Advertisement

Cutaneous Lymphomas

  • Trisha Bhat
  • Jeffrey P. Zwerner
  • Amy Musiek
Chapter

Abstract

Cutaneous B-cell and T-cell lymphomas are distinct subtypes of non-Hodgkin lymphoma (NHL). They are cancers of lymphocytes that primarily involve the skin, the most common single-organ location of extranodal NHL (Groves et al., J Natl Cancer Inst. 2000;92(15):1240–1251). Cutaneous lymphomas may remain limited to the skin for long periods of time but can spread to blood, lymph nodes, and viscera in cases of advanced disease. Cutaneous T-cell lymphomas (CTCL), involving malignant clonal T cells that present primarily in the skin, comprise more than 75% of all primary cutaneous lymphomas (Willemze et al., Blood. 2005;105(10):3768–3785). CTCL includes variants with indolent, aggressive, and variable clinical behavior, with mycosis fungoides (MF) and Sézary syndrome (SS) together comprising more than 50% of all CTCLs (Willemze et al., Blood. 2005;105(10):3768–3785). The second most common type of CTCL, CD30+ lymphoproliferative disorders, comprises 20% of all cutaneous lymphomas. Cutaneous B-cell lymphoma (CBCL) is less common and often presents as indolent disease.

Keywords

Cutaneous T-cell lymphoma Mycosis fungoides Sézary syndrome Folliculotropic mycosis fungoides Pagetoid reticulosis (Woringer-Kolopp) Granulomatous slack skin Hypopigmented mycosis fungoides Cutaneous B-cell lymphoma Primary cutaneous follicular center lymphoma Primary cutaneous marginal zone B-cell lymphoma Primary cutaneous large B-cell lymphoma (PCLBCL) Leg-type 

References

  1. 1.
    Groves FD, Linet MS, Travis LB, Devesa SS. Cancer surveillance series: non-Hodgkin’s lymphoma incidence by histologic subtype in the United States from 1978 through 1995. J Natl Cancer Inst. 2000;92(15):1240–51.PubMedCrossRefGoogle Scholar
  2. 2.
    Willemze R, Jaffe ES, Burg G, Cerroni L, Berti E, Swerdlow SH, et al. WHO-EORTC classification for cutaneous lymphomas. Blood. 2005;105(10):3768–85.PubMedCrossRefGoogle Scholar
  3. 3.
    Criscione VD, Weinstock MA. Incidence of cutaneous T-cell lymphoma in the United States, 1973-2002. Arch Dermatol. 2007;143(7):854–9.PubMedCrossRefGoogle Scholar
  4. 4.
    National Center for Health Statistics. Health, United States. Health, United States, 2005: with chartbook on trends in the health of Americans. Hyattsville: National Center for Health Statistics (US); 2005.Google Scholar
  5. 5.
    Bradford PT, Devesa SS, Anderson WF, Toro JR. Cutaneous lymphoma incidence patterns in the United States: a population-based study of 3884 cases. Blood. 2009;113(21):5064–73.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Zic JA, Zwerner ZJ, McGirt LY, Mosse CA, Greer JP. Cutaneous T cell lymphoma: mycosis fungoides and sézary syndrome. In: Greer JP, Arber DA, Glader B, List AF, Means RT, Paraskevas F, Rodgers GM, editors. Wintrobe’s clinical hematology. 13th ed. Philadelphia: Wolters Kluwer Health, Lippincott Williams & Wilkins; 2013.Google Scholar
  7. 7.
    Korgavkar K, Xiong M, Weinstock M. Changing incidence trends of cutaneous T-cell lymphoma. JAMA Dermatol. 2013;149(11):1295–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Sant M, Allemani C, Tereanu C, De Angelis R, Capocaccia R, Visser O, et al. Incidence of hematologic malignancies in Europe by morphologic subtype: results of the HAEMACARE project. Blood. 2010;116(19):3724–34.PubMedCrossRefGoogle Scholar
  9. 9.
    Kim YH, Liu HL, Mraz-Gernhard S, Varghese A, Hoppe RT. Long-term outcome of 525 patients with mycosis fungoides and Sezary syndrome: clinical prognostic factors and risk for disease progression. Arch Dermatol. 2003;139(7):857–66.PubMedCrossRefGoogle Scholar
  10. 10.
    Butcher EC, Picker LJ. Lymphocyte homing and homeostasis. Science (New York, NY). 1996;272(5258):60–6.CrossRefGoogle Scholar
  11. 11.
    Kim EJ, Hess S, Richardson SK, Newton S, Showe LC, Benoit BM, et al. Immunopathogenesis and therapy of cutaneous T cell lymphoma. J Clin Invest. 2005;115(4):798–812.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Flier J, Boorsma DM, van Beek PJ, Nieboer C, Stoof TJ, Willemze R, et al. Differential expression of CXCR3 targeting chemokines CXCL10, CXCL9, and CXCL11 in different types of skin inflammation. J Pathol. 2001;194(4):398–405.PubMedCrossRefGoogle Scholar
  13. 13.
    Groom JR, Luster AD. CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol Cell Biol. 2011;89(2):207.PubMedCrossRefGoogle Scholar
  14. 14.
    Piper KP, Horlock C, Curnow SJ, Arrazi J, Nicholls S, Mahendra P, et al. CXCL10-CXCR3 interactions play an important role in the pathogenesis of acute graft-versus-host disease in the skin following allogeneic stem-cell transplantation. Blood. 2007;110(12):3827–32.PubMedCrossRefGoogle Scholar
  15. 15.
    Clark RA, Watanabe R, Teague JE, Schlapbach C, Tawa MC, Adams N, et al. Skin effector memory T cells do not recirculate and provide immune protection in alemtuzumab-treated CTCL patients. Sci Transl Med. 2012;4(117):117ra7.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Ishida T, Utsunomiya A, Iida S, Inagaki H, Takatsuka Y, Kusumoto S, et al. Clinical significance of CCR4 expression in adult T-cell leukemia/lymphoma: its close association with skin involvement and unfavorable outcome. Clin Cancer Res Off J Am Assoc Cancer Res. 2003;9(10 Pt 1):3625–34.Google Scholar
  17. 17.
