Application and Illustrative Examples

  • Jianwei Cheng
Chapter

Abstract

This chapter deals with coding the software program with the Visual Basic language. The computer program named “CCMER” (C omprehensive C onsultation M odel for E xplosion R isk in Mine Atmosphere) which is capable of all the analysing models mentioned in the previous chapters to provide a tool of predicting the gas species change trends and tracking of the explosibility of mine atmosphere at any time points has been developed. Case studies are also given to illustrate the applications of “CCMER”, the developed computer program.

Keywords

Gas explosion Risk assessment Explosion mitigation Prediction Computer integrated software CCMER 

References

  1. Arnaldos, J., Casal, J., & Planas-Cuchi, E. (2001). Prediction of flammability limits at reduced pressures. Chemical Engineering Science, 56(12), 3829–3843.CrossRefGoogle Scholar
  2. Bjerketvedt, D., Bakke, J. R., & Wingerden, K. V. (1997). Gas explosion handbook. Journal of Hazardous Materials, 52(1), 1–150.CrossRefGoogle Scholar
  3. Carona, M., Goethalsa, M., De Smedta, G., Berghmansa, J., Vliegenb, S., Van’t Oostb, E., & Van Den Aarssenb, A. (1999). Pressure dependence of the auto-ignition temperature of methane/air mixtures. Journal of Hazardous Materials, 65(3), 233–244.CrossRefGoogle Scholar
  4. Cashdollar, K. L., Zlochower, I. A., Green, G. M., Thomas, R. A., & Hertzberg, M. (2000). Flammability of methane, propane, and hydrogen gases. Journal of Loss Prevention in the Process Industries, 13, 327–340.CrossRefGoogle Scholar
  5. Cheng, J. (2012). Comprehensive and integrated model for atmospheric status in sealed underground mine areas. Morgantown: West Virginia University.Google Scholar
  6. Cheng, J. (2016). Assessment of mine ventilation system reliability using random simulation method. Environmental Engineering and Management Journal, 15, 841–850.Google Scholar
  7. Cheng, J., Liu, F., & Li, S. (2017). Modelling mine gas explosive pattern in underground mine gob and overlying strata. Paper submitted to International Journal of Oil, Gas and Coal Technology.Google Scholar
  8. Cheng, J., & Luo, Y. (2013). Modified explosive diagram for determining gas-mixture explosibility. Journal of Loss Prevention in the Process Industries, 26(4), 714–722.CrossRefGoogle Scholar
  9. Cheng, J., & Luo, Y. (2014). Modeling atmosphere composition and determining explosibility in a sealed coal mine volume. Archives of Mining Sciences, 59(1), 25–40.CrossRefGoogle Scholar
  10. Cheng, J., Luo, Y., & Zhou, F. (2015). Explosibility safety factor: An approach to assess mine gas explosion risk. Fire Technology, 51(2), 309–323.CrossRefGoogle Scholar
  11. Cheng, J., Cheng, W., & Zhang, S. (2012). Methods to determine the mine gas explosibility – An overview. Journal of Loss Prevention in the Process Industries, 25(3), 425–435.CrossRefGoogle Scholar
  12. Cheng, J., & Wei, L. (2014). Failure modes and manifestations in a mine gas explosion disaster. Journal of Failure Analysis & Prevention, 14(5), 601–609.CrossRefGoogle Scholar
  13. Cheng, J. W., & Yang, S. Q. (2011). Improved Coward explosive triangle for determining explosibility of mixture gas. Process Safety & Environmental Protection, 89(2), 89–94.CrossRefGoogle Scholar
  14. Cheng, J., & Yang, S. (2012). Data mining applications in evaluating mine ventilation system. Safety Science, 50(4), 918–922.CrossRefGoogle Scholar
  15. Cheng, J., & Zhou, F. (2013). A systematic approach to assess mine atmospheric status. Fire Safety Journal, 58(15), 142–150.CrossRefGoogle Scholar
