Advertisement

Formation of Electric Biosignals

  • Eugenijus KaniusasEmail author
Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

Electric biosignals are subjected to highly instructive propagation within and outside of biological tissues. The transmission of electric, magnetic, and electromagnetic fields is governed by lossless and lossy media, conductive and dielectric media, as well as dispersive and non-dispersive media. Relaxation and dispersion effects as well as boundary conditions within heterogeneous media co-determine this insightful transmission. Electric biosignals within tissue yield physiological effects such as neuromuscular and thermal stimulation, depending on stimulus and tissue properties. Exposure limits assess potentially adverse health effects.

References

  1. J.E. Anderson, The Debye-Falkenhagen effect: experimental fact or fiction? J. Non-Cryst. Solids 172–174, 1190–1194 (1994)ADSCrossRefGoogle Scholar
  2. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, London, 1989)Google Scholar
  3. P. Berg, M. Scherg, Dipole models of eye movements and blinks. Electroencephalogr. Clin. Neurophysiol. 79(1), 36–44 (1991)CrossRefGoogle Scholar
  4. J. Bisquert, V. Halpern, F. Henn, Simple model for ac ionic conduction in solids. J. Chem. Phys. 122, 151101 (2005)ADSCrossRefGoogle Scholar
  5. D. Boinagrov, S. Pangratz-Fuehrer, B. Suh, K. Mathieson, N. Naik, D. Palanker, Upper threshold of extracellular neural stimulation. J. Neurophysiol. 108(12), 3233–3238 (2012)CrossRefGoogle Scholar
  6. A. Bulling, F. Castrop, J.D. Agneskirchner, W.A. Ovtscharoff, L.J. Wurzinger, M. Gratzl, Body Explorer. An Interactive Program on the Cross-Sectional Anatomy of the Visible Human Male (Springer, Berlin, 1997)Google Scholar
  7. S.F. Cogan, D.J. Garrett, R.A. Green, Electrochemical principles of safe charge injection, in Neurobionics: The Biomedical Engineering of Neural Prostheses, ed. by R.K. Shepherd (Wiley, London, 2016), pp. 55–88CrossRefGoogle Scholar
  8. Commission on Radiological Protection, Protection against low-frequency electric and magnetic fields in energy supply and use, in Recommendation of the commission on Radiological Protection of the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (in Germany), vol 7 (1997)Google Scholar
  9. Council recommendation of 12 July 1999 on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz). Off. J. Eur. Commun. L199/59–L199/70 (1999)Google Scholar
  10. T. De Marco, F. Ries, M. Guermandi, R. Guerrieri, EIT forward problem parallel simulation environment with anisotropic tissue and realistic electrode models. IEEE Trans. Biomed. Eng. 59(5), 1229–1239 (2012)CrossRefGoogle Scholar
  11. L.Y. Di Marco, C. Di Maria, W.C. Tong, M.J. Taggart, S.C. Robson, P. Langley, Recurring patterns in stationary intervals of abdominal uterine electromyograms during gestation. Med. Biol. Eng. Comput. 52, 707–716 (2014)CrossRefGoogle Scholar
  12. J.B. Fallon, P.M. Carter, Principles of recording from and electrical stimulation of neural tissue, in Neurobionics: The Biomedical Engineering of Neural Prostheses, ed. by R.K. Shepherd (Wiley, London, 2016), pp. 89–120CrossRefGoogle Scholar
  13. Z.P. Fang, J.T. Mortimer, A method for attaining natural recruitment order in artificially activated muscles, in Proceedings of 9th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (1987), pp. 657–658Google Scholar
  14. J.A. Ferraro, J.D. Durrant, Electrocochleography in the evaluation of patients with Meniere’s disease/endolymphatic hydrops. J. Am. Acad. Audiol. 17(1), 45–68 (2006)CrossRefGoogle Scholar
  15. K.R. Foster, Dielectric properties of tissues, in The Biomedical Engineering Handbook, ed. by J.D. Bronzino (1995), pp. 1385–1394 (1995)Google Scholar
  16. K.R. Foster, H.P. Schwan, Dielectric properties of tissues, in Handbook of Biological Effects of Electromagnetic Fields, ed. by C. Polk, E. Postow (CRC Press, Boca Raton, 1996), pp. 25–102Google Scholar
  17. C. Furse, D.A. Christensen, C.H. Durney, Basic Introduction to Bioelectromagnetics (CRC Press, Boca Raton, 2009)CrossRefGoogle Scholar