    Lu D, Duvic M, Medeiros LJ, Luthra R, Dorfman DM, Jones D. The T-cell chemokine receptor CXCR3 is expressed highly in low-grade mycosis fungoides. Am J Clin Pathol. 2001;115(3):413–21.PubMedCrossRefGoogle Scholar
  18. 18.
    Kallinich T, Muche JM, Qin S, Sterry W, Audring H, Kroczek RA. Chemokine receptor expression on neoplastic and reactive T cells in the skin at different stages of mycosis fungoides. J Invest Dermatol. 2003;121(5):1045–52.PubMedCrossRefGoogle Scholar
  19. 19.
    Kakinuma T, Sugaya M, Nakamura K, Kaneko F, Wakugawa M, Matsushima K, et al. Thymus and activation-regulated chemokine (TARC/CCL17) in mycosis fungoides: serum TARC levels reflect the disease activity of mycosis fungoides. J Am Acad Dermatol. 2003;48(1):23–30.PubMedCrossRefGoogle Scholar
  20. 20.
    Ferenczi K, Fuhlbrigge RC, Pinkus J, Pinkus GS, Kupper TS. Increased CCR4 expression in cutaneous T cell lymphoma. J Invest Dermatol. 2002;119(6):1405–10.PubMedCrossRefGoogle Scholar
  21. 21.
    Campbell JJ, Haraldsen G, Pan J, Rottman J, Qin S, Ponath P, et al. The chemokine receptor CCR4 in vascular recognition by cutaneous but not intestinal memory T cells. Nature. 1999;400(6746):776–80.PubMedCrossRefGoogle Scholar
  22. 22.
    Berger CL, Hanlon D, Kanada D, Dhodapkar M, Lombillo V, Wang N, et al. The growth of cutaneous T-cell lymphoma is stimulated by immature dendritic cells. Blood. 2002;99(8):2929–39.PubMedGoogle Scholar
  23. 23.
    Hwang ST, Janik JE, Jaffe ES, Wilson WH. Mycosis fungoides and Sezary syndrome. Lancet (London, England). 2008;371(9616):945–57.CrossRefGoogle Scholar
  24. 24.
    Eriksen KW, Kaltoft K, Mikkelsen G, Nielsen M, Zhang Q, Geisler C, et al. Constitutive STAT3-activation in Sezary syndrome: tyrphostin AG490 inhibits STAT3-activation, interleukin-2 receptor expression and growth of leukemic Sezary cells. Leukemia. 2001;15(5):787–93.PubMedCrossRefGoogle Scholar
  25. 25.
    Zhang Q, Nowak I, Vonderheid EC, Rook AH, Kadin ME, Nowell PC, et al. Activation of Jak/STAT proteins involved in signal transduction pathway mediated by receptor for interleukin 2 in malignant T lymphocytes derived from cutaneous anaplastic large T-cell lymphoma and Sezary syndrome. Proc Natl Acad Sci U S A. 1996;93(17):9148–53.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Nielsen M, Kaltoft K, Nordahl M, Ropke C, Geisler C, Mustelin T, et al. Constitutive activation of a slowly migrating isoform of Stat3 in mycosis fungoides: tyrphostin AG490 inhibits Stat3 activation and growth of mycosis fungoides tumor cell lines. Proc Natl Acad Sci U S A. 1997;94(13):6764–9.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Wu J, Nihal M, Siddiqui J, Vonderheid EC, Wood GS. Low FAS/CD95 expression by CTCL correlates with reduced sensitivity to apoptosis that can be restored by FAS upregulation. J Invest Dermatol. 2009;129(5):1165–73.PubMedCrossRefGoogle Scholar
  28. 28.
    Choi J, Goh G, Walradt T, Hong BS, Bunick CG, Chen K, et al. Genomic landscape of cutaneous T cell lymphoma. Nat Genet. 2015;47(9):1011–9.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Mao X, Lillington D, Scarisbrick JJ, Mitchell T, Czepulkowski B, Russell-Jones R, et al. Molecular cytogenetic analysis of cutaneous T-cell lymphomas: identification of common genetic alterations in Sezary syndrome and mycosis fungoides. Br J Dermatol. 2002;147(3):464–75.PubMedCrossRefGoogle Scholar
  30. 30.
    van Doorn R, Zoutman WH, Dijkman R, de Menezes RX, Commandeur S, Mulder AA, et al. Epigenetic profiling of cutaneous T-cell lymphoma: promoter hypermethylation of multiple tumor suppressor genes including BCL7a, PTPRG, and p73. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23(17):3886–96.CrossRefGoogle Scholar
  31. 31.
    Lin WM, Lewis JM, Filler RB, Modi BG, Carlson KR, Reddy S, et al. Characterization of the DNA copy-number genome in the blood of cutaneous T-cell lymphoma patients. J Invest Dermatol. 2012;132(1):188–97.PubMedCrossRefGoogle Scholar
  32. 32.
    (NCCN) NCCN. Clinical practice guidelines in oncology: T cell lymphomas (Version 1.2017) 2017. Available from: https://www.nccn.org/professionals/physician_gls/recently_updated.asp.
  33. 33.
    Olsen E, Vonderheid E, Pimpinelli N, Willemze R, Kim Y, Knobler R, et al. Revisions to the staging and classification of mycosis fungoides and Sezary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the cutaneous lymphoma task force of the European Organization of Research and Treatment of cancer (EORTC). Blood. 2007;110(6):1713–22.PubMedCrossRefGoogle Scholar
  34. 34.
    Bernengo MG, Novelli M, Quaglino P, Lisa F, De Matteis A, Savoia P, et al. The relevance of the CD4+ CD26- subset in the identification of circulating Sezary cells. Br J Dermatol. 2001;144(1):125–35.PubMedCrossRefGoogle Scholar
  35. 35.
    Olsen EA, Whittaker S, Kim YH, Duvic M, Prince HM, Lessin SR, et al. Clinical end points and response criteria in mycosis fungoides and Sezary syndrome: a consensus statement of the International Society for Cutaneous Lymphomas, the United States cutaneous lymphoma consortium, and the cutaneous lymphoma task force of the European Organisation for Research and Treatment of Cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29(18):2598–607.CrossRefGoogle Scholar
  36. 36.
    Kim YH, Willemze R, Pimpinelli N, Whittaker S, Olsen EA, Ranki A, et al. TNM classification system for primary cutaneous lymphomas other than mycosis fungoides and Sezary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the cutaneous lymphoma task force of the European Organization of Research and Treatment of Cancer (EORTC). Blood. 2007;110(2):479–84.PubMedCrossRefGoogle Scholar
  37. 37.
    Jones D, Dang NH, Duvic M, Washington LT, Huh YO. Absence of CD26 expression is a useful marker for diagnosis of T-cell lymphoma in peripheral blood. Am J Clin Pathol. 2001;115(6):885–92.PubMedCrossRefGoogle Scholar
  38. 38.
    Borowitz MJ, Weidner A, Olsen EA, Picker LJ. Abnormalities of circulating T-cell subpopulations in patients with cutaneous T-cell lymphoma: cutaneous lymphocyte-associated antigen expression on T cells correlates with extent of disease. Leukemia. 1993;7(6):859–63.PubMedGoogle Scholar
  39. 39.
    Kuchnio M, Sausville EA, Jaffe ES, Greiner T, Foss FM, McClanahan J, et al. Flow cytometric detection of neoplastic T cells in patients with mycosis fungoides based on levels of T-cell receptor expression. Am J Clin Pathol. 1994;102(6):856–60.PubMedCrossRefGoogle Scholar
  40. 40.
    Abel EA, Lindae ML, Hoppe RT, Wood GS. Benign and malignant forms of erythroderma: cutaneous immunophenotypic characteristics. J Am Acad Dermatol. 1988;19(6):1089–95.PubMedCrossRefGoogle Scholar
  41. 41.
    Harmon CB, Witzig TE, Katzmann JA, Pittelkow MR. Detection of circulating T cells with CD4+CD7- immunophenotype in patients with benign and malignant lymphoproliferative dermatoses. J Am Acad Dermatol. 1996;35(3 Pt 1):404–10.PubMedCrossRefGoogle Scholar
  42. 42.
    Vonderheid EC, Bernengo MG, Burg G, Duvic M, Heald P, Laroche L, et al. Update on erythrodermic cutaneous T-cell lymphoma: report of the International Society for Cutaneous Lymphomas. J Am Acad Dermatol. 2002;46(1):95–106.PubMedCrossRefGoogle Scholar
  43. 43.
    Robson A. The pathology of cutaneous T-cell lymphoma. Oncology (Williston Park, NY). 2007;21(2 Suppl 1):9–12.Google Scholar
  44. 44.
    Salhany KE, Cousar JB, Greer JP, Casey TT, Fields JP, Collins RD. Transformation of cutaneous T cell lymphoma to large cell lymphoma. A clinicopathologic and immunologic study. Am J Pathol. 1988;132(2):265–77.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Cotta AC, Cintra ML, de Souza EM, Chagas CA, Magna LA, Fleury RN, et al. Diagnosis of mycosis fungoides: a comparative immunohistochemical study of T-cell markers using a novel anti-CD7 antibody. Appl Immunohistochem Mol Morphol AIMM. 2006;14(3):291–5.PubMedCrossRefGoogle Scholar
  46. 46.
    Campbell SM, Peters SB, Zirwas MJ, Wong HK. Immunophenotypic diagnosis of primary cutaneous lymphomas: a review for the practicing dermatologist. J Clin Aesthetic Dermatol. 2010;3(10):21–5.Google Scholar
  47. 47.
    Gerami P, Guitart J. The spectrum of histopathologic and immunohistochemical findings in folliculotropic mycosis fungoides. Am J Surg Pathol. 2007;31(9):1430–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Gerami P, Rosen S, Kuzel T, Boone SL, Guitart J. Folliculotropic mycosis fungoides: an aggressive variant of cutaneous T-cell lymphoma. Arch Dermatol. 2008;144(6):738–46.PubMedCrossRefGoogle Scholar
  49. 49.
    Hale C. Woringer-Kolopp disease: Pathology Outlines; 2016, updated October 10, 2016. Available from: http://www.pathologyoutlines.com/topic/skintumornonmelanocyticworingerkolopp.html.
  50. 50.
    Tsang WY, Chan JK, Loo KT, Wong KF, Lee AW. Granulomatous slack skin. Histopathology. 1994;25(1):49–55.PubMedCrossRefGoogle Scholar
  51. 51.
    Werner B, Brown S, Ackerman AB. “Hypopigmented mycosis fungoides” is not always mycosis fungoides! Am J Dermatopathol. 2005;27(1):56–67.PubMedCrossRefGoogle Scholar
  52. 52.
    Poszepczynska-Guigne E, Schiavon V, D’Incan M, Echchakir H, Musette P, Ortonne N, et al. CD158k/KIR3DL2 is a new phenotypic marker of Sezary cells: relevance for the diagnosis and follow-up of Sezary syndrome. J Invest Dermatol. 2004;122(3):820–3.PubMedCrossRefGoogle Scholar
  53. 53.
    Karube K, Aoki R, Nomura Y, Yamamoto K, Shimizu K, Yoshida S, et al. Usefulness of flow cytometry for differential diagnosis of precursor and peripheral T-cell and NK-cell lymphomas: analysis of 490 cases. Pathol Int. 2008;58(2):89–97.PubMedCrossRefGoogle Scholar
  54. 54.
    Wood GS, Tung RM, Haeffner AC, Crooks CF, Liao S, Orozco R, et al. Detection of clonal T-cell receptor gamma gene rearrangements in early mycosis fungoides/Sezary syndrome by polymerase chain reaction and denaturing gradient gel electrophoresis (PCR/DGGE). J Invest Dermatol. 1994;103(1):34–41.PubMedCrossRefGoogle Scholar
  55. 55.
    Kim YH. Clinical issues in cutaneous T-cell lymphoma. American Academy of Dermatology annual meeting, Miami Beach; 2013.Google Scholar
  56. 56.
    Zhang B, Beck AH, Taube JM, Kohler S, Seo K, Zwerner J, et al. Combined use of PCR-based TCRG and TCRB clonality tests on paraffin-embedded skin tissue in the differential diagnosis of mycosis fungoides and inflammatory dermatoses. J Mol Diag JMD. 2010;12(3):320–7.CrossRefGoogle Scholar
  57. 57.
    Thurber SE, Zhang B, Kim YH, Schrijver I, Zehnder J, Kohler S. T-cell clonality analysis in biopsy specimens from two different skin sites shows high specificity in the diagnosis of patients with suggested mycosis fungoides. J Am Acad Dermatol. 2007;57(5):782–90.PubMedCrossRefGoogle Scholar
  58. 58.
    Kirsch IR, Watanabe R, O’Malley JT, Williamson DW, Scott LL, Elco CP, et al. TCR sequencing facilitates diagnosis and identifies mature T cells as the cell of origin in CTCL. Sci Transl Med. 2015;7(308):308ra158.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Ralfkiaer U, Hagedorn PH, Bangsgaard N, Lovendorf MB, Ahler CB, Svensson L, et al. Diagnostic microRNA profiling in cutaneous T-cell lymphoma (CTCL). Blood. 2011;118(22):5891–900.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Agar NS, Wedgeworth E, Crichton S, Mitchell TJ, Cox M, Ferreira S, et al. Survival outcomes and prognostic factors in mycosis fungoides/Sezary syndrome: validation of the revised International Society for Cutaneous Lymphomas/European Organisation for Research and Treatment of Cancer staging proposal. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(31):4730–9.CrossRefGoogle Scholar
  61. 61.
    Scarisbrick JJ, Prince HM, Vermeer MH, Quaglino P, Horwitz S, Porcu P, et al. Cutaneous lymphoma international consortium study of outcome in advanced stages of mycosis Fungoides and Sezary syndrome: effect of specific prognostic markers on survival and development of a prognostic model. J Clin Oncol Off J Am Soc Clin Oncol. 2015;33(32):3766–73.CrossRefGoogle Scholar
  62. 62.
    Sun G, Berthelot C, Li Y, Glass DA 2nd, George D, Pandya A, et al. Poor prognosis in non-Caucasian patients with early-onset mycosis fungoides. J Am Acad Dermatol. 2009;60(2):231–5.PubMedCrossRefGoogle Scholar
  63. 63.
    Talpur R, Singh L, Daulat S, Liu P, Seyfer S, Trynosky T, et al. Long-term outcomes of 1,263 patients with mycosis fungoides and Sezary syndrome from 1982 to 2009. Clin Cancer Res Off J Am Assoc Cancer Res. 2012;18(18):5051–60.CrossRefGoogle Scholar
  64. 64.
    Vidulich KA, Talpur R, Bassett RL, Duvic M. Overall survival in erythrodermic cutaneous T-cell lymphoma: an analysis of prognostic factors in a cohort of patients with erythrodermic cutaneous T-cell lymphoma. Int J Dermatol. 2009;48(3):243–52.PubMedCrossRefGoogle Scholar
  65. 65.
    Diamandidou E, Colome M, Fayad L, Duvic M, Kurzrock R. Prognostic factor analysis in mycosis fungoides/Sezary syndrome. J Am Acad Dermatol. 1999;40(6 Pt 1):914–24.PubMedCrossRefGoogle Scholar
  66. 66.
    Arulogun SO, Prince HM, Ng J, Lade S, Ryan GF, Blewitt O, et al. Long-term outcomes of patients with advanced-stage cutaneous T-cell lymphoma and large cell transformation. Blood. 2008;112(8):3082–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Siegel RS, Pandolfino T, Guitart J, Rosen S, Kuzel TM. Primary cutaneous T-cell lymphoma: review and current concepts. J Clin Oncol Off J Am Soc Clin Oncol. 2000;18(15):2908–25.CrossRefGoogle Scholar
  68. 68.
    Kural YB, Su O, Onsun N, Uras AR. Atopy, IgE and eosinophilic cationic protein concentration, specific IgE positivity, eosinophil count in cutaneous T cell lymphoma. Int J Dermatol. 2010;49(4):390–5.PubMedCrossRefGoogle Scholar
  69. 69.
    Rook AH, Vowels BR, Jaworsky C, Singh A, Lessin SR. The immunopathogenesis of cutaneous T-cell lymphoma. Abnormal cytokine production by Sezary T cells. Arch Dermatol. 1993;129(4):486–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Kadin ME, Pavlov IY, Delgado JC, Vonderheid EC. High soluble CD30, CD25, and IL-6 may identify patients with worse survival in CD30+ cutaneous lymphomas and early mycosis fungoides. J Invest Dermatol. 2012;132(3 Pt 1):703–10.PubMedCrossRefGoogle Scholar
  71. 71.
    Berti E, Tomasini D, Vermeer MH, Meijer CJ, Alessi E, Willemze R. Primary cutaneous CD8-positive epidermotropic cytotoxic T cell lymphomas. A distinct clinicopathological entity with an aggressive clinical behavior. Am J Pathol. 1999;155(2):483–92.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Edinger JT, Clark BZ, Pucevich BE, Geskin LJ, Swerdlow SH. CD30 expression and proliferative fraction in nontransformed mycosis fungoides. Am J Surg Pathol. 2009;33(12):1860–8.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Wasik MA, Vonderheid EC, Bigler RD, Marti R, Lessin SR, Polansky M, et al. Increased serum concentration of the soluble interleukin-2 receptor in cutaneous T-cell lymphoma. Clinical and prognostic implications. Arch Dermatol. 1996;132(1):42–7.PubMedCrossRefGoogle Scholar
  74. 74.
    Hassel JC, Meier R, Joller-Jemelka H, Burg G, Dummer R. Serological immunomarkers in cutaneous T cell lymphoma. Dermatology (Basel, Switzerland). 2004;209(4):296–300.CrossRefGoogle Scholar
  75. 75.
    Talpur R, Jones DM, Alencar AJ, Apisarnthanarax N, Herne KL, Yang Y, et al. CD25 expression is correlated with histological grade and response to denileukin diftitox in cutaneous T-cell lymphoma. J Invest Dermatol. 2006;126(3):575–83.PubMedCrossRefGoogle Scholar
  76. 76.
    Horie R, Watanabe T. CD30: expression and function in health and disease. Semin Immunol. 1998;10(6):457–70.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Nadali G, Vinante F, Ambrosetti A, Todeschini G, Veneri D, Zanotti R, et al. Serum levels of soluble CD30 are elevated in the majority of untreated patients with Hodgkin’s disease and correlate with clinical features and prognosis. J Clin Oncol Off J Am Soc Clin Oncol. 1994;12(4):793–7.CrossRefGoogle Scholar
  78. 78.
    Hoppe RT, Medeiros LJ, Warnke RA, Wood GS. CD8-positive tumor-infiltrating lymphocytes influence the long-term survival of patients with mycosis fungoides. J Am Acad Dermatol. 1995;32(3):448–53.PubMedCrossRefGoogle Scholar
  79. 79.
    Gjerdrum LM, Woetmann A, Odum N, Burton CM, Rossen K, Skovgaard GL, et al. FOXP3+ regulatory T cells in cutaneous T-cell lymphomas: association with disease stage and survival. Leukemia. 2007;21(12):2512–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Li S, Ross DT, Kadin ME, Brown PO, Wasik MA. Comparative genome-scale analysis of gene expression profiles in T cell lymphoma cells during malignant progression using a complementary DNA microarray. Am J Pathol. 2001;158(4):1231–7.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Shin J, Monti S, Aires DJ, Duvic M, Golub T, Jones DA, et al. Lesional gene expression profiling in cutaneous T-cell lymphoma reveals natural clusters associated with disease outcome. Blood. 2007;110(8):3015–27.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Tracey L, Villuendas R, Dotor AM, Spiteri I, Ortiz P, Garcia JF, et al. Mycosis fungoides shows concurrent deregulation of multiple genes involved in the TNF signaling pathway: an expression profile study. Blood. 2003;102(3):1042–50.PubMedCrossRefGoogle Scholar
  83. 83.
    Martinez-Escala ME, Gonzalez BR, Guitart J. Mycosis Fungoides Variants. Surg Pathol Clin. 2014;7(2):169–89.PubMedCrossRefGoogle Scholar
  84. 84.
    Talpur R, Bassett R, Duvic M. Prevalence and treatment of staphylococcus aureus colonization in patients with mycosis fungoides and Sezary syndrome. Br J Dermatol. 2008;159(1):105–12.PubMedCrossRefGoogle Scholar
  85. 85.
    Kim YH, Jensen RA, Watanabe GL, Varghese A, Hoppe RT. Clinical stage IA (limited patch and plaque) mycosis fungoides. A long-term outcome analysis. Arch Dermatol. 1996;132(11):1309–13.PubMedCrossRefGoogle Scholar
  86. 86.
    Gathers RC, Scherschun L, Malick F, Fivenson DP, Lim HW. Narrowband UVB phototherapy for early-stage mycosis fungoides. J Am Acad Dermatol. 2002;47(2):191–7.PubMedCrossRefGoogle Scholar
  87. 87.
    Querfeld C, Rosen ST, Kuzel TM, Kirby KA, Roenigk HH Jr, Prinz BM, et al. Long-term follow-up of patients with early-stage cutaneous T-cell lymphoma who achieved complete remission with psoralen plus UV-A monotherapy. Arch Dermatol. 2005;141(3):305–11.PubMedCrossRefGoogle Scholar
  88. 88.
    Kim YH, Martinez G, Varghese A, Hoppe RT. Topical nitrogen mustard in the management of mycosis fungoides: update of the Stanford experience. Arch Dermatol. 2003;139(2):165–73.PubMedGoogle Scholar
  89. 89.
    Deeths MJ, Chapman JT, Dellavalle RP, Zeng C, Aeling JL. Treatment of patch and plaque stage mycosis fungoides with imiquimod 5% cream. J Am Acad Dermatol. 2005;52(2):275–80.PubMedCrossRefGoogle Scholar
  90. 90.
    Hoppe RT, Harrison C, Tavallaee M, Bashey S, Sundram U, Li S, et al. Low-dose total skin electron beam therapy as an effective modality to reduce disease burden in patients with mycosis fungoides: results of a pooled analysis from 3 phase-II clinical trials. J Am Acad Dermatol. 2015;72(2):286–92.PubMedCrossRefGoogle Scholar
  91. 91.
    Hughes CF, Khot A, McCormack C, Lade S, Westerman DA, Twigger R, et al. Lack of durable disease control with chemotherapy for mycosis fungoides and Sezary syndrome: a comparative study of systemic therapy. Blood. 2015;125(1):71–81.PubMedCrossRefGoogle Scholar
  92. 92.
    Duarte RF, Boumendil A, Onida F, Gabriel I, Arranz R, Arcese W, et al. Long-term outcome of allogeneic hematopoietic cell transplantation for patients with mycosis Fungoides and Sézary syndrome: a European Society for Blood and Marrow Transplantation Lymphoma Working Party Extended Analysis. J Clin Oncol. 2014;32(29):3347–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Wu PA, Kim YH, Lavori PW, Hoppe RT, Stockerl-Goldstein KE. A meta-analysis of patients receiving allogeneic or autologous hematopoietic stem cell transplant in mycosis fungoides and Sezary syndrome. Biol Blood Marrow Transpl J Am Soc Blood Marrow Transpl. 2009;15(8):982–90.CrossRefGoogle Scholar
  94. 94.
    Watanabe R, Teague JE, Fisher DC, Kupper TS, Clark RA. Alemtuzumab therapy for leukemic cutaneous T-cell lymphoma: diffuse erythema as a positive predictor of complete remission. JAMA Dermatol. 2014;150(7):776–9.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Latkowski JA, Heald P. Strategies for treating cutaneous T-cell lymphoma: part 1: remission. J Clin Aesthetic Dermatol. 2009;2(6):22–7.Google Scholar
  96. 96.
    Dalton JA, Yag-Howard C, Messina JL, Glass LF. Cutaneous T-cell lymphoma. Int J Dermatol. 1997;36(11):801–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Axelrod PI, Lorber B, Vonderheid EC. Infections complicating mycosis fungoides and Sezary syndrome. JAMA. 1992;267(10):1354–8.PubMedCrossRefGoogle Scholar
  98. 98.
    Drake LA, Cohen L, Gillies R, Flood JG, Riordan AT, Phillips SB, et al. Pharmacokinetics of doxepin in subjects with pruritic atopic dermatitis. J Am Acad Dermatol. 1999;41(2 Pt 1):209–14.PubMedCrossRefGoogle Scholar
  99. 99.
    Demierre MF, Taverna J. Mirtazapine and gabapentin for reducing pruritus in cutaneous T-cell lymphoma. J Am Acad Dermatol. 2006;55(3):543–4.PubMedCrossRefGoogle Scholar
  100. 100.