  16. Cheng, J., & Zhou, F. (2015). Revised explosibility diagram to judge best practice of controlling an explosive gas-mixture. Fire Technology, 51(2), 293–308.CrossRefGoogle Scholar
  17. Cheng, J., Zhou, F., Chen, K., & Wei, L. (2014). Key considerations for coal mine ventilation system: A review. In F. von Glehn & M. Biffi (Eds.), 10th international mine ventilation congress (pp. 513–522). South African: Sun City.Google Scholar
  18. Du Plessis, J. (2014). Ventilation and occupational environment engineering in mines. Johannesburg: Mine Ventilaiton Scociety of South Africa.Google Scholar
  19. Hu, S., Feng, G., Xia, T., Li, Z., Jiang, H., Cheng, J., Gao, Q., Wang, Z., Zhang, Y., & Zhang, J. (2016). Changes on methane concentration after CO2 injection in a longwall gob: A case study. Journal of Natural Gas Science & Engineering, 29, 550–558.CrossRefGoogle Scholar
  20. Humphreys, D., & O’Beirne, T. (2000). Risk assessment based stone dusting and explosion barrier requirements, In Proc. Queensland mining industry health and safety conference. Townsville, Queensland (pp. 27–30).Google Scholar
  21. Jacobs, M., & Porter, I. (1998). Rapid generation of control charts for analysis of complex gas mixes in crisis situations. In E. Baafi (Ed.), Coal 1998: Coal operators’ conference (pp. 641–648). Wollongong: University of Wollongong & the Australian Institute of Mining and Metallurgy.Google Scholar
  22. Kondo, S., Takizawa, K., Takahashi, A., & Tokuhashi, K. (2006). Extended Le Chatelier’s formula for nitrogen dilution effect on flammability limits. Fire Safety Journal, 41(3), 406–417.CrossRefGoogle Scholar
  23. Luo, Y., Xiao, L., Cheng, J., & Li, M. (2012). Locating and determining the status of a thermal event in a longwall panel using mine atmosphere monitoring data. Transactions of the Society for Mining, Metallurgy, and Exploration, 332, 485–493.Google Scholar
  24. Ma, T., & Larrañaga, M. (2015). Theoretical flammability diagram for analyzing mine gases. Fire Technology, 51(2), 271–286.CrossRefGoogle Scholar
  25. Ma, T., Wang, Q., & Larrañaga, M. D. (2014). From ignition to suppression, a thermal view of flammability limits. Fire Technology, 50(3), 525–543.CrossRefGoogle Scholar
  26. Vanderstraeten, B., Tuerlinckx, D., Berghmans, J., Vliegen, S., Vant Oost, E., & Smit, B. (1997). Flammability limits of methanerair mixtures at elevated pressure and temperature. Journal of Hazardous Materials, 56, 237–246.CrossRefGoogle Scholar
  27. Yu, Z., Yang, S., Qin, Y., Hu, X. & Cheng, J. (2015). Experimental study on the goaf flow field of the “U+I” type ventilation system for a comprehensive mechanized mining face. International Journal of Mining Science and Technology, 25(6), 1003–1010.CrossRefGoogle Scholar
  28. Zigmund, J., & Janovsky, B. (2007). ‘Vybuchovy trojuhelnik’: A software tool for evaluation of explosibility of coal mine atmosphere. Journal of Loss Prevention in the Process Industries, 20(5), 517–522.Google Scholar
  29. Zipf, R. K., & Mohamed, K. M. (2010). Composition change model for sealed atmosphere in coal mines. In S. Hardcastle & D. McKinnon (Eds.), Proc. 13th United States/North American mine ventilation symposium (pp. 493–500). Sudbury: Laurentian University.Google Scholar
  30. Zipf, R. K., Sapko, M. J., & Brune, J. F. (2007). Explosion pressure design criteria for new seals in U.S. coal mines. Pittsburgh: National Institute for Occupational Safety and Health, IC9500 (p. 76)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jianwei Cheng
    • 1
  1. 1.College of Safety EngineeringChina University of Mining and TechnologyXuzhouChina

Personalised recommendations