Advertisement

A Walk in the Clouds: Routing Through VNFs on Bidirected Networks

  • Klaus-Tycho Foerster
  • Mahmoud Parham
  • Stefan Schmid
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10739)

Abstract

The virtualization of network functions enables innovative new network services which can be deployed quickly and at low cost on (distributed) cloud computing infrastructure. This paper initiates the algorithmic study of the fundamental underlying problem of how to efficiently route traffic through a given set of Virtualized Network Functions (VNFs). We are given a link-capacitated network \(G=(V,E)\), a source-destination pair \((s,t)\in V^2\) and a set of waypