Advertisement

Molecular Tests Use in Cytological Material (Analytical Phase)

  • Zsofia Balogh
  • Philippe Vielh
Chapter

Abstract

In the era of precision medicine, the (cyto)pathologist has a pivotal role in the management of cancer patients. Molecular techniques and genomic applications are rapidly penetrating the daily practice as the list of actionable genetic alterations in solid and hematologic malignancies continues to expand, and pathologists are in charge of selecting appropriate areas for performing these techniques. This chapter provides a comprehensive resource of genomic applications and encompasses a review of the scientific principles underlying current and emerging technologies from real-time polymerase chain reaction, fluorescent or chromogenic in situ hybridization, and classical DNA and RNA sequencing methods to high-throughput next-generation sequencing approaches and other molecular techniques, such as comparative genomic hybridization, single-nucleotide polymorphism arrays, and NanoString method. In this fast-evolving field, the (cyto)pathologist’s central involvement is essential for the proper implementation of molecular tools, and they should know the basic principles, main applications, and pitfalls of molecular methods in order to use them appropriately.

Keywords

Genome instability Drug resistance Precision medicine Cancer evolution Intra-tumor heterogeneity In situ single-cell analysis Quantitative real-time polymerase chain reaction Fluorescent in situ hybridization Chromogenic in situ hybridization Next-generation sequencing Comparative genome hybridization Single-nucleotide polymorphism NanoString Emulsion PCR Droplet digital PCR 