    Duval A, Dubertret L. Aprepitant as an antipruritic agent? N Engl J Med. 2009;361(14):1415–6.PubMedCrossRefGoogle Scholar
  101. 101.
    Sugaya M, Morimura S, Suga H, Kawaguchi M, Miyagaki T, Ohmatsu H, et al. CCR4 is expressed on infiltrating cells in lesional skin of early mycosis fungoides and atopic dermatitis. J Dermatol. 2015;42(6):613–5.PubMedCrossRefGoogle Scholar
  102. 102.
    Ito A, Ishida T, Yano H, Inagaki A, Suzuki S, Sato F, et al. Defucosylated anti-CCR4 monoclonal antibody exercises potent ADCC-mediated antitumor effect in the novel tumor-bearing humanized NOD/Shi-scid, IL-2Rgamma(null) mouse model. Cancer Immunol Immunother CII. 2009;58(8):1195–206.PubMedCrossRefGoogle Scholar
  103. 103.
    Duvic M, Evans M, Wang C. Mogamulizumab for the treatment of cutaneous T-cell lymphoma: recent advances and clinical potential. Ther Adv Hematol. 2016;7(3):171–4.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Duvic M, Pinter-Brown LC, Foss FM, Sokol L, Jorgensen JL, Challagundla P, et al. Phase 1/2 study of mogamulizumab, a defucosylated anti-CCR4 antibody, in previously treated patients with cutaneous T-cell lymphoma. Blood. 2015;125(12):1883–9.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Ogura M, Ishida T, Hatake K, Taniwaki M, Ando K, Tobinai K, et al. Multicenter phase II study of mogamulizumab (KW-0761), a defucosylated anti-cc chemokine receptor 4 antibody, in patients with relapsed peripheral T-cell lymphoma and cutaneous T-cell lymphoma. J Clin Oncol Off J Am Soc Clin Oncol. 2014;32(11):1157–63.CrossRefGoogle Scholar
  106. 106.
    Kantekure K, Yang Y, Raghunath P, Schaffer A, Woetmann A, Zhang Q, et al. Expression patterns of the immunosuppressive proteins PD-1/CD279 and PD-L1/CD274 at different stages of cutaneous T-cell lymphoma/mycosis fungoides. Am J Dermatopathol. 2012;34(1):126–8.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Samimi S, Benoit B, Evans K, et al. Increased programmed death-1 expression on cd4+ t cells in cutaneous t-cell lymphoma: implications for immune suppression. Arch Dermatol. 2010;146(12):1382–8.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Kim YH. A phase 2 study of pembrolizumab for the treatment of relapsed/refractory MF/SS. T-cell lymphoma forum 2016; January 28, 2016; San Francisco; 2016.Google Scholar
  109. 109.
    Khodadoust M RA, Porcu P, Foss FM, Moskowitz AJ, Shustov AR, Shanbhag S, Sokol L, Shine R, Fling SP, Li S, Rabhar Z, Kim J, Yang Y, Yearley J, Chartash EK, Townson SM, Subrahmanyam PB, Maecker H, Alizadeh AA, Dai J, Horwitz SM, Sharon E, Kohrt H, Cheever MA, Kim YH. Pembrolizumab for treatment of relapsed/refractory mycosis fungoides and Sezary syndrome: clinical efficacy in a CITN multicenter phase 2 study. 3rd World Congress of Cutaneous Lymphomas; October 28, 2016.Google Scholar
  110. 110.
    S T, editor. T cell symposium and USCLC meeting highlights United States Cutaneous Lymphoma Consortium (USCLC) cutaneous lymphoma workshop; 2016; Washington, DC.Google Scholar
  111. 111.
    Rozati S, Kim YH. Experimental treatment strategies in primary cutaneous T-cell lymphomas. Curr Opin Oncol. 2016;28(2):166–71.PubMedCrossRefGoogle Scholar
  112. 112.
    Marie-Cardine A, Viaud N, Thonnart N, Joly R, Chanteux S, Gauthier L, et al. IPH4102, a humanized KIR3DL2 antibody with potent activity against cutaneous T-cell lymphoma. Cancer Res. 2014;74(21):6060–70.PubMedCrossRefGoogle Scholar
  113. 113.
    Querfeld C, Pacheco T, Foss FM, Halwani AS, Porcu P, Seto AG, Ruckman J, Landry ML, Jackson AL, Pestano LA, Dickinson BA, Sanseverino M, Rodman DM, Gordon G, Marshall W. Preliminary results of a phase 1 trial evaluating MRG-106, a synthetic microRNA antagonist (LNA antimiR) of microRNA-155, in patients with CTCL. Cancer. 2016;118(23):5830–9.Google Scholar
  114. 114.
    Frankel AE, Woo JH, Ahn C, Foss FM, Duvic M, Neville PH, et al. Resimmune, an anti-CD3epsilon recombinant immunotoxin, induces durable remissions in patients with cutaneous T-cell lymphoma. Haematologica. 2015;100(6):794–800.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Kim YH. A phase 1b study in cutaneous T-cell lymphoma (CTCL) with the novel topically applied skin-restricted histone deacetylase inhibitor (HDAC-i) SHP-141. American Society of Clinical Oncology (ASCO); Chicago; 2014.Google Scholar
  116. 116.
    Rook AH, Wood GS, Duvic M, Vonderheid EC, Tobia A, Cabana B. A phase II placebo-controlled study of photodynamic therapy with topical hypericin and visible light irradiation in the treatment of cutaneous T-cell lymphoma and psoriasis. J Am Acad Dermatol. 2010;63(6):984–90.PubMedCrossRefGoogle Scholar
  117. 117.
    Rook AH, Gelfand JM, Wysocka M, Troxel AB, Benoit B, Surber C, et al. Topical resiquimod can induce disease regression and enhance T-cell effector functions in cutaneous T-cell lymphoma. Blood. 2015;126(12):1452–61.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Duvic M, Kuzel T, Dang N, et al. A dose finding lead-in study of E777 (diphtheria toxin fragment-interleukin-2 fusion protein) in persistent or recurrent cutaneous T-cell lymphoma (CTCL). Blood. 2014;124(21):3097.Google Scholar
  119. 119.
