel immunohistochemical panel in the differential diagnosis of oncocytic salivary gland neoplasms in fine-needle aspiration cell blocks. J Am Soc Cytopathol. 2014;3:303–8.CrossRefGoogle Scholar
  73. 73.
    Hsieh MS, Lee YH, Chang YL. SOX10-positive salivary gland tumors: a growing list, including mammary analogue secretory carcinoma of the salivary gland, sialoblastoma, low-grade salivary duct carcinoma, basal cell adenoma/adenocarcinoma, and a subgroup of mucoepidermoid carcinoma. Hum Pathol. 2016;56:134–42.CrossRefPubMedGoogle Scholar
  74. 74.
    Weinreb I, Seethala RR, Perez-Ordoñez B, Chetty R, Hoschar AP, Hunt JL. Oncocytic mucoepidermoid carcinoma: clinicopathologic description in a series of 12 cases. Am J Surg Pathol. 2009;33:409–16.CrossRefPubMedGoogle Scholar
  75. 75.
    Kawahara A, Taira T, Abe H, et al. Diagnostic utility of phosphorylated signal transducer and activator of transcription 5 immunostaining in the diagnosis of mammary analogue secretory carcinoma of the salivary gland: a comparative study of salivary gland cancers. Cancer Cytopathol. 2015;123:603–11.CrossRefPubMedGoogle Scholar
  76. 76.
    Marur S, D’Souza G, Westra WH, et al. HPV-associated head and neck cancer: a virus-related cancer epidemic. Lancet Oncol. 2010;11:781–9.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Rautava J, Syrjänen S. Biology of human papillomavirus infections in head and neck carcinogenesis. Head Neck Pathol. 2012;6:S3–15.CrossRefPubMedGoogle Scholar
  78. 78.
    Paz IB, Cook N, Odom-Maryon T, et al. Human papillomavirus (HPV) in head and neck cancer. An association of HPV 16 with squamous cell carcinoma of Waldeyer’s tonsillar ring. Cancer. 1997;79:595–604.CrossRefPubMedGoogle Scholar
  79. 79.
    Fakhry C, Rosenthal BT, Clark DP, et al. Associations between oral HPV16 infection and cytopathology: evaluation of an oropharyngeal ‘Pap-test equivalent’ in high-risk populations. Cancer Prev Res. 2011;4:1378–84.CrossRefGoogle Scholar
  80. 80.
    Jarboe EA, Willis M, Bentz B, et al. Detection of human papillomavirus using hybrid capture II in oral brushings from patients with oropharyngeal squamous cell carcinoma. Am J Clin Pathol. 2011;135:766–9.CrossRefPubMedGoogle Scholar
  81. 81.
    Hafkamp HC, Manni JJ, Haesevoets A, et al. Marked differences in survival rate between smokers and nonsmokers with HPV 16-associated tonsillar carcinomas. Int J Cancer. 2008;122:2656–64.CrossRefPubMedGoogle Scholar
  82. 82.
    Kobayashi K, Saito Y, Omura G, et al. Clinical features of human papilloma virus-related head and neck squamous cell carcinoma of an unknown primary site. ORL J Otorhinolaryngol Relat Spec. 2014;76:137–46.CrossRefPubMedGoogle Scholar
  83. 83.
    Mirghani H, Amen F, Blanchard P, et al. Treatment de-escalation in HPV-positive oropharyngeal carcinoma: ongoing trials, critical issues and perspectives. Int J Cancer. 2015;136:1494–503.CrossRefPubMedGoogle Scholar
  84. 84.
    Pusztaszeri MP, Faquin WC. Cytologic evaluation of cervical lymph node metastases from cancers of unknown primary origin. Semin Diagn Pathol. 2015;32:32–41.CrossRefPubMedGoogle Scholar
  85. 85.
    Lewis JS Jr, Ukpo OC, Ma XJ, et al. Transcriptionally-active high-risk human papillomavirus is rare in oral cavity and laryngeal/hypopharyngeal squamous cell carcinomas–a tissue microarray study utilizing E6/E7 mRNA in situ hybridization. Histopathology. 2012;60:982–91.CrossRefPubMedGoogle Scholar
  86. 86.
    Poling JS, Ma XJ, Bui S, et al. Human papillomavirus (HPV) status of non-tobacco related squamous cell carcinomas of the lateral tongue. Oral Oncol. 2014;50:306–10.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Bishop JA, Ma XJ, Wang H, et al. Detection of transcriptionally active high-risk HPV in patients with head and neck squamous cell carcinoma as visualized by a novel E6/E7 mRNA in situ hybridization method. Am J Surg Pathol. 2012;36:1874–82.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Chernock RD, Wang X, Gao G, et al. Detection and significance of human papillomavirus, CDKN2A(p16) and CDKN1A(p21) expression in squamous cell carcinoma of the larynx. Mod Pathol. 2013;26:223–31.CrossRefPubMedGoogle Scholar
  89. 89.