  18. C. Gabriel, S. Gabriel, E. Corthout, The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 41(11), 2231–2249 (1996a)ADSCrossRefGoogle Scholar
  19. S. Gabriel, R.W. Lau, C. Gabriel, The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 41(11), 2251–2269 (1996b)ADSCrossRefGoogle Scholar
  20. S. Gabriel, R.W. Lau, C. Gabriel, The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 41(11), 2271–2293 (1996c)ADSCrossRefGoogle Scholar
  21. P.O. Gaggero, A. Adler, J. Brunner, P. Seitz, Electrical impedance tomography system based on active electrodes. Physiol. Meas. 33(5), 831–847 (2012)CrossRefGoogle Scholar
  22. J. Gracia, V.P. Seppa, J. Viik, J. Hyttinen, Multilead measurement system for the time-domain analysis of bioimpedance magnitude. IEEE Trans. Biomed. Eng. 59(8), 2273–2280 (2012)CrossRefGoogle Scholar
  23. S. Grimnes, O.G. Martinsen, Bioimpedance and Bioelectricity Basics (Elsevier, Amsterdam, 2008)CrossRefGoogle Scholar
  24. V. Häkkinen, K. Hirvonen, J. Hasan, M. Kataja, A. Värri, P. Loula, H. Eskola, The effect of small differences in electrode position on EOG signals: application to vigilance studies. Electroencephalogr. Clin. Neurophysiol. 86(4), 294–300 (1993)CrossRefGoogle Scholar
  25. C.H. Hamann, W. Vielstich, Electrochemistry (in German: Elektrochemie) (Wiley-VCH Publisher, London, 1998)Google Scholar
  26. Q. Han, M.D. Buschmann, P. Savard, The forward problem of electroarthrography: modeling load-induced electrical potentials at the surface of the knee. IEEE Trans. Biomed. Eng. 61(7), 2020–2027 (2014)CrossRefGoogle Scholar
  27. C.J. Harland, R.J. Prance, H. Prance, Remote monitoring of biodynamic activity using electric potential sensors. J. Phys Conf. Ser. 142(1), 1–4 (2008)Google Scholar
  28. B. He, T. Coleman, G.M. Genin, G. Glover, X. Hu, N. Johnson, T. Liu, S. Makeig, P. Sajda, K. Ye, Grand challenges in mapping the human brain: NSF workshop report. IEEE Trans. Biomed. Eng. 60(11), 2983–2992 (2013)CrossRefGoogle Scholar
  29. H. Heinrich, F. Börner, Electromagnetic fields at work: safety of employees with active and passive medical implants under exposure to electromagnetic fields (in German: Elektromagnetische Felder am Arbeitsplatz: Sicherheit von Beschäftigten mit aktiven und passive Körperhilfsmitteln bei Exposition gegenüber elektromagnetischen Feldern). Research report 451 of Federal Ministry of Labour and Social Affairs (2015)Google Scholar
  30. R. Hirtl, Unpublished Numerical Data (Electromagnetic Compatibility Lab, Seibersdorf Laboratories, Austria, 2014)Google Scholar
  31. K.H. Hong, Y.G. Lim, K.S. Park, Effectiveness of thigh-to-thigh current path for the measurement of abdominal fat in bioelectrical impedance analysis. Med. Biol. Eng. Compu. 47(12), 1265–1271 (2009)CrossRefGoogle Scholar
  32. Institute of Applied Physics, Italian National Research Council, niremf.ifac.cnr.it/tissprop (2013)Google Scholar
  33. International Commission on Non-Ionizing Radiation Protection, ICNIRP guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz). Health Phys. 74(4), 494–522 (1998)Google Scholar
  34. International Commission on Non-Ionizing Radiation Protection, ICNIRP statement on medical magnetic resonance. Health Phys. 87(2), 197–216 (2004)CrossRefGoogle Scholar
  35. International Commission on Non-Ionizing Radiation Protection, ICNIRP guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz–100 kHz). Health Phys. 99(6), 818–836 (2010)Google Scholar
  36. International Labour Organisation, Protection of workers from power frequency electric and magnetic fields. Occup. Safety Health Series 69 (1994)Google Scholar
  37. L. Joseph, R.J. Butera, High frequency stimulation selectively blocks different types of fibers in frog sciatic nerve. IEEE Trans. Neural Syst. Rehabil. Eng. 19(5), 550–557 (2011)CrossRefGoogle Scholar
  38. E.R. Kandel, J.H. Schwartz, T.M. Jessell, Principles of Neural Science (McGraw-Hill, New York, 2000)Google Scholar
  39. E. Kaniusas, Biomedical Signals and Sensors I: Linking Physiological Phenomena and Biosignals (Springer, Berlin, 2012)Google Scholar
  40. E. Kaniusas, Nonlinear behaviour of vital physiological systems, in International Conference on Theory and Application in Nonlinear Dynamics (ICAND 2012), ed. by V. In, A. Palacios, P. Longhini (Springer, Berlin, 2014), pp. 113–121Google Scholar
  41. E. Kaniusas, Biomedical Signals and Sensors II: Linking Acoustic and Optic Biosignals and Biomedical Sensors (Springer, Berlin, 2015)Google Scholar
  42. S. Kampusch, Unpublished Numerical Data (Biomedical Sensing Lab, Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Austria, 2017)Google Scholar
  43. C. Kumaragamage, B. Lithgow, Z. Moussavi, A new low-noise signal acquisition protocol and electrode placement for electrocochleography (ECOG) recordings. Med. Biol. Eng. Compu. 53, 499–509 (2015)CrossRefGoogle Scholar
  44. L. Larsson, M. Nyström, M. Stridh, Detection of saccades and postsaccadic oscillations in the presence of smooth pursuit. IEEE Trans. Biomed. Eng. 60(9), 2484–2493 (2013)CrossRefGoogle Scholar
  45. K.H. Lee, P.S. Duffy, A.J. Bieber, Deep Brain Stimulation: Indications and Applications (CRC Press, Boca Raton, 2016)Google Scholar
  46. N. Leitgeb: Safety of Electromedical Devices (Springer Publisher, 2010)Google Scholar
  47. S. Leonhardt, B. Lachmann, Electrical impedance tomography: the holy grail of ventilation and perfusion monitoring? Intensive Care Med. 38(12), 1917–1929 (2012)CrossRefGoogle Scholar
  48. J. Malmivuo, R. Plonsey, Bioelectromagnetism, Principles and Applications of Bioelectric and Biomagnetic Fields (Oxford University Press, Oxford, 1995)CrossRefGoogle Scholar
  49. W. Mayer, in Private communication (2017)Google Scholar
  50. D. McCreery, Preclinical testing of neural prosthesis, in Neurobionics: The Biomedical Engineering of Neural Prostheses, ed. by R.K. Shepherd (Wiley, London, 2016), pp. 89–120 (2016)CrossRefGoogle Scholar
  51. V. Mishra, H. Bouayad, A. Schned, A. Hartov, J. Heaney, R.J. Halter, A real-time electrical impedance sensing biopsy needle. IEEE Trans. Biomed. Eng. 59(12), 3327–3336 (2012)CrossRefGoogle Scholar
  52. D. Miklavcic, N. Pavselj, F.X. Hart, Electric properties of tissues. Wiley Encycl. Biomed. Eng. 1–12 (2006)Google Scholar
  53. R. Mukkamala, J.O. Hahn, O.T. Inan, L.K. Mestha, C.S. Kim, H. Toreyin, S. Kyal, Toward ubiquitous blood pressure monitoring via pulse transit time: theory and practice. IEEE Trans. Biomed. Eng. 62(8), 1879–1901 (2015)CrossRefGoogle Scholar
  54. H. Nakesch, H. Pfützner, C. Ruhsam, P. Nopp, K. Futschik, Five-electrode field plethysmography technique for separation of respiration and cardiac signals. Med. Biol. Eng. Compu. 32(4), 65–70 (1994)CrossRefGoogle Scholar
  55. A.C. Patil, N.V. Thakor, Implantable neurotechnologies: a review of micro- and nanoelectrodes for neural recording. Med. Biol. Eng. Compu. 54(1), 23–44 (2016)CrossRefGoogle Scholar
  56. R.P. Patterson, Fundamentals of impedance cardiography. IEEE Eng. Med. Biol. Mag. 8(1), 35–38 (1989)CrossRefGoogle Scholar
  57. S.D. Pawar, P. Murugavel, D.M. Lal, Effect of relative humidity and sea level pressure on electrical conductivity of air over Indian Ocean. J. Geophys. Res. Atmos. 114(D2), 1–8 (2009)CrossRefGoogle Scholar
  58. H. Pfützner, Applied Biophysics (in German: Angewandte Biophysik) (Springer, Berlin, 2003)CrossRefGoogle Scholar
  59. E. Pinheiro, O. Postolache, P. Girao, A survey on unobtrusive measurements of the cardiovascular function and their practical implementation in wheelchairs. Sens. Trans. J. 9, 182–199 (2010)Google Scholar
  60. F. Rattay, High frequency electrostimulation of excitable cells. J. Theor. Biol. 123, 45–54 (1986a)CrossRefGoogle Scholar
  61. F. Rattay, Analysis of models for external stimulation of axons. IEEE Trans. Biomed. Eng. 33(10), 974–977 (1986b)CrossRefGoogle Scholar
  62. F. Rattay, Ways to approximate current-distance relations for electrically stimulated fibers. J. Theor. Biol. 125, 339–349 (1987)CrossRefGoogle Scholar
  63. F. Rattay, Modeling the excitation of fibers under surface electrodes. IEEE Trans. Biomed. Eng. 35(3), 199–202 (1988)CrossRefGoogle Scholar