    Schlaak M, Theurich S, Pickenhain J, Skoetz N, Kurschat P, von Bergwelt-Baildon M. Allogeneic stem cell transplantation for advanced primary cutaneous T-cell lymphoma: a systematic review. Crit Rev Oncol Hematol. 2013;85(1):21–31.PubMedCrossRefGoogle Scholar
  120. 120.
    Foss FM, Sausville EA. Prognosis and staging of cutaneous T-cell lymphoma. Hematol Oncol Clin North Am. 1995;9(5):1011–9.PubMedCrossRefGoogle Scholar
  121. 121.
    Senff NJ, Hoefnagel JJ, Jansen PM, Vermeer MH, van Baarlen J, Blokx WA, et al. Reclassification of 300 primary cutaneous B-cell lymphomas according to the new WHO-EORTC classification for cutaneous lymphomas: comparison with previous classifications and identification of prognostic markers. J Clin Oncol Off J Am Soc Clin Oncol. 2007;25(12):1581–7.CrossRefGoogle Scholar
  122. 122.
    Massone C, Fink-Puches R, Laimer M, Rutten A, Vale E, Cerroni L. Miliary and agminated-type primary cutaneous follicle center lymphoma: report of 18 cases. J Am Acad Dermatol. 2011;65(4):749–55.PubMedCrossRefGoogle Scholar
  123. 123.
    Hamilton SN, Wai ES, Tan K, Alexander C, Gascoyne RD, Connors JM. Treatment and outcomes in patients with primary cutaneous B-cell lymphoma: the BC Cancer Agency experience. Int J Radiat Oncol Biol Phys. 2013;87(4):719–25.PubMedCrossRefGoogle Scholar
  124. 124.
    Cerroni L, Kerl H. Primary cutaneous follicle center cell lymphoma. Leuk Lymphoma. 2001;42(5):891–900.PubMedCrossRefGoogle Scholar
  125. 125.
    Swerdlow SH, Quintanilla-Martinez L, Willemze R, Kinney MC. Cutaneous B-cell lymphoproliferative disorders: report of the 2011 Society for Hematopathology/European Association for Haematopathology workshop. Am J Clin Pathol. 2013;139(4):515–35.PubMedCrossRefGoogle Scholar
  126. 126.
    Willemze R, Kerl H, Sterry W, Berti E, Cerroni L, Chimenti S, et al. EORTC classification for primary cutaneous lymphomas: a proposal from the Cutaneous Lymphoma Study Group of the European Organization for Research and Treatment of Cancer. Blood. 1997;90(1):354–71.PubMedGoogle Scholar
  127. 127.
    Harris NL, Jaffe ES, Stein H, Banks PM, Chan JK, Cleary ML, et al. A revised European-American classification of lymphoid neoplasms: a proposal from the international lymphoma study group. Blood. 1994;84(5):1361–92.PubMedPubMedCentralGoogle Scholar
  128. 128.
    Gulia A, Saggini A, Wiesner T, Fink-Puches R, Argenyi Z, Ferrara G, et al. Clinicopathologic features of early lesions of primary cutaneous follicle center lymphoma, diffuse type: implications for early diagnosis and treatment. J Am Acad Dermatol. 2011;65(5):991–1000.PubMedCrossRefGoogle Scholar
  129. 129.
    Hoefnagel JJ, Vermeer MH, Jansen PM, Heule F, van Voorst Vader PC, Sanders CJ, et al. Primary cutaneous marginal zone B-cell lymphoma: clinical and therapeutic features in 50 cases. Arch Dermatol. 2005;141(9):1139–45.PubMedCrossRefGoogle Scholar
  130. 130.
    Xie X, Sundram U, Natkunam Y, Kohler S, Hoppe RT, Kim YH, et al. Expression of HGAL in primary cutaneous large B-cell lymphomas: evidence for germinal center derivation of primary cutaneous follicular lymphoma. Modern Pathol Off J United States Can Acad Pathol Inc. 2008;21(6):653–9.CrossRefGoogle Scholar
  131. 131.
    Li C, Inagaki H, Kuo TT, Hu S, Okabe M, Eimoto T. Primary cutaneous marginal zone B-cell lymphoma: a molecular and clinicopathologic study of 24 asian cases. Am J Surg Pathol. 2003;27(8):1061–9.PubMedCrossRefGoogle Scholar
  132. 132.
    Connors JM, Hsi ED, Foss FM. Lymphoma of the skin. Hematol Am Soc Hematol Educ Program. 2002;1:263–82.Google Scholar
  133. 133.
    Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Grange F, Hedelin G, Joly P, Beylot-Barry M, D’Incan M, Delaunay M, et al. Prognostic factors in primary cutaneous lymphomas other than mycosis fungoides and the Sezary syndrome. The French study group on cutaneous lymphomas. Blood. 1999;93(11):3637–42.PubMedGoogle Scholar
  135. 135.
    Koens L, Vermeer MH, Willemze R, Jansen PM. IgM expression on paraffin sections distinguishes primary cutaneous large B-cell lymphoma, leg type from primary cutaneous follicle center lymphoma. Am J Surg Pathol. 2010;34(7):1043–8.PubMedCrossRefGoogle Scholar
  136. 136.
    Demirkesen C, Tuzuner N, Esen T, Lebe B, Ozkal S. The expression of IgM is helpful in the differentiation of primary cutaneous diffuse large B cell lymphoma and follicle center lymphoma. Leuk Res. 2011;35(9):1269–72.PubMedCrossRefGoogle Scholar
  137. 137.
    Grange F, Petrella T, Beylot-Barry M, Joly P, D’Incan M, Delaunay M, et al. Bcl-2 protein expression is the strongest independent prognostic factor of survival in primary cutaneous large B-cell lymphomas. Blood. 2004;103(10):3662–8.PubMedCrossRefGoogle Scholar
  138. 138.
    Hallermann C, Niermann C, Fischer RJ, Schulze HJ. New prognostic relevant factors in primary cutaneous diffuse large B-cell lymphomas. J Am Acad Dermatol. 2007;56(4):588–97.PubMedCrossRefGoogle Scholar
  139. 139.
    Koens L, Senff NJ, Vermeer MH, Willemze R, Jansen PM. Methotrexate-associated B-cell lymphoproliferative disorders presenting in the skin: a clinicopathologic and immunophenotypical study of 10 cases. Am J Surg Pathol. 2014;38(7):999–1006.PubMedCrossRefGoogle Scholar
  140. 140.
