Advertisement

Molecular Cytology Applications in Metastases

  • Francisco Beca
  • Fernando C. Schmitt
Chapter

Abstract

Metastatic disease is the main cause of death by cancer. Metastases are frequently diagnosed using cytology specimens, either using fine-needle aspiration (FNA) or effusion specimens. Over the last couple of decades, several molecular techniques have been successfully applied to cytological specimens. In situ hybridization and sequencing can nowadays be routinely performed in cytological specimens, and the application of these techniques in the metastatic cancer setting has the potential to change the landscape of patient care with advanced cancer. Additionally, as concepts like tumor clonal evolution are being translated to clinical trials and clinical care, the role and potential applications of molecular cytology are exponentially growing. Cytology, coupled with molecular techniques, has the potential to be the main source of specimens for longitudinal tracking of tumor metastasis and therefore have a central role in upcoming biomarker evaluation. In this chapter, we will review some the contemporary challenges that metastatic disease presents and how molecular cytology can help overcoming many of these, to ultimately improve patient diagnosis and care.

Keywords

Metastasis Tumor heterogeneity Tumor evolution Clonal composition Next-generation sequencing Biomarkers 

References

  1. 1.
    American Cancer Society. Cancer facts & figures 2016. Atlanta: American Cancer Society; 2016.Google Scholar
  2. 2.
    Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49(6):1374–403.  https://doi.org/10.1016/j.ejca.2012.12.027.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Klein CA. Parallel progression of primary tumours and metastases. Nat Rev Cancer. 2009;9(4):302–12.  https://doi.org/10.1038/nrc2627.CrossRefPubMedGoogle Scholar
  4. 4.
    Collins VP, Loeffler RK, Tivey H. Observations on growth rates of human tumors. Am J Roentgenol Radium Therapy, Nucl Med. 1956;76(5):988–1000.  https://doi.org/10.1016/j.ijthermalsci.2004.09.006.CrossRefGoogle Scholar
  5. 5.
    Steel GG, Lamerton LF. The growth rate of human tumours. Br J Cancer. 1966;20(1):74–86.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Friberg S, Mattson S. On the growth rates of human malignant tumors: implications for medical decision making. J Surg Oncol. 1997;65(4):284–97.  https://doi.org/10.1002/(SICI)1096-9098(199708)65:4<284::AID-JSO11>3.0.CO;2-2[pii].CrossRefPubMedGoogle Scholar
  7. 7.
    Huyge V, Garcia C, Alexiou J, et al. Heterogeneity of metabolic response to systemic therapy in metastatic breast cancer patients. Clin Oncol. 2010;22(10):818–27.  https://doi.org/10.1016/j.clon.2010.05.021.CrossRefGoogle Scholar
  8. 8.
    Baldus SE, Schaefer KL, Engers R, Hartleb D, Stoecklein NH, Gabbert HE. Prevalence and heterogeneity of KRAS, BRAF, and PIK3CA mutations in primary colorectal adenocarcinomas and their corresponding metastases. Clin Cancer Res. 2010;16(3):790–9.  https://doi.org/10.1158/1078-0432.CCR-09-2446.CrossRefPubMedGoogle Scholar
  9. 9.
    Folprecht G, Gruenberger T, Bechstein WO, et al. Tumour response and secondary resectability of colorectal liver metastases following neoadjuvant chemotherapy with cetuximab: the CELIM randomised phase 2 trial. Lancet Oncol. 2010;11(1):38–47.  https://doi.org/10.1016/S1470-2045(09)70330-4.CrossRefPubMedGoogle Scholar
  10. 10.
    Aparicio S, Caldas C. The implications of clonal genome evolution for cancer medicine. N Engl J Med. 2013;368(9):842–51.  https://doi.org/10.1056/NEJMra1204892.CrossRefPubMedGoogle Scholar
  11. 11.
    Sequist LV, Waltman BA, Dias-Santagata D, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. 2011;3(75):75ra26.  https://doi.org/10.1126/scitranslmed.3002003.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Navin N, Krasnitz A, Rodgers L, et al. Inferring tumor progression from genomic heterogeneity. Genome Res. 2010;20(1):68–80.  https://doi.org/10.1101/gr.099622.109.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Navin N, Kendall J, Troge J, et al. Tumour evolution inferred by single-cell sequencing. Nature. 2011;472(7341):90–4.  https://doi.org/10.1038/nature09807.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Maley CC, Galipeau PC, Finley JC, et al. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat Genet. 2006;38(4):468–73.  https://doi.org/10.1038/ng1768.CrossRefPubMedGoogle Scholar
  15. 15.
    Almendro V, Cheng YK, Randles A, et al. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity. Cell Rep. 2014;6(3):514–27.  https://doi.org/10.1016/j.celrep.2013.12.041.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ciriello G, Miller ML, Aksoy BA, Senbabaoglu Y, Schultz N, Sander C. Emerging landscape of oncogenic signatures across human cancers. Nat Genet. 2013;45(10):1127–33.  https://doi.org/10.1038/ng.2762.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Schmitt FC, Longatto-Filho A, Valent A, Vielh P. Molecular techniques in cytopathology practice. J Clin Pathol. 2008;61(3):258–67.  https://doi.org/10.1136/jcp.2006.044347.CrossRefPubMedGoogle Scholar
  18. 18.
    Schmitt F, Barroca H. Role of ancillary studies in fine-needle aspiration from selected tumors. Cancer Cytopathol. 2012;120(3):145–60.  https://doi.org/10.1002/cncy.20197.CrossRefPubMedGoogle Scholar
  19. 19.
    Di Lorito A, Schmitt FC. (Cyto)pathology and sequencing: next (or last) generation? Diagn Cytopathol. 2012;40(5):459–61.  https://doi.org/10.1002/dc.21691.CrossRefPubMedGoogle Scholar
  20. 20.
    Schmitt FC, Soares R, Cirnes L, Seruca R. PCR amplification of DNA obtained from archived hematoxylin-eosin-and giemsa-stained breast cancer aspirates. Diagn Cytopathol. 1998;19(5):395–7.  https://doi.org/10.1002/(SICI)1097-0339(199811)19:5<395::AID-DC19>3.0.CO;2-4.CrossRefPubMedGoogle Scholar
  21. 21.
    Nagel H, Schulten HJ, Gunawan B, Brinck U, Füzesi L. The potential value of comparative genomic hybridization analysis in effusion-and fine needle aspiration cytology. Mod Pathol. 2002;15(8):818–25.  https://doi.org/10.1097/01.MP.0000024521.67720.0F.CrossRefPubMedGoogle Scholar
  22. 22.
    Gailey MP, Stence AA, Jensen CS, Ma D. Multiplatform comparison of molecular oncology tests performed on cytology specimens and formalin-fixed, paraffin-embedded tissue. Cancer Cytopathol. 2015;123(1):30–9.  https://doi.org/10.1002/cncy.21476.CrossRefPubMedGoogle Scholar
  23. 23.
    Kanagal-Shamanna R, Portier BP, Singh RR, et al. Next-generation sequencing-based multi-gene mutation profiling of solid tumors using fine needle aspiration samples: promises and challenges for routine clinical diagnostics. Mod Pathol. 2014;27(2):314–27.  https://doi.org/10.1038/modpathol.2013.122.CrossRefPubMedGoogle Scholar
  24. 24.
    Karnes HE, Duncavage EJ, Bernadt CT. Targeted next-generation sequencing using fine-needle aspirates from adenocarcinomas of the lung. Cancer Cytopathol. 2014;122(2):104–13.  https://doi.org/10.1002/cncy.21361.CrossRefPubMedGoogle Scholar
  25. 25.
    Shah RH, Scott SN, Brannon AR, Levine DA, Lin O, Berger MF. Comprehensive mutation profiling by next-generation sequencing of effusion fluids from patients with high-grade serous ovarian carcinoma. Cancer Cytopathol. 2015;123(5):289–97.  https://doi.org/10.1002/cncy.21522.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Zheng G, Lin M-T, Lokhandwala PM, et al. Clinical mutational profiling of bone metastases of lung and colon carcinoma and malignant melanoma using next-generation sequencing. Cancer Cytopathol. 2016;124(10):744–53.  https://doi.org/10.1002/cncy.21743.CrossRefPubMedGoogle Scholar