  64. F. Rattay, Electrical Nerve Stimulation: Theory, Experiments and Applications (Springer, Berlin, 1990)CrossRefGoogle Scholar
  65. F. Rattay, in Private communication (2017)Google Scholar
  66. J.P. Reilly, Applied Bioelectricity: From Electrical Stimulation to Electropathology (Springer, Berlin, 1998)Google Scholar
  67. J.P. Reilly, A.M. Diamant, Electrostimulation: Theory, Applications, and Computational Model (Artech House Publisher, 2011)Google Scholar
  68. O.Z. Roy, J.R. Scott, G.C. Park, 60-Hz ventricular fibrillation and pump failure thresholds versus electrode area. IEEE Trans. Biomed. Eng. BME-23(1), 45–48 (1976)CrossRefGoogle Scholar
  69. Safety publication and preliminary standard DIN IEC/TS 60479-1 (VDE V 0140-479-1): effects of current on human beings and livestock (2007)Google Scholar
  70. B. Sanchez, J. Li, T. Geisbush, R.B. Bardia, S.B. Rutkove, Impedance alterations in healthy and diseased mice during electrically induced muscle contraction. IEEE Trans. Biomed. Eng. 63(8), 1602–1612 (2016)CrossRefGoogle Scholar
  71. R.V. Shannon, A model of safe levels for electrical stimulation. IEEE Trans. Biomed. Eng. 39(4), 424–426 (1992)CrossRefGoogle Scholar
  72. V.P. Seppa, J. Viik, J. Hyttinen, Assessment of pulmonary flow using impedance pneumography. IEEE Trans. Biomed. Eng. 57(9), 2277–2285 (2010)CrossRefGoogle Scholar
  73. A.K. Shukla, T.P. Kumar, Pillars of modern electrochemistry. Electrochem. Soc. Inter. 17(3), 31–39 (2008)Google Scholar
  74. M. Solomonow, External control of the neuromuscular system. IEEE Trans. Biomed. Eng. BME-31(12), 752–763 (1984)CrossRefGoogle Scholar
  75. R. Somaraju, J. Trumpf, Frequency, temperature and salinity variation of the permittivity of seawater. IEEE Trans. Antennas Propag. 54(11), 3441–3448 (2006)ADSCrossRefGoogle Scholar
  76. A.J. Surowiec, S.S. Stuchly, M. Keaney, A. Swarup, Dielectric polarization of animal lung at radio frequencies. IEEE Trans. Biomed. Eng. 34(1), 62–67 (1987)CrossRefGoogle Scholar
  77. F. Thürk, S. Böhme, D. Mudrak, S. Kampusch, A. Wielandner, H. Prosch, C. Braun, F.P.R. Toemboel, J. Hofmanninger, E. Kaniusas, Effects of individualized electrical impedance tomography and image reconstruction settings upon the assessment of regional ventilation distribution: comparison to 4-dimensional computed tomography in a porcine model. PLOS ONE 12(8), e0182215, 1–16 (2017)CrossRefGoogle Scholar
  78. D. Teichmann, J. Foussier, J. Jia, S. Leonhardt, M. Walter, Noncontact monitoring of cardiorespiratory activity by electromagnetic coupling. IEEE Trans. Biomed. Eng. 60(8), 2142–2152 (2013)CrossRefGoogle Scholar
  79. C. Van den Honert, J.T. Mortimer, The response of the myelinated nerve fiber to short duration biphasic stimulating currents. Ann. Biomed. Eng. 7(2), 117–125 (1979)CrossRefGoogle Scholar
  80. A. Vuckovic, M. Tosato, J.J. Struijk, A comparative study of three techniques for diameter selective fiber activation in the vagal nerve: anodal block, depolarizing prepulses and slowly rising pulses. J. Neural Eng. 5, 275–286 (2008)ADSCrossRefGoogle Scholar
  81. A.N. Weissenrieder, Stimulation Electrodes for Pacemaker Applications: Electrochemistry of bioelectrodes (VDM Publisher Dr, Müller, 2009)Google Scholar
  82. World Health Organization, in Electromagnetic fields (300 Hz–300 GHz). Environ. Health Criteria 137 (1993)Google Scholar
  83. M.R. Wright, An Introduction to Aqueous Electrolyte Solutions (Wiley, London, 2007)Google Scholar
  84. S. Zhao, G. Yang, J. Wang, J.R. Roppolo, W.C. Groat, C. Tai, Conduction block in myelinated axons induced by high-frequency (kHz) non-symmetric biphasic stimulation. Front. Comput. Neurosci. 9(86), 1–10 (2015)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Head of Research Unit Biomedical Electronics, Head of Research Group Biomedical Sensing, Chairman of Study Commission Biomedical EngineeringVienna University of Technology, Institute of Electrodynamics, Microwave and Circuit EngineeringViennaAustria

Personalised recommendations