    Geelen FA, Vermeer MH, Meijer CJ, Van der Putte SC, Kerkhof E, Kluin PM, et al. bcl-2 protein expression in primary cutaneous large B-cell lymphoma is site-related. J Clin Oncol Off J Am Soc Clin Oncol. 1998;16(6):2080–5.CrossRefGoogle Scholar
  141. 141.
    Senff NJ, Noordijk EM, Kim YH, Bagot M, Berti E, Cerroni L, et al. European Organization for Research and Treatment of Cancer and International Society for Cutaneous Lymphoma consensus recommendations for the management of cutaneous B-cell lymphomas. Blood. 2008;112(5):1600–9.PubMedCrossRefGoogle Scholar
  142. 142.
    Grange F, Beylot-Barry M, Courville P, Maubec E, Bagot M, Vergier B, et al. Primary cutaneous diffuse large B-cell lymphoma, leg type: clinicopathologic features and prognostic analysis in 60 cases. Arch Dermatol. 2007;143(9):1144–50.PubMedCrossRefGoogle Scholar
  143. 143.
    Gupta E, Accurso J, Sluzevich J, Menke DM, Tun HW. Excellent outcome of immunomodulation or Bruton’s tyrosine kinase inhibition in highly refractory primary cutaneous diffuse large B-cell lymphoma, leg type. Rare Tumors. 2015;7(4):6067.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Bekkenk MW, Geelen FA, van Voorst Vader PC, Heule F, Geerts ML, van Vloten WA, et al. Primary and secondary cutaneous CD30(+) lymphoproliferative disorders: a report from the Dutch Cutaneous Lymphoma Group on the long-term follow-up data of 219 patients and guidelines for diagnosis and treatment. Blood. 2000;95(12):3653–61.PubMedGoogle Scholar
  145. 145.
    Kempf W, Pfaltz K, Vermeer MH, Cozzio A, Ortiz-Romero PL, Bagot M, et al. EORTC, ISCL, and USCLC consensus recommendations for the treatment of primary cutaneous CD30-positive lymphoproliferative disorders: lymphomatoid papulosis and primary cutaneous anaplastic large-cell lymphoma. Blood. 2011;118(15):4024–35.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Willemze R, Beljaards RC. Spectrum of primary cutaneous CD30 (Ki-1)-positive lymphoprolioerative disorders. A proposal for classification and guidelines for management and treatment. J Am Acad Dermatol. 1993;28(6):973–80.PubMedCrossRefGoogle Scholar
  147. 147.
    Cerroni L. Lymphomatoid papulosis, pityriasis lichenoides et varioliformis acuta, and anaplastic large-cell (Ki-1+) lymphoma. J Am Acad Dermatol. 1997;37(2 Pt 1):287.PubMedCrossRefGoogle Scholar
  148. 148.
    Brosens DA, Thulliez A. Histio-monocytic reticulosis and mycosis fungoides; four case reports. Arch Belg Dermatol Syphiligr. 1956;12(3):263–72.PubMedGoogle Scholar
  149. 149.
    Macaulay WL. Lymphomatoid papulosis. A continuing self-healing eruption, clinically benign – histologically malignant. Arch Dermatol. 1968;97(1):23–30.PubMedCrossRefGoogle Scholar
  150. 150.
    Willemze R, Meyer CJ, Van Vloten WA, Scheffer E. The clinical and histological spectrum of lymphomatoid papulosis. Br J Dermatol. 1982;107(2):131–44.PubMedCrossRefGoogle Scholar
  151. 151.
    Cardoso J, Duhra P, Thway Y, Calonje E. Lymphomatoid papulosis type D: a newly described variant easily confused with cutaneous aggressive CD8-positive cytotoxic T-cell lymphoma. Am J Dermatopathol. 2012;34(7):762–5.PubMedCrossRefGoogle Scholar
  152. 152.
    Kempf W, Kazakov DV, Baumgartner HP, Kutzner H. Follicular lymphomatoid papulosis revisited: a study of 11 cases, with new histopathological findings. J Am Acad Dermatol. 2013;68(5):809–16.PubMedCrossRefGoogle Scholar
  153. 153.
    Karai LJ, Kadin ME, Hsi ED, Sluzevich JC, Ketterling RP, Knudson RA, et al. Chromosomal rearrangements of 6p25.3 define a new subtype of lymphomatoid papulosis. Am J Surg Pathol. 2013;37(8):1173–81.PubMedCrossRefGoogle Scholar
  154. 154.
    Kaudewitz P, Stein H, Dallenbach F, Eckert F, Bieber K, Burg G, et al. Primary and secondary cutaneous Ki-1+ (CD30+) anaplastic large cell lymphomas. Morphologic, immunohistologic, and clinical-characteristics. Am J Pathol. 1989;135(2):359–67.PubMedPubMedCentralGoogle Scholar
  155. 155.
    Delsol G, Al Saati T, Gatter KC, Gerdes J, Schwarting R, Caveriviere P, et al. Coexpression of epithelial membrane antigen (EMA), Ki-1, and interleukin-2 receptor by anaplastic large cell lymphomas. Diagnostic value in so-called malignant histiocytosis. Am J Pathol. 1988;130(1):59–70.PubMedPubMedCentralGoogle Scholar
  156. 156.
    Krenacs L, Wellmann A, Sorbara L, Himmelmann AW, Bagdi E, Jaffe ES, et al. Cytotoxic cell antigen expression in anaplastic large cell lymphomas of T- and null-cell type and Hodgkin’s disease: evidence for distinct cellular origin. Blood. 1997;89(3):980–9.PubMedGoogle Scholar
  157. 157.
    Wilson MS, Weiss LM, Gatter KC, Mason DY, Dorfman RF, Warnke RA. Malignant histiocytosis. A reassessment of cases previously reported in 1975 based on paraffin section immunophenotyping studies. Cancer. 1990;66(3):530–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Washington University in St. Louis, School of MedicineSt. LouisUSA
  2. 2.Department of Medicine, Division of DermatologyVanderbilt UniversityNashvilleUSA
  3. 3.DermatologyWashington University in St. Louis, School of MedicineSt. LouisUSA

Personalised recommendations