Advertisement

Sarnak’s Conjecture: What’s New

  • Sébastien Ferenczi
  • Joanna Kułaga-Przymus
  • Mariusz LemańczykEmail author
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2213)

Abstract

An overview of the last 7 years results concerning Sarnak’s conjecture on Möbius disjointness is presented, focusing on ergodic theory aspects of the conjecture.

Notes

Acknowledgements

The research resulting in this survey was carried out during the Research in Pairs Program of CIRM, Luminy, France, 15-19.05.2017. J. Kułaga-Przymus and M. Lemańczyk also acknowledge the support of Narodowe Centrum Nauki grant UMO-2014/15/B/ST1/03736. J. Kułaga-Przymus was also supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 647133 (ICHAOS)) and by the Foundation for Polish Science (FNP).

The authors special thanks go to N. Frantzikinakis and P. Sarnak for a careful reading of the manuscript, numerous remarks and suggestions to improve presentation. We also thank M. Baake, V. Bergelson, B. Green, D. Kwietniak, C. Mauduit and M. Radziwiłł for some useful comments on the subject.

References

  1. 1.
    T. Adams, S. Ferenczi, K. Petersen, Constructive symbolic presentations of rank one measure-preserving systems. Coll. Math. 150(2), 243–255 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    M. Avdeeva, Variance of \(\mathcal {B}\)-free integers in short intervals. Preprint (2015). https://arxiv.org/abs/1512.00149
  3. 3.
    M. Avdeeva, F. Cellarosi, Y.G. Sinai, Ergodic and statistical properties of\(\mathcal {B}\)-free numbers. Teor. Veroyatnost. i Primenen. 61, 805–829 (2016)Google Scholar
  4. 4.
    M. Baake, U. Grimm, Aperiodic Order. Vol 1. A Mathematical Invitation, Encyclopedia of Mathematics and Its Applications, vol.149 (Cambridge University Press, Cambridge, 2013)Google Scholar
  5. 5.
    M. Baake, C. Huck, Ergodic properties of visible lattice points. Proc. Steklov Inst. Math. 288(1), 165–188 (2015) (English)MathSciNetCrossRefGoogle Scholar
  6. 6.
    M. Baake, C. Huck, N. Strungaru, On weak model sets of extremal density. Indag. Math. 28(1), 3–31 (2017). Special Issue on Automatic Sequences, Number Theory, and Aperiodic OrderMathSciNetCrossRefGoogle Scholar
  7. 7.
    M. Baake, C. Huck, M. Lemańczyk, Positive entropy shifts with small centraliser and large normaliser (in preparation)Google Scholar
  8. 8.
    V. Bergelson, I.J. Håland, Sets of recurrence and generalized polynomials, in Convergence in Ergodic Theory and Probability (Columbus, OH, 1993). Ohio State University Mathematical Research Institute Publications, vol. 5 (de Gruyter, Berlin, 1996), pp. 91–110CrossRefGoogle Scholar
  9. 9.
    V. Bergelson, A. Leibman, Polynomial extensions of van der Waerden’s and Szemerédi’s theorems. J. Am. Math. Soc. 9(3), 725–753 (1996)Google Scholar
  10. 10.
    V. Bergelson, I. Ruzsa, Squarefree numbers, IP sets and ergodic theory, in Paul Erdős and His Mathematics, I (Budapest, 1999). Bolyai Society Mathematical Studies, vol. 11 (János Bolyai Mathematical Society, Budapest, 2002), pp. 147–160Google Scholar
  11. 11.
    V. Bergelson, J. Kułaga-Przymus, M. Lemańczyk, F.K. Richter, A generalization of Kátai’s orthogonality criterion with applications. Preprint (2017). https://arxiv.org/abs/1705.07322
  12. 12.
    V. Bergelson, J. Kułaga-Przymus, M. Lemańczyk, F.K. Richter, A structure theorem for level sets of multiplicative functions and applications. Int. Math. Res. Not. (2017, to appear). https://arxiv.org/abs/1708.02613
  13. 13.
    V. Bergelson, J. Kułaga-Przymus, M. Lemańczyk, F.K. Richter, Rationally almost periodic sequences, polynomial multiple recurrence and symbolic dynamics. Erg. Theory Dyn. Syst. (to appear). https://arxiv.org/abs/1611.08392
  14. 14.
    A.S. Besicovitch, On the density of certain sequences of integers. Math. Ann. 110(1), 336–341 (1935)MathSciNetCrossRefGoogle Scholar
  15. 15.
    E. Bessel-Hagen, Zahlentheorie (Teubner, Leipzig, 1929)Google Scholar
  16. 16.
    J. Bourgain, An approach to pointwise ergodic theorems, in Geometric Aspects of Functional Analysis (1986/87). Lecture Notes in Mathematics, vol. 1317 (Springer, Berlin, 1988), pp. 204–223Google Scholar
  17. 17.