  27. 27.
    Piqueret-Stephan L, Marcaillou C, Reyes C, et al. Massively parallel DNA sequencing from routinely processed cytological smears. Cancer Cytopathol. 2016;124(4):241–53.  https://doi.org/10.1002/cncy.21639.CrossRefPubMedGoogle Scholar
  28. 28.
    Beca F, Schmitt F. MicroRNA signatures in cytopathology: are they ready for prime time? Cancer Cytopathol. 2016;124(9):613–5.  https://doi.org/10.1002/cncy.21728.CrossRefPubMedGoogle Scholar
  29. 29.
    Nishino M. Molecular cytopathology for thyroid nodules: a review of methodology and test performance. Cancer Cytopathol. 2015;124(1):14–27.  https://doi.org/10.1002/cncy.21612.CrossRefPubMedGoogle Scholar
  30. 30.
    Tayari M, Winkle M, Kortman G, et al. Long noncoding RNA expression profiling in normal B-cell subsets and Hodgkin lymphoma reveals hodgkin and reed-sternberg cell–specific long noncoding RNAs. Am J Pathol. 2016;186(9):2462–72.  https://doi.org/10.1016/j.ajpath.2016.05.011.CrossRefPubMedGoogle Scholar
  31. 31.
    Su X, Malouf GG, Chen Y, et al. Comprehensive analysis of long non-coding RNAs in human breast cancer clinical subtypes. Oncotarget. 2014;5(20):9864–76.  https://doi.org/10.18632/oncotarget.2454.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Pauli C, Puca L, Mosquera JM, et al. An emerging role for cytopathology in precision oncology. Cancer Cytopathol. 2015;124(3):167–73.  https://doi.org/10.1002/cncy.21647.CrossRefPubMedGoogle Scholar
  33. 33.
    DeRose YS, Wang G, Lin Y-C, et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med. 2011;17(11):1514–20.  https://doi.org/10.1038/nm.2454.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Zhao X, Liu Z, Yu L, et al. Global gene expression profiling confirms the molecular fidelity of primary tumor-based orthotopic xenograft mouse models of medulloblastoma. Neuro-Oncology. 2012;14(5):574–83.  https://doi.org/10.1093/neuonc/nos061.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Reyal F, Guyader C, Decraene C, et al. Molecular profiling of patient-derived breast cancer xenografts. Breast Cancer Res. 2012;14(1):R11.  https://doi.org/10.1186/bcr3095.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Beca F, Schmitt F. Growing indication for FNA to study and analyze tumor heterogeneity at metastatic sites. Cancer Cytopathol. 2014;122(7):504–11.CrossRefPubMedGoogle Scholar
  37. 37.
    Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.  https://doi.org/10.1038/nature11412.CrossRefGoogle Scholar
  38. 38.
    Amir E, Miller N, Geddie W, et al. Prospective study evaluating the impact of tissue confirmation of metastatic disease in patients with breast cancer. J Clin Oncol. 2012;30(6):587–92.  https://doi.org/10.1200/JCO.2010.33.5232.CrossRefPubMedGoogle Scholar
  39. 39.
    Wilking U, Karlsson E, Skoog L, et al. HER2 status in a population-derived breast cancer cohort: discordances during tumor progression. Breast Cancer Res Treat. 2011;125(2):553–61.  https://doi.org/10.1007/s10549-010-1029-2.CrossRefPubMedGoogle Scholar
  40. 40.
    Simmons C, Miller N, Geddie W, et al. Does confirmatory tumor biopsy alter the management of breast cancer patients with distant metastases? Ann Oncol. 2009;20(9):1499–504.  https://doi.org/10.1093/annonc/mdp028.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Martins D, Beca F, Schmitt F. Metastatic breast cancer: mechanisms and opportunities for cytology. Cytopathology. 2014;25(4):225–30.  https://doi.org/10.1111/cyt.12158.CrossRefPubMedGoogle Scholar
  42. 42.