    Robinson M, Suh YE, Paleri V, et al. Oncogenic human papillomavirus-associated nasopharyngeal carcinoma: an observational study of correlation with ethnicity, histological subtype and outcome in a UK population. Infect Agents Cancer. 2013;8:30.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Bishop JA, Guo TW, Smith DF, et al. Human papillomavirus-related carcinomas of the sinonasal tract. Am J Surg Pathol. 2013;37:185–92.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Protocol for the examination of specimens from patients with carcinomas of the pharynx. 2013. Accessed at http://www.cap.org/ShowProperty?nodePath=/UCMCon/Contribution%20Folders/WebContent/pdf/larynx-13protocol-3300.pdf.
  92. 92.
    Routine HPV Testing in head and neck squamous cell carcinoma. 2013. Accessed at https://www.cancercare.on.ca/common/pages/UserFile.aspx?fileId=279838.
  93. 93.
    Dataset for histopathology reporting of mucosal malignancies of the pharynx. 2013. Accessed at https://www.rcpath.org/resourceLibrary/g111_pharynxmucosaldataset_nov13-pdf.html.
  94. 94.
    Pai RK, Erickson J, Pourmand N, Kong CS. p16(INK4A) immunohistochemical staining may be helpful in distinguishing branchial cleft cysts from cystic squamous cell carcinomas originating in the oropharynx. Cancer. 2009;117:108–19.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Munger K, Baldwin A, Edwards KM, et al. Mechanisms of human papillomavirus-induced oncogenesis. J Virol. 2004;78:11451–60.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Schache AG, Liloglou T, Risk JM, et al. Evaluation of human papilloma virus diagnostic testing in oropharyngeal squamous cell carcinoma: sensitivity, specificity, and prognostic discrimination. Clin Cancer Res. 2011;17:6262–71.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Jordan RC, Lingen MW, Perez-Ordonez B, et al. Validation of methods for oropharyngeal cancer HPV status determination in US cooperative group trials. Am J Surg Pathol. 2012;36:945–54.CrossRefPubMedGoogle Scholar
  98. 98.
    Lingen MW, Xiao W, Schmitt A, et al. Low etiologic fraction for high-risk human papillomavirus in oral cavity squamous cell carcinomas. Oral Oncol. 2013;49:1–8.CrossRefPubMedGoogle Scholar
  99. 99.
    Begum S, Gillison ML, Nicol TL, Westra WH. Detection of human papillomavirus-16 in fine-needle aspirates to determine tumor origin in patients with metastatic squamous cell carcinoma of the head and neck. Clin Cancer Res. 2007;13:1186–91.CrossRefPubMedGoogle Scholar
  100. 100.
    Ukpo OC, Flanagan JJ, Ma XJ, et al. High-risk human papillomavirus E6/E7 mRNA detection by a novel in situ hybridization assay strongly correlates with p16 expression and patient outcomes in oropharyngeal squamous cell carcinoma. Am J Surg Pathol. 2011;35:1343–150.CrossRefPubMedGoogle Scholar
  101. 101.
    Kerr DA, Pitman MB, Sweeney B, et al. Performance of the Roche cobas 4800 high-risk human papillomavirus test in cytologic preparations of squamous cell carcinoma of the head and neck. Cancer Cytopathol. 2014;122:167–74.CrossRefPubMedGoogle Scholar
  102. 102.
    Guo M, Khanna A, Dhillon J, et al. Cervista HPV assays for fine-needle aspiration specimens are a valid option for human papillomavirus testing in patients with oropharyngeal carcinoma. Cancer Cytopathol. 2014;122:96–103.CrossRefPubMedGoogle Scholar
  103. 103.
    Bishop JA, Maleki Z, Valsamakis A, et al. Application of the hybrid capture II assay to squamous cell carcinomas of the head and neck: a convenient liquid-phase approach for the reliable determination of human papillomavirus status. Cancer Cytopathol. 2012;120:18–25.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Marc P. Pusztaszeri
    • 1
  • Joaquín J. García
    • 2
  • William C. Faquin
    • 3
    • 4
  1. 1.Department of PathologyMcGill UniversityMontrealCanada
  2. 2.Department of Laboratory Medicine and PathologyMayo ClinicRochesterUSA
  3. 3.Department of PathologyMassachusetts General HospitalBostonUSA
  4. 4.Harvard Medical SchoolBostonUSA

Personalised recommendations