    J. Bourgain, On the maximal ergodic theorem for certain subsets of the integers. Isr. J. Math. 61(1), 39–72 (1988)MathSciNetCrossRefGoogle Scholar
  18. 18.
    J. Bourgain, On the pointwise ergodic theorem on Lp for arithmetic sets. Isr. J. Math. 61(1), 73–84 (1988)Google Scholar
  19. 19.
    J. Bourgain, Möbius-Walsh correlation bounds and an estimate of Mauduit and Rivat. J. Anal. Math. 119, 147–163 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    J. Bourgain, On the correlation of the Moebius function with rank-one systems. J. Anal. Math. 120, 105–130 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    J. Bourgain, P. Sarnak, T. Ziegler, Disjointness of Möbius from horocycle flows, in From Fourier Analysis and Number Theory to Radon Transforms and Geometry. Developments in Mathematics, vol. 28 (Springer, New York, 2013), pp. 67–83Google Scholar
  22. 22.
    D. Carmon, Z. Rudnick, The autocorrelation of the Möbius function and Chowla’s conjecture for the rational function field. Q. J. Math. 65(1), 53–61 (2014)CrossRefGoogle Scholar
  23. 23.
    F. Cellarosi, Y.G. Sinai, Ergodic properties of square-free numbers. J. Eur. Math. Soc. 15(4), 1343–1374 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    F. Cellarosi, I. Vinogradov, Ergodic properties of k-free integers in number fields. J. Mod. Dyn. 7(3), 461–488 (2013)Google Scholar
  25. 25.
    J. Chaika, A. Eskin, Moebius disjointness for interval exchange transformations on three intervals. Preprint (2016). https://arxiv.org/abs/1606.02357
  26. 26.
    S. Chowla, On abundant numbers. J. Indian Math. Soc. New Ser. 1, 41–44 (1934) (English)Google Scholar
  27. 27.
    S. Chowla, The Riemann Hypothesis and Hilbert’s Tenth Problem. Mathematics and Its Applications, vol. 4 (Gordon and Breach Science Publishers, New York, 1965)Google Scholar
  28. 28.
    I.P. Cornfeld, S.V. Fomin, Y.G. Sinaı̆, Ergodic Theory. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 245 (Springer, New York, 1982)Google Scholar
  29. 29.
    C. Cuny, M. Weber, Ergodic theorems with arithmetical weights. Isr. J. Math. 217(1), 139–180 (2017)MathSciNetCrossRefGoogle Scholar
  30. 30.
    H. Daboussi, H. Delange, On multiplicative arithmetical functions whose modulus does not exceed one. J. Lond. Math. Soc. (2) 26(2), 245–264 (1982)MathSciNetCrossRefGoogle Scholar
  31. 31.
    C. Dartyge, G. Tenenbaum, Sommes des chiffres de multiples d’entiers. Ann. Inst. Fourier (Grenoble) 55(7), 2423–2474 (2005)MathSciNetCrossRefGoogle Scholar
  32. 32.
    H. Davenport, Über numeri abundantes. Sitzungsber. Preuss. Akad. Wiss. 26/29, 830–837 (1933)Google Scholar
  33. 33.
    H. Davenport, On some infinite series involving arithmetical functions. II. Q. J. Math. 8, 313–320 (1937)Google Scholar
  34. 34.
    H. Davenport, P. Erdös, On sequences of positive integers. Acta Arith. 2(1), 147–151 (1936)CrossRefGoogle Scholar
  35. 35.
    H. Davenport, P. Erdös, On sequences of positive integers. J. Indian Math. Soc. (N.S.) 15, 19–24 (1951)Google Scholar
  36. 36.
    R. de la Breteche, G. Tenenbaum, A remark on Sarnak’s conjecture. Preprint (2017). https://arxiv.org/abs/1709.01194
  37. 37.
    T. de la Rue, La fonction de Möbius à la rencontre des systèmes dynamiques. Gaz. Math. (150), 31–40 (2016)Google Scholar
  38. 38.
    A. del Junco, Disjointness of measure-preserving transformations, minimal self-joinings and category, in Ergodic Theory and Dynamical Systems, I (College Park, MD, 1979–80). Progress in Mathematics, vol. 10 (Birkhäuser, Boston, 1981), pp. 81–89Google Scholar
  39. 39.
    A. del Junco, D. Rudolph, On ergodic actions whose self-joinings are graphs. Ergod. Theory Dyn. Syst. 7(4), 531–557 (1987)Google Scholar
  40. 40.
    M. Denker, C. Grillenberger, K. Sigmund, Ergodic Theory on Compact Spaces. Lecture Notes in Mathematics, vol. 527 (Springer, Berlin, 1976)Google Scholar
  41. 41.
    J.-M. Deshouillers, M. Drmota, C. Müllner, Automatic sequences generated by synchronizing automata fulfill the Sarnak conjecture. Stud. Math. 231(1), 83–95 (2015)Google Scholar
  42. 42.
    H.G. Diamond, Elementary methods in the study of the distribution of prime numbers. Bull. Am. Math. Soc. (N.S.) 7(3), 553–589 (1982)MathSciNetCrossRefGoogle Scholar
  43. 43.
    T. Downarowicz, E. Glasner, Isomorphic extensions and applications. Topol. Methods Nonlinear Anal. 48(1), 321–338 (2016)MathSciNetCrossRefGoogle Scholar
  44. 44.
    T. Downarowicz, S. Kasjan, Odometers and Toeplitz systems revisited in the context of Sarnak’s conjecture. Stud. Math. 229(1), 45–72 (2015)Google Scholar
  45. 45.
    T. Downarowicz, J. Serafin, Almost full entropy subshifts uncorrelated to the Möbius function. Int. Math. Res. Not. (to appear). https://arxiv.org/abs/1611.02084
  46. 46.
    M. Drmota, Subsequences of automatic sequences and uniform distribution, in Uniform Distribution and Quasi-Monte Carlo Methods. Radon Series on Computational and Applied Mathematics, vol. 15 (De Gruyter, Berlin, 2014), pp. 87–104Google Scholar
  47. 47.
    M. Drmota, C. Müllner, L. Spiegelhofer, Möbius orthogonality for the Zeckendorf sum-of-digits function. Proc. AMS (to appear). http://arxiv.org/abs/1706.09680
  48. 48.
    A. Dymek, S. Kasjan, J. Kułaga-Przymus, M. Lemańczyk, \(\mathcal {B}\)-free sets and dynamics. Trans. Am. Math. Soc. (2015, to appear). http://arxiv.org/abs/1509.08010
  49. 49.
    A. Dymek, Automorphisms of Toeplitz \(\mathscr {B}\)-free systems. Bull. Pol. Acad. Sci. Math. 65(2), 139–152 (2017)Google Scholar
  50. 50.
    M. Einsiedler, T. Ward, Ergodic Theory with a View Towards Number Theory. Graduate Texts in Mathematics, vol. 259 (Springer, London, 2011)Google Scholar
  51. 51.
    T. Eisner, A polynomial version of Sarnak’s conjecture. C. R. Math. Acad. Sci. Paris 353(7), 569–572 (2015)MathSciNetCrossRefGoogle Scholar
  52. 52.
    E.H. El Abdalaoui, M. Disertori, Spectral properties of the Möbius function and a random Möbius model. Stoch. Dyn. 16(1), 1650005, 25 (2016)MathSciNetCrossRefGoogle Scholar
  53. 53.
    E.H. El Abdalaoui, X. Ye, A cubic non-conventional ergodic average with multiplicative or von Mangoldt weights. Preprint (2016). https://arxiv.org/abs/1606.05630
  54. 54.
    E.H. El Abdalaoui, M. Lemańczyk, T. de la Rue, On spectral disjointness of powers for rank-one transformations and Möbius orthogonality. J. Funct. Anal. 266(1), 284–317 (2014)MathSciNetCrossRefGoogle Scholar
  55. 55.
    E.H. El Abdalaoui, M. Lemańczyk, T. de la Rue, A dynamical point of view on the set of \(\mathcal {B}\)-free integers. Int. Math. Res. Not. 2015(16), 7258–7286 (2015)Google Scholar
  56. 56.
    E.H. El Abdalaoui, S. Kasjan, M. Lemańczyk, 0-1 sequences of the Thue-Morse type and Sarnak’s conjecture. Proc. Am. Math. Soc. 144(1), 161–176 (2016)MathSciNetCrossRefGoogle Scholar
  57. 57.
    E.H. El Abdalaoui, J. Kułaga-Przymus, M. Lemańczyk, T. de la Rue, The Chowla and the Sarnak conjectures from ergodic theory point of view. Discrete Contin. Dyn. Syst. 37(6), 2899–2944 (2017)Google Scholar
  58. 58.
    E.H. El Abdalaoui, J. Kułaga-Przymus, M. Lemańczyk, T. de la Rue, Möbius disjointness for models of an ergodic system and beyond. Isr. J. Math. (2017, to appear). https://arxiv.org/abs/1704.03506
  59. 59.
    E.H. El Abdalaoui, M. Lemańczyk, T. de la Rue, Automorphisms with quasi-discrete spectrum, multiplicative functions and average orthogonality along short intervals. Int. Math. Res. Not. (14), 4350–4368 (2017)Google Scholar
  60. 60.
    P.D.T.A. Elliott, Probabilistic Number Theory. I Mean-Value Theorems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 239 (Springer, New York, 1979)Google Scholar
  61. 61.
    P. Erdös, On the density of the abundant numbers. J. Lond. Math. Soc. 9(4), 278–282 (1934)MathSciNetCrossRefGoogle Scholar
  62. 62.
    A. Fan, Weighted Birkhoff ergodic theorem with oscillating weights. Ergod. Theory Dyn. Syst. (2017). https://arxiv.org/abs/1705.02501
  63. 63.
    S. Ferenczi, Measure-theoretic complexity of ergodic systems. Isr. J. Math. 100, 189–207 (1997)MathSciNetCrossRefGoogle Scholar
  64. 64.
    S. Ferenczi, C. Mauduit, On Sarnak’s conjecture and Veech’s question for interval exchanges. J. d’Analyse Math. 134, 545–573 (2018)MathSciNetCrossRefGoogle Scholar
  65. 65.
    S. Ferenczi, C. Holton, L.Q. Zamboni, Structure of three-interval exchange transformations. II. A combinatorial description of the trajectories. J. Anal. Math. 89, 239–276 (2003)MathSciNetCrossRefGoogle Scholar
  66. 66.
    S. Ferenczi, J. Kułaga-Przymus, M. Lemańczyk, C. Mauduit, Substitutions and Möbius disjointness, in Ergodic Theory, Dynamical Systems, and the Continuing Influence of John C. Oxtoby. Contemporary Mathematics, vol. 678 (American Mathematical Society, Providence, 2016), pp. 151–173Google Scholar
  67. 67.
    L. Flaminio, K. Fr ączek, J. Kułaga-Przymus, M. Lemańczyk, Approximate orthogonality of powers for ergodic affine unipotent diffeomorphisms on nilmanifolds. Stud. Math. (to appear). https://arxiv.org/abs/1609.00699
  68. 68.
    N. Frantzikinakis, An averaged Chowla and Elliott conjecture along independent polynomials (2016). https://arxiv.org/abs/1606.08420
  69. 69.
    N. Frantzikinakis, Ergodicity of the Liouville system implies the Chowla conjecture. Discrete Anal. (2016, to appear). https://arxiv.org/abs/1611.09338.
  70. 70.
    N. Frantzikinakis, B. Host, Higher order Fourier analysis of multiplicative functions and applications. J. Am. Math. Soc. 30(1), 67–157 (2017)MathSciNetCrossRefGoogle Scholar
  71. 71.
    N. Frantzikinakis, B. Host, The logarithmic Sarnak conjecture for ergodic weights. Ann. Math. (2017, to appear). https://arxiv.org/abs/1708.00677
  72. 72.
    H. Furstenberg, Strict ergodicity and transformation of the torus. Am. J. Math. 83, 573–601 (1961)MathSciNetCrossRefGoogle Scholar
  73. 73.
    H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Syst. Theory 1, 1–49 (1967)MathSciNetCrossRefGoogle Scholar
  74. 74.
    H. Furstenberg, The Unique Ergodicity of the Horocycle Flow. Lecture Notes in Mathematics, vol. 318 (Springer, Berlin, 1973), pp. 95–115Google Scholar
  75. 75.
    H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J. Anal. Math. 31, 204–256 (1977)MathSciNetCrossRefGoogle Scholar
  76. 76.
    H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory. M. B. Porter Lectures (Princeton University Press, Princeton, 1981)Google Scholar
  77. 77.
    A.O. Gel’fond, Sur les nombres qui ont des propriétés additives et multiplicatives données. Acta Arith. 13, 259–265 (1967/1968)Google Scholar
  78. 78.
    E. Glasner, Ergodic Theory via Joinings. Mathematical Surveys and Monographs, vol. 101 (American Mathematical Society, Providence, 2003)Google Scholar
  79. 79.
    A. Gomilko, D. Kwietniak, M. Lemańczyk, Sarnak’s conjecture implies the Chowla conjecture along a subsequence, in Ergodic Theory and Dynamical Systems in Their Interactions with Arithmetic and Combinatorics, ed. By S. Ferenczi et al. Lecture Notes in Mathematics, vol. 2213 (Springer, New York, 2018)Google Scholar
  80. 80.
    W.T. Gowers, A new proof of Szemerédi’s theorem. Geom. Funct. Anal. 11(3), 465–588 (2001)MathSciNetCrossRefGoogle Scholar
  81. 81.
    K. Granville, A. Soundararajan, Multiplicative Number Theory: The Pretentious Approach (book manuscript in preparation)Google Scholar
  82. 82.
    B. Green, On (not) computing the Möbius function using bounded depth circuits. Combin. Probab. Comput. 21(6), 942–951 (2012)MathSciNetCrossRefGoogle Scholar
  83. 83.
    B. Green, T. Tao, The Möbius function is strongly orthogonal to nilsequences. Ann. Math. (2) 175(2), 541–566 (2012)MathSciNetCrossRefGoogle Scholar
  84. 84.
    B. Green, T. Tao, The quantitative behaviour of polynomial orbits on nilmanifolds. Ann. Math. (2) 175(2), 465–540 (2012)MathSciNetCrossRefGoogle Scholar
  85. 85.