    Beca F, Polyak K. Intratumor heterogeneity in breast cancer. In: Stearns V, editor. Novel biomarkers in the continuum of breast cancer. Cham: Springer; 2016. p. 169–89.  https://doi.org/10.1007/978-3-319-22909-6_7.CrossRefGoogle Scholar
  43. 43.
    Zhou M, Yu P, Hou K, et al. Effect of RAS status on anti-EGFR monoclonal antibodies+5-FU infusion-based chemotherapy in first-line treatment of metastatic colorectal cancer: a meta-analysis. Meta Gene. 2016;9:110–9.  https://doi.org/10.1016/j.mgene.2016.05.001.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Tabernero J, Van Cutsem E, Diaz-Rubio E, et al. Phase II trial of cetuximab in combination with fluorouracil, leucovorin, and oxaliplatin in the first-line treatment of metastatic colorectal cancer. J Clin Oncol. 2007;25(33):5225–32.  https://doi.org/10.1200/JCO.2007.13.2183.CrossRefPubMedGoogle Scholar
  45. 45.
    André T, Blons H, Mabro M, et al. Panitumumab combined with irinotecan for patients with KRAS wild-type metastatic colorectal cancer refractory to standard chemotherapy: a GERCOR efficacy, tolerance, and translational molecular study. Ann Oncol. 2013;24(2):412–9.  https://doi.org/10.1093/annonc/mds465.CrossRefPubMedGoogle Scholar
  46. 46.
    Lièvre A, Bachet J-B, Boige V, et al. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol. 2008;26(3):374–9.  https://doi.org/10.1200/JCO.2007.12.5906.CrossRefPubMedGoogle Scholar
  47. 47.
    Lièvre A, Bachet JB, Le Corre D, et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 2006;66(8):3992–5.  https://doi.org/10.1158/0008-5472.CAN-06-0191.CrossRefPubMedGoogle Scholar
  48. 48.
    Oliveira C, Velho S, Moutinho C, et al. KRAS and BRAF oncogenic mutations in MSS colorectal carcinoma progression. Oncogene. 2007;26(1):158–63.  https://doi.org/10.1038/sj.onc.1209758.CrossRefPubMedGoogle Scholar
  49. 49.
    Stoffel EM, Erichsen R, Frøslev T, et al. Clinical and molecular characteristics of post-colonoscopy colorectal cancer: a population-based study. Gastroenterology. 2016;151(5):870–878.e3.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Pang NKB, Nga ME, Chin SY, et al. KRAS and BRAF mutation analysis can be reliably performed on aspirated cytological specimens of metastatic colorectal carcinoma. Cytopathology. 2011;22(6):358–64.  https://doi.org/10.1111/j.1365-2303.2010.00812.x.CrossRefPubMedGoogle Scholar
  51. 51.
    Cai G, Wong R, Chhieng D, et al. Identification of EGFR mutation, KRAS mutation, and ALK gene rearrangement in cytological specimens of primary and metastatic lung adenocarcinoma. Cancer Cytopathol. 2013;121(9):500–7.  https://doi.org/10.1002/cncy.21288.CrossRefPubMedGoogle Scholar
  52. 52.
    Pelliccioni S, Lupi C, Sensi E. Anaplastic lymphoma kinase gene rearrangements in cytological samples of non-small cell lung cancer comparison with histological assessment. Cancer Cytopathol. 2014;122:445–53.  https://doi.org/10.1002/cncy.21418.CrossRefPubMedGoogle Scholar
  53. 53.
    Smouse JH, Cibas ES, Jänne PA, Joshi VA, Zou KH, Lindeman NI. EGFR mutations are detected comparably in cytologic and surgical pathology specimens of nonsmall cell lung cancer. Cancer Cytopathol. 2009;117(1):67–72.  https://doi.org/10.1002/cncy.20011.CrossRefGoogle Scholar
  54. 54.
    Khode R, Larsen DA, Culbreath BC, et al. Comparative study of epidermal growth factor receptor mutation analysis on cytology smears and surgical pathology specimens from primary and metastatic lung carcinomas. Cancer Cytopathol. 2013;121(7):361–9.  https://doi.org/10.1002/cncy.21273.CrossRefPubMedGoogle Scholar
  55. 55.
    Billah S, Stewart J, Staerkel G, Chen S, Gong Y, Guo M. EGFR and KRAS mutations in lung carcinoma: molecular testing by using cytology specimens. Cancer Cytopathol. 2011;119(2):111–7.  https://doi.org/10.1002/cncy.20151.CrossRefPubMedGoogle Scholar
  56. 56.