References

  1. 1.
    Schmitt FC, Vielh P. Molecular biology and cytopathology. Principles and applications. Ann Pathol. 2012;32(6):e57–63.CrossRefPubMedGoogle Scholar
  2. 2.
    Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611–22.CrossRefPubMedGoogle Scholar
  3. 3.
    Greenbaum D, Colangelo C, Williams K, Gerstein M. Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol. 2003;4(9):117.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Chevillard S, Ugolin N, Vielh P, Ory K, Levalois C, Elliott D, Clayman GL, El-Naggar AK. Gene expression profiling of differentiated thyroid neoplasms: diagnostic and clinical implications. Clin Cancer Res. 2004;10(19):6586–97.CrossRefPubMedGoogle Scholar
  5. 5.
    Chevillard S, Lebeau J, Pouillart P, de Toma C, Beldjord C, Asselain B, Klijanienko J, Fourquet A, Magdelénat H, Vielh P. Biological and clinical significance of concurrent p53 gene alterations, MDR1 gene expression, and S-phase fraction analyses in breast cancer patients treated with primary chemotherapy or radiotherapy. Clin Cancer Res. 1997;3(12):2471–8.PubMedGoogle Scholar
  6. 6.
    Rodriguez C, Suciu V, Poterie A, Lacroix L, Miran I, Boichard A, Delaloge S, Deneuve J, Azoulay S, Mathieu MC, Valent A, Michiels S, Arnedos M, Vielh P. Concordance between HER-2 status determined by qPCR in fine needle aspiration cytology (FNAC) samples compared with IHC and FISH in core needle biopsy (CNB) or surgical specimens in breast cancer patients. Mol Oncol. 2016;10(9):1430–6.  https://doi.org/10.1016/j.molonc.2016.07.009.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Uzan C, Andre F, Scott V, Laurent I, Azria E, Suciu V, Balleyguier C, Lacroix L, Delaloge S, Vielh P. Fine-needle aspiration for nucleic acid-based molecular analyses in breast cancer. Cancer. 2009;117(1):32–9.PubMedGoogle Scholar
  8. 8.
    Ferlicot S, Coué O, Gilbert E, Beuzeboc P, Servois V, Klijanienko J, Delattre O, Vielh P. Intraabdominal desmoplastic small round cell tumor: report of a case with fine needle aspiration, cytologic diagnosis and molecular confirmation. Acta Cytol. 2001;45(4):617–21.CrossRefPubMedGoogle Scholar
  9. 9.
    Voit C, Schoengen A, Schwürzer M, Weber L, Mayer T, Proebstle TM. Detection of regional melanoma metastases by ultrasound B-scan, cytology or tyrosinase RT-PCR of fine-needle aspirates. Br J Cancer. 1999;80(10):1672–7.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Marzioni M, Germani U, Agostinelli L, Bedogni G, Saccomanno S, Marini F, Bellentani S, Barbera C, De Minicis S, Rychlicki C, Santinelli A, Ferretti M, Di Maira PV, Baroni GS, Benedetti A, Caletti G, Lorenzini I, Fusaroli P. PDX-1 mRNA expression in endoscopic ultrasound-guided fine needle cytoaspirate: perspectives in the diagnosis of pancreatic cancer. Dig Liver Dis. 2015;47(2):138–43.CrossRefPubMedGoogle Scholar
  11. 11.
    Peter M, Michon J, Vielh P, Neuenschwander S, Nakamura Y, Sonsino E, Zucker JM, Vergnaud G, Thomas G, Delattre O. PCR assay for chromosome 1p deletion in small neuroblastoma samples. Int J Cancer. 1992;52(4):544–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–excel-based tool using pair-wise correlations. Biotechnol Lett. 2004;26(6):509–15.CrossRefGoogle Scholar
  13. 13.
    Carr AC, Moore SD. Robust quantification of polymerase chain reactions using global fitting. PLoS One. 2012;7(5):e37640.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Dhanasekaran S, Doherty TM, Kenneth J, TB Trials Study Group. Comparison of different standards for real-time PCR-based absolute quantification. J Immunol Methods. 2010;354(1–2):34–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Schefe JH, Lehmann KE, Buschmann IR, Unger T, Funke-Kaiser H. Quantitative real-time RT-PCR data analysis: current concepts and the novel “gene expression’s CT difference” formula. J Mol Med. 2006;84(11):901–10.CrossRefPubMedGoogle Scholar
  16. 16.
    Kozera B, Rapacz M. Reference genes in real-time PCR. J Appl Genet. 2013;54(4):391–406.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Halling KC, Kipp BR. Fluorescence in situ hybridization in diagnostic cytology. Hum Pathol. 2007;38(8):1137–44.CrossRefPubMedGoogle Scholar
  18. 18.
    Bauman JG, Wiegant J, Bors P, van Duijn P. A new method for fluorescence microscopical localization of specific DNA sequences by in situ hybridization of fluorochromelabelled RNA. Exp Cell Res. 1980;128(2):485–90.CrossRefPubMedGoogle Scholar
  19. 19.
    Klijanienko J, Couturier J, Galut M, El-Naggar AK, Maciorowski Z, Padoy E, Mosseri V, Vielh P. Detection and quantitation by fluorescence in situ hybridization (FISH) and image analysis of HER-2/neu gene amplification in breast cancer fine-needle samples. Cancer. 1999;87(5):312–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Layfield LJ, Ehya H, Filie AC, Hruban RH, Jhala N, Joseph L, Vielh P, Pitman MB, Papanicolaou Society of Cytopathology. Utilization of ancillary studies in the cytologic diagnosis of biliary and pancreatic lesions: the Papanicolaou society of cytopathology guidelines for pancreatobiliary cytology. Diagn Cytopathol. 2014;42(4):351–62.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Savic S, Bubendorf L. Common fluorescence in situ hybridization applications in cytology. Arch Pathol Lab Med. 2016;140(12):1323–30.  https://doi.org/10.5858/arpa.2016-0202-RA.CrossRefPubMedGoogle Scholar
  22. 22.
    Young R, Pailler E, Billiot F, Drusch F, Barthelemy A, Oulhen M, Besse B, Soria JC, Farace F, Vielh P. Circulating tumor cells in lung cancer. Acta Cytol. 2012;56(6):655–60.CrossRefPubMedGoogle Scholar
  23. 23.
    Truong K, Guilly MN, Gerbault-Seureau M, Malfoy B, Vielh P, Bourgeois CA, Dutrillaux B. Quantitative FISH by image cytometry for the detection of chromosome 1 imbalances in breast cancer: a novel approach analyzing chromosome rearrangements within interphase nuclei. Lab Investig. 1998;78(12):1607–13.PubMedGoogle Scholar
  24. 24.
    Kieleczawa J, Mazaika E. Optimization of protocol for sequencing of difficult templates. J Biomol Tech. 2010;21(2):97–102.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Maher CA, Kumar-Sinha C, Cao X, Kalyana-Sundaram S, Han B, Jing X, Sam L, Barrette T, Palanisamy N, Chinnaiyan AM. Transcriptome sequencing to detect gene fusions in cancer. Nature. 2009;458(7234):97–101.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ingolia NT, Brar GA, Rouskin S, McGeachy AM, Weissman JS. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protoc. 2012;7(8):1534–50.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Liu D, Graber JH. Quantitative comparison of EST libraries requires compensation for systematic biases in cDNA generation. BMC Bioinformatics. 2006;7:77.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Teixeira MR. Recurrent fusion oncogenes in carcinomas. Crit Rev Oncog. 2006;12(3–4):257–71.CrossRefPubMedGoogle Scholar
  29. 29.
    de Magalhães JP, Finch CE, Janssens G. Next-generation sequencing in aging research: emerging applications, problems, pitfalls and possible solutions. Ageing Res Rev. 2010;9(3):315–23.CrossRefPubMedGoogle Scholar
  30. 30.
    Farazi TA, Spitzer JI, Morozov P, Tuschl T. miRNAs in human cancer. J Pathol. 2011;223(2):102–15.CrossRefPubMedGoogle Scholar
  31. 31.
    Sandhu S, Garzon R. Potential applications of microRNAs in cancer diagnosis, prognosis, and treatment. Semin Oncol. 2011;38(6):781–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Beca F, Schmitt F. MicroRNA signatures in cytopathology: are they ready for prime time? Cancer Cytopathol. 2016;124(9):613–5.CrossRefPubMedGoogle Scholar
  33. 33.
    Vigliar E, Malapelle U, de Luca C, Bellevicine C, Troncone G. Challenges and opportunities of next-generation sequencing: a cytopathologist’s perspective. Cytopathology. 2015;26(5):271–83.CrossRefPubMedGoogle Scholar
  34. 34.
    Shao K, Ding W, Wang F, Li H, Ma D, Wang H. Emulsion PCR: a high efficient way of PCR amplification of random DNA libraries in aptamer selection. PLoS One. 2011;6(9):e24910.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Williams R, Peisajovich SG, Miller OJ, Magdassi S, Tawfik DS, Griffiths AD. Amplification of complex gene libraries by emulsion PCR. Nat Methods. 2006;3(7):545–50.CrossRefPubMedGoogle Scholar
  36. 36.
    Bentley DR, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008;456(7218):53–9.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Churko JM, Mantalas GL, Snyder MP, Wu JC. Overview of high throughput sequencing technologies to elucidate molecular pathways in cardiovascular diseases. Circ Res. 2013;112(12):1613–23.CrossRefPubMedGoogle Scholar
  38. 38.
    Huang YF, Chen SC, Chiang YS, Chen TH, Chiu KP. Palindromic sequence impedes sequencing-by-ligation mechanism. BMC Syst Biol. 2012;6(Suppl 2):S10.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Rusk N. Torrents of sequence. Nat Methods. 2011;8(1):44.Google Scholar
  40. 40.
    Gleeson FC, Kerr SE, Kipp BR, Voss JS, Minot DM, Tu ZJ, Henry MR, Graham RP, Vasmatzis G, Cheville JC, Lazaridis KN, Levy MJ. Targeted next generation sequencing of endoscopic ultrasound acquired cytology from ampullary and pancreatic adenocarcinoma has the potential to aid patient stratification for optimal therapy selection. Oncotarget. 2016;7(34):54526–36.  https://doi.org/10.18632/oncotarget.9440.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Nishino M. Molecular cytopathology for thyroid nodules: a review of methodology and test performance. Cancer Cytopathol. 2016;124(1):14–27.CrossRefPubMedGoogle Scholar
  42. 42.
    Roy-Chowdhuri S, Chow CW, Kane MK, Yao H, Wistuba II, Krishnamurthy S, Stewart J, Staerkel G. Optimizing the DNA yield for molecular analysis from cytologic preparations. Cancer Cytopathol. 2016;124(4):254–60.CrossRefPubMedGoogle Scholar
  43. 43.
    Piqueret-Stephan L, Marcaillou C, Reyes C, Honoré A, Letexier M, Gentien D, Droin N, Lacroix L, Scoazec JY, Vielh P. Massively parallel DNA sequencing from routinely processed cytological smears. Cancer Cytopathol. 2016;124(4):241–53.CrossRefPubMedGoogle Scholar
  44. 44.
    Beca F, Schmitt F. Growing indication for FNA to study and analyze tumor heterogeneity at metastatic sites. Cancer Cytopathol. 2014;122(7):504–11.CrossRefPubMedGoogle Scholar
  45. 45.
    Ashley EA. Towards precision medicine. Nat Rev Genet. 2016;17(9):507–22.CrossRefPubMedGoogle Scholar
  46. 46.
    Layfield LJ, Roy-Chowdhuri S, Baloch Z, Ehya H, Geisinger K, Hsiao SJ, Lin O, Lindeman NI, Roh M, Schmitt F, Sidiropoulos N, VanderLaan PA. Utilization of ancillary studies in the cytologic diagnosis of respiratory lesions: the papanicolaou society of cytopathology consensus recommendations for respiratory cytology. Diagn Cytopathol. 2016;44(12):1000–9.  https://doi.org/10.1002/dc.23549.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Macintyre G, Ylstra B, Brenton JD. Sequencing structural variants in cancer for precision therapeutics. Trends Genet. 2016;32(9):530–42.CrossRefPubMedGoogle Scholar
  48. 48.
    Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, Pinkel D. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 1992;258(5083):818–21.CrossRefPubMedGoogle Scholar
  49. 49.
    Weiss MM, Hermsen MA, Meijer GA, van Grieken NC, Baak JP, Kuipers EJ, van Diest PJ. Comparative genomic hybridization. Mol Pathol. 1999;52(5):243–51.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    de Ravel TJ, Devriendt K, Fryns JP, Vermeesch JR. What’s new in karyotyping? The move towards array comparative genomic hybridisation (CGH). Eur J Pediatr. 2007;166(7):637–43.CrossRefPubMedGoogle Scholar
  51. 51.
    Wiszniewska J, Bi W, Shaw C, Stankiewicz P, Kang SH, Pursley AN, Lalani S, Hixson P, Gambin T, Tsai CH, Bock HG, Descartes M, Probst FJ, Scaglia F, Beaudet AL, Lupski JR, Eng C, Cheung SW, Bacino C, Patel A. Combined array CGH plus SNP genome analyses in a single assay for optimized clinical testing. Eur J Hum Genet. 2014;22(1):79–87.CrossRefPubMedGoogle Scholar
  52. 52.
    Kulkarni MM. Digital multiplexed gene expression analysis using the NanoString nCounter system. Curr Protoc Mol Biol. 2011;25:25B.10.Google Scholar
  53. 53.
    Clark DP. Seize the opportunity. Underutilization of fine-needle aspiration biopsy to informed targeted cancer therapy. Cancer. 2009;117(5):289–97.PubMedGoogle Scholar
  54. 54.
    Gonzalez-Angulo AM, Hennessy BTJ, Mills GB. Future of personalized medicine in oncology: a systems biology approach. J Clin Oncol. 2010;28(16):2777–83.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Haspel RL, Arnaout R, Briere L, Kantarci S, Marchand K, Tonellato P, Connolly J, Boguski MS, Saffitz JE. A call to action: training pathology residents in genomics and personalized medicine. Am J Clin Pathol. 2010;133(6):832–4.CrossRefPubMedGoogle Scholar
  56. 56.
    Malapelle U, de Luca C, Vigliar E, Ambrosio F, Rocco D, Pisapia P, Bellevicine C, Troncone G. EGFR mutation detection on routine cytological smears of non-small cell lung cancer by digital PCR: a validation study. J Clin Pathol. 2016;69(5):454–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Gustave RoussyVillejuifFrance
  2. 2.Laboratoire National de SantéDudelangeLuxembourg

Personalised recommendations