    F. Hahn, W. Parry, Some characteristic properties of dynamical systems with quasi-discrete spectra. Math. Syst. Theory 2, 179–190 (1968)MathSciNetCrossRefGoogle Scholar
  86. 86.
    H. Halberstam, K.F. Roth, Sequences, 2nd edn. (Springer, New York, 1983)Google Scholar
  87. 87.
    R.R. Hall, Sets of Multiples. Cambridge Tracts in Mathematics, vol. 118 (Cambridge University Press, Cambridge, 1996)Google Scholar
  88. 88.
    A.J. Harper, A different proof of a finite version of Vinogradov’s ilinear sum inequality (NOTES) (2011). https://www.dpmms.cam.ac.uk/~ajh228/FiniteBilinearNotes.pdf
  89. 89.
    A. Hildebrand, Introduction to analytic number theory. http://www.math.uiuc.edu/~ajh/531.fall05/
  90. 90.
    B. Host, B. Kra, Convergence of polynomial ergodic averages. Isr. J. Math. 149, 1–19 (2005). Probability in mathematicsMathSciNetCrossRefGoogle Scholar
  91. 91.
    B. Host, B. Kra, Nonconventional ergodic averages and nilmanifolds. Ann. Math. (2) 161(1), 397–488 (2005)MathSciNetCrossRefGoogle Scholar
  92. 92.
    B. Host, J.-F. Méla, F. Parreau, Nonsingular transformations and spectral analysis of measures. Bull. Soc. Math. France 119(1), 33–90 (1991)MathSciNetCrossRefGoogle Scholar
  93. 93.
    W. Huang, Z. Wang, G. Zhang, Möbius disjointness for topological models of ergodic systems with discrete spectrum. Preprint (2016). https://arxiv.org/abs/1608.08289
  94. 94.
    W. Huang, Z. Lian, S. Shao, X. Ye, Sequences from zero entropy noncommutative toral automorphisms and Sarnak Conjecture. J. Differ. Equ. 263(1), 779–810 (2017)MathSciNetCrossRefGoogle Scholar
  95. 95.
    W. Huang, Z. Wang, X. Ye, Measure complexity and Möbius disjointness (2017). https://arxiv.org/abs/1707.06345
  96. 96.
    C. Huck, On the logarithmic probability that a random integral ideal is relatively \(\mathcal {A}\) -free, in Ergodic Theory and Dynamical Systems in Their Interactions with Arithmetic and Combinatorics, ed. By S. Ferenczi et al. Lecture Notes in Mathematics, vol. 2213 (Springer, New York, 2018)Google Scholar
  97. 97.
    D.E. Iannucci, On the smallest abundant number not divisible by the first k primes. Bull. Belg. Math. Soc. Simon Stevin 12(1), 39–44 (2005)Google Scholar
  98. 98.
    K.-H. Indlekofer, I. Kátai, Investigations in the theory of q-additive and q -multiplicative functions. I. Acta Math. Hungar. 91(1–2), 53–78 (2001)Google Scholar
  99. 99.
    H. Iwaniec, E. Kowalski, Analytic Number Theory. American Mathematical Society Colloquium Publications, vol. 53 (American Mathematical Society, Providence, 2004)Google Scholar
  100. 100.
    E. Jennings, P. Pollack, L. Thompson, Variations on a theorem of Davenport concerning abundant numbers. Bull. Aust. Math. Soc. 89(3), 437–450 (2014)MathSciNetCrossRefGoogle Scholar
  101. 101.
    T. Kamae, Subsequences of normal sequences. Isr. J. Math. 16, 121–149 (1973)MathSciNetCrossRefGoogle Scholar
  102. 102.
    A. Kanigowski, M. Lemańczyk, C. Ulcigrai, On disjointness properties of some parabolic flows (in preparation)Google Scholar
  103. 103.
    D. Karagulyan, On Möbius orthogonality for interval maps of zero entropy and orientation-preserving circle homeomorphisms. Ark. Mat. 53(2), 317–327 (2015)MathSciNetCrossRefGoogle Scholar
  104. 104.
    D. Karagulyan, On Möbius orthogonality for subshifts of finite type with positive topological entropy. Stud. Math. 237(3), 277–282 (2017)MathSciNetCrossRefGoogle Scholar
  105. 105.
    S. Kasjan, G. Keller, M. Lemańczyk, Dynamics of \(\mathcal {B}\) -free sets: a view through the window. Int. Math. Res. Not. (to appear). https://arxiv.org/abs/1702.02375
  106. 106.
    I. Kátai, A remark on a theorem of H. Daboussi. Acta Math. Hungar. 47(1–2), 223–225 (1986)Google Scholar
  107. 107.
    M. Keane, Generalized Morse sequences. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 10, 335–353 (1968)Google Scholar
  108. 108.