    Ulivi P, Romagnoli M, Chiadini E, et al. Assessment of EGFR and K-ras mutations in fixed and fresh specimens from transesophageal ultrasound-guided fine needle aspiration in non-small cell lung cancer patients. Int J Oncol. 2012;41(1):147–52.  https://doi.org/10.3892/ijo.2012.1432.CrossRefPubMedGoogle Scholar
  57. 57.
    Treece AL, Montgomery ND, Patel NM, et al. FNA smears as a potential source of DNA for targeted next-generation sequencing of lung adenocarcinomas. Cancer Cytopathol. 2016;124(6):406–14.  https://doi.org/10.1002/cncy.21699.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Centeno BA, Enkemann SA, Coppola D, Huntsman S, Bloom G, Yeatman TJ. Classification of human tumors using gene expression profiles obtained after microarray analysis of fine-needle aspiration biopsy samples. Cancer. 2005;105(2):101–9.  https://doi.org/10.1002/cncr.20737.CrossRefPubMedGoogle Scholar
  59. 59.
    Wei S, Lieberman D, Morrissette JJD, Baloch ZW, Roth DB, McGrath C. Using “residual” FNA rinse and body fluid specimens for next-generation sequencing: an institutional experience. Cancer Cytopathol. 2016;124(5):324–9.  https://doi.org/10.1002/cncy.21666.CrossRefPubMedGoogle Scholar
  60. 60.
    Jayson GC, Kohn EC, Kitchener HC, Ledermann JA. Ovarian cancer. Lancet. 2014;384(9951):1376–88.  https://doi.org/10.1016/S0140-6736(13)62146-7.CrossRefPubMedGoogle Scholar
  61. 61.
    Marchetti C, Palaia I, De Felice F, et al. Tyrosine-kinases inhibitors in recurrent platinum-resistant ovarian cancer patients. Cancer Treat Rev. 2016;42:41–6.  https://doi.org/10.1016/j.ctrv.2015.10.011.CrossRefPubMedGoogle Scholar
  62. 62.
    Jang S, Atkins MB. Which drug, and when, for patients with BRAF-mutant melanoma? Lancet Oncol. 2013;14(2):e60–9.  https://doi.org/10.1016/S1470-2045(12)70539-9.CrossRefPubMedGoogle Scholar
  63. 63.
    Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.  https://doi.org/10.1038/nature00766.CrossRefPubMedGoogle Scholar
  64. 64.
    Grob JJ, Amonkar MM, Karaszewska B, et al. Comparison of dabrafenib and trametinib combination therapy with vemurafenib monotherapy on health-related quality of life in patients with unresectable or metastatic cutaneous BRAF Val600-mutation-positive melanoma (COMBI-v): results of a phase 3, open-l. Lancet Oncol. 2015;16(13):1389–98.  https://doi.org/10.1016/S1470-2045(15)00087-X.CrossRefPubMedGoogle Scholar
  65. 65.
    Mandala M, Merelli B, Massi D. Nras in melanoma: targeting the undruggable target. Crit Rev Oncol Hematol. 2014;92(2):107–22.  https://doi.org/10.1016/j.critrevonc.2014.05.005.CrossRefPubMedGoogle Scholar
  66. 66.
    Murali R, Thompson JF, Uren RF, Scolyer RA. Fine-needle biopsy of metastatic melanoma: clinical use and new applications. Lancet Oncol. 2010;11(4):391–400.  https://doi.org/10.1016/S1470-2045(09)70332-8.CrossRefPubMedGoogle Scholar
  67. 67.
    Hookim K, Roh MH, Willman J, et al. Application of immunocytochemistry and BRAF mutational analysis to direct smears of metastatic melanoma. Cancer Cytopathol. 2012;120(1):52–61.  https://doi.org/10.1002/cncy.20180.CrossRefPubMedGoogle Scholar
  68. 68.
    Bernacki KD, Betz BL, Weigelin HC, et al. Molecular diagnostics of melanoma fine-needle aspirates: a cytology-histology correlation study. Am J Clin Pathol. 2012;138(5):670–7.  https://doi.org/10.1309/AJCPEQJW3PLOOZTC.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PathologyStanford University School of MedicineStanfordUSA
  2. 2.Department of PathologyMedical Faculty of Porto UniversityPortoPortugal
  3. 3.I3S, Instituto de Investigação e Inovação em Saúde, Universidade do PortoPortoPortugal
  4. 4.IPATIMUP, Institute of Molecular Pathology and Immunology of Porto UniversityPortoPortugal

Personalised recommendations