    G. Keller, Generalized heredity in \(\mathcal {B}\)-free systems. Preprint (2017). https://arxiv.org/abs/1704.04079
  109. 109.
    G. Keller, C. Richard, Periods and factors of weak model sets. Preprint (2017). https://arxiv.org/abs/1702.02383
  110. 110.
    M. Kobayashi, A new series for the density of abundant numbers. Int. J. Number Theory 10(1), 73–84 (2014)MathSciNetCrossRefGoogle Scholar
  111. 111.
    J. Konieczny, M. Kupsa, D. Kwietniak, Arcwise connectedness of the set of ergodic measures of hereditary shifts. Preprint (2016). https://arxiv.org/abs/1610.00672
  112. 112.
    J. Kułaga-Przymus, M. Lemańczyk, The Möbius function and continuous extensions of rotations. Monatsh. Math. 178(4), 553–582 (2015)MathSciNetCrossRefGoogle Scholar
  113. 113.
    J. Kułaga-Przymus, M. Lemańczyk, Möbius disjointness along ergodic sequences for uniquely ergodic actions. Ergodic Theory Dyn. Syst. (2017, to appear). https://arxiv.org/abs/1703.02347
  114. 114.
    J. Kułaga-Przymus, M. Lemańczyk, B. Weiss, On invariant measures for \(\mathcal {B}\)-free systems. Proc. Lond. Math. Soc. (3) 110(6), 1435–1474 (2015)Google Scholar
  115. 115.
    J. Kułaga-Przymus, M. Lemańczyk, B. Weiss, Hereditary subshifts whose simplex of invariant measures is Poulsen, in Ergodic Theory, Dynamical Systems, and the Continuing Influence of John C. Oxtoby. Contemporary Mathematics, vol. 678 (American Mathematical Society, Providence, 2016), pp. 245–253Google Scholar
  116. 116.
    J. Kwiatkowski, Spectral isomorphism of Morse dynamical systems. Bull. Acad. Polon. Sci. Sér. Sci. Math. 29(3–4), 105–114 (1981)Google Scholar
  117. 117.
    E. Lehrer, Topological mixing and uniquely ergodic systems. Isr. J. Math. 57(2), 239–255 (1987)MathSciNetCrossRefGoogle Scholar
  118. 118.
    A. Leibman, Convergence of multiple ergodic averages along polynomials of several variables. Isr. J. Math. 146, 303–315 (2005)MathSciNetCrossRefGoogle Scholar
  119. 119.
    A. Leibman, Multiple polynomial correlation sequences and nilsequences. Ergod. Theory Dyn. Syst. 30(3), 841–854 (2010)MathSciNetCrossRefGoogle Scholar
  120. 120.
    M. Lemańczyk, F. Parreau, Lifting mixing properties by Rokhlin cocycles. Ergod. Theory Dyn. Syst. 32(2), 763–784 (2012)MathSciNetCrossRefGoogle Scholar
  121. 121.
    E. Lindenstrauss, Measurable distal and topological distal systems. Ergod. Theory Dyn. Syst. 19(4), 1063–1076 (1999)MathSciNetCrossRefGoogle Scholar
  122. 122.
    J. Liu, P. Sarnak, The Möbius function and distal flows. Duke Math. J. 164(7), 1353–1399 (2015)MathSciNetCrossRefGoogle Scholar
  123. 123.
    B. Marcus, The horocycle flow is mixing of all degrees. Invent. Math. 46(3), 201–209 (1978)MathSciNetCrossRefGoogle Scholar
  124. 124.
    B. Martin, C. Mauduit, J. Rivat, Théorème des nombres premiers pour les fonctions digitales. Acta Arith. 165(1), 11–45 (2014)MathSciNetCrossRefGoogle Scholar
  125. 125.
    B. Martin, C. Mauduit, J. Rivat, Fonctions digitales le long des nombres premiers. Acta Arith. 170(2), 175–197 (2015)MathSciNetCrossRefGoogle Scholar
  126. 126.
    K. Matomäki, M. Radziwiłł, Multiplicative functions in short intervals. Ann. Math. (2) 183(3), 1015–1056 (2016)MathSciNetCrossRefGoogle Scholar
  127. 127.
    K. Matomäki, M. Radziwiłł, T. Tao, An averaged form of Chowla’s conjecture. Algebra Number Theory 9, 2167–2196 (2015)MathSciNetCrossRefGoogle Scholar
  128. 128.
    K. Matomäki, M. Radziwiłł, T. Tao, Sign patterns of the Liouville and Möbius functions. Forum Math. Sigma 4(e14), 44 (2016)Google Scholar
  129. 129.
    C. Mauduit, J. Rivat, Sur un problème de Gelfond: la somme des chiffres des nombres premiers. Ann. Math. (2) 171(3), 1591–1646 (2010)MathSciNetCrossRefGoogle Scholar
  130. 130.
    C. Mauduit, J. Rivat, Prime numbers along Rudin–Shapiro sequences. J. Eur. Math. Soc. 17(10), 2595–2642 (2015)MathSciNetCrossRefGoogle Scholar
  131. 131.
    M.K. Mentzen, Automorphisms of subshifts defined by \(\mathcal {B}\) -free sets of integers. Colloq. Math. 147(1), 87–94 (2017)MathSciNetCrossRefGoogle Scholar
  132. 132.
    L. Mirsky, Note on an asymptotic formula connected with r -free integers. Q. J. Math. Oxford Ser. 18, 178–182 (1947)MathSciNetCrossRefGoogle Scholar
  133. 133.
    L. Mirsky, Arithmetical pattern problems relating to divisibility by r th powers. Proc. Lond. Math. Soc. (2) 50, 497–508 (1949)Google Scholar
  134. 134.
    H.L. Montgomery, R.C. Vaughan, Exponential sums with multiplicative coefficients. Invent. Math. 43(1), 69–82 (1977)MathSciNetCrossRefGoogle Scholar
  135. 135.
    B. Mossé, Puissances de mots et reconnaissabilité des points fixes d’une substitution. Theor. Comput. Sci. 99(2), 327–334 (1992)MathSciNetCrossRefGoogle Scholar
  136. 136.
    C. Müllner, Automatic sequences fulfill the Sarnak conjecture. Duke Math. (to appear). https://arxiv.org/abs/1602.03042.
  137. 137.
    M.R. Murty, A. Vatwani, A remark on a conjecture of Chowla. J. Ramanujan Math. Soc. (2017, to appear)Google Scholar
  138. 138.
    M.R. Murty, A. Vatwani, Twin primes and the parity problem. J. Number Theory 180, 643–659 (2017)Google Scholar
  139. 139.
    R. Peckner, Two dynamical perspectives on the randomness of the Mobius function. Thesis (Ph.D.), Princeton University. ProQuest LLC, Ann Arbor, 2015Google Scholar
  140. 140.
    R. Peckner, Uniqueness of the measure of maximal entropy for the squarefree flow. Isr. J. Math. 210(1), 335–357 (2015)MathSciNetCrossRefGoogle Scholar
  141. 141.
    P.A.B. Pleasants, C. Huck, Entropy and diffraction of the k -free points in n -dimensional lattices. Discrete Comput. Geom. 50(1), 39–68 (2013)Google Scholar
  142. 142.
    M. Queffélec, Substitution Dynamical Systems—Spectral Analysis, 2nd edn. Lecture Notes in Mathematics, vol. 1294 (Springer, Berlin, 2010)CrossRefGoogle Scholar
  143. 143.
    O. Ramaré, From Chowla’s conjecture: from the Liouville function to the Moebius function, in Ergodic Theory and Dynamical Systems in Their Interactions with Arithmetic and Combinatorics, ed. By S. Ferenczi et al. Lecture Notes in Mathematics, vol. 2213 (Springer, New York, 2018)Google Scholar
  144. 144.
    M. Ratner, Horocycle flows, joinings and rigidity of products. Ann. Math. (2) 118(2), 277–313 (1983)MathSciNetCrossRefGoogle Scholar
  145. 145.
    M. Ratner, On Raghunathan’s measure conjecture. Ann. Math. (2) 134(3), 545–607 (1991)MathSciNetCrossRefGoogle Scholar
  146. 146.
    J. Rivat, Analytic number theory, in Ergodic Theory and Dynamical Systems in Their Interactions with Arithmetic and Combinatorics, ed. By S. Ferenczi et al. Lecture Notes in Mathematics, vol. 2213 (Springer, New York, 2018)Google Scholar
  147. 147.
    V.V. Ryzhikov, Bounded ergodic constructions, disjointness, and weak limits of powers. Trans. Mosc. Math. Soc. 74, 165–171 (2013)MathSciNetCrossRefGoogle Scholar
  148. 148.
    P. Sarnak, Mobius randomness and dynamics. Not. S. Afr. Math. Soc. 43(2), 89–97 (2012)Google Scholar
  149. 149.
    P. Sarnak, Möbius randomness and dynamics six years later. http://www.youtube.com/watch?v=LXX0ntxrkb0
  150. 150.
    P. Sarnak, Three lectures on the Möbius function, randomness and dynamics. http://publications.ias.edu/sarnak/
  151. 151.
    P. Sarnak, A. Ubis, The horocycle flow at prime times. J. Math. Pures Appl. (9) 103(2), 575–618 (2015)MathSciNetCrossRefGoogle Scholar
  152. 152.
    K. Schmidt, Cocycles on Ergodic Transformation Groups. Macmillan Lectures in Mathematics, vol. 1 (Macmillan Company of India, Ltd., Delhi, 1977)Google Scholar
  153. 153.
    K. Soundararajan, The Liouville function in short intervals [after Matomäki and Radziwiłł]. Séminarie Boubaki 68ème année (2015–2016), no. 1119Google Scholar
  154. 154.
    E. Szemerédi, On sets of integers containing no k elements in arithmetic progression. Acta Arith. 27, 199–245 (1975). Collection of articles in memory of Juriı̆ Vladimirovič LinnikMathSciNetCrossRefGoogle Scholar
  155. 155.
    T. Tao, The logarithmically averaged Chowla and Elliot conjectures for two-point correlations. Forum Math. Pi 4, e8 (2016)Google Scholar
  156. 156.
    T. Tao, Equivalence of the logarithmically averaged Chowla and Sarnak conjectures, in Number Theory – Diophantine Problems, Uniform Distribution and Applications: Festschrift in Honour of Robert F. Tichy’s 60th Birthday, ed. by C. Elsholtz, P. Grabner (Springer International Publishing, Cham, 2017), pp. 391–421CrossRefGoogle Scholar
  157. 157.
    T. Tao, The Bourgain-Sarnak-Ziegler orthogonality criterion. What’s new. http://terrytao.wordpress.com/2011/11/21/the-bourgain-sarnak-ziegler-orthogonality-criterion/
  158. 158.
    T. Tao, The Chowla and the Sarnak conjecture. What’s new. http://terrytao.wordpress.com/2012/10/14/the-chowla-conjecture-and-the-sarnak-conjecture/
  159. 159.
    T. Tao, J. Teräväinen, The structure of logarithmically averaged correlations of multiplicative functions, with applications to the Chowla and Elliott conjectures. Preprint (2017). https://arxiv.org/abs/1708.02610
  160. 160.
    G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, 3rd edn. Translated from the 2008 French edition by Patrick D. F. Ion. Graduate Studies in Mathematics, vol. 163 (American Mathematical Society, Providence, 2015), xxiv+629 pp.Google Scholar
  161. 161.
    W.A. Veech, Möbius orthogonality for generalized Morse-Kakutani flows. Am. J. Math. 139(5), 1157–1203 (2017)CrossRefGoogle Scholar
  162. 162.
    A.M. Vershik, A.N. Livshits, Adic models of ergodic transformations, spectral theory, substitutions, and related topics, in Representation Theory and Dynamical Systems. Advances in Soviet Mathematics, vol. 9 (American Mathematical Society, Providence, 1992), pp. 185–204Google Scholar
  163. 163.
    I.M. Vinogradov, Some theorems concerning the theory of primes. Rec. Math. Moscou 2(44), 179–195 (1937)zbMATHGoogle Scholar
  164. 164.
    I.M. Vinogradov, The Method of Trigonometrical Sums in the Theory of Numbers (Dover Publications, Inc., Mineola, 2004). Translated from the Russian, revised and annotated by K.F. Roth and Anne Davenport, Reprint of the 1954 translationGoogle Scholar
  165. 165.
    P. Walters, An Introduction to Ergodic Theory. Graduate Texts in Mathematics, vol. 79 (Springer, New York, 1982)CrossRefGoogle Scholar
  166. 166.
    Z. Wang, Möbius disjointness for analytic skew products. Inventiones Math. 209(1), 175–196 (2017). https://arxiv.org/abs/1509.03183.MathSciNetCrossRefGoogle Scholar
  167. 167.
    B. Weiss, Normal sequences as collectives, in Proceedings of Symposium on Topological Dynamics and Ergodic Theory, University of Kentucky, 1971Google Scholar
  168. 168.
    B. Weiss, Strictly ergodic models for dynamical systems. Bull. Am. Math. Soc. (N.S.) 13(2), 143–146 (1985)MathSciNetCrossRefGoogle Scholar
  169. 169.
    B. Weiss, Single Orbit Dynamics. CBMS Regional Conference Series in Mathematics, vol. 95 (American Mathematical Society, Providence, 2000)Google Scholar
  170. 170.
    M. Wierdl, Pointwise ergodic theorem along the prime numbers. Isr. J. Math. 64(3), 315–336 (1989)MathSciNetCrossRefGoogle Scholar
  171. 171.
    R.J. Zimmer, Ergodic actions with generalized discrete spectrum. Ill. J. Math. 20(4), 555–588 (1976)MathSciNetzbMATHGoogle Scholar
  172. 172.
    R.J. Zimmer, Extensions of ergodic group actions. Ill. J. Math. 20(3), 373–409 (1976)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sébastien Ferenczi
    • 1
  • Joanna Kułaga-Przymus
    • 1
    • 2
  • Mariusz Lemańczyk
    • 2
    Email author
  1. 1.Aix-Marseille UniversitéCNRS, Centrale Marseille, Institut de Mathématiques de Marseille, I2M – UMR 7373MarseilleFrance
  2. 2.Faculty of Mathematics and Computer ScienceNicolaus Copernicus UniversityToruńPoland

Personalised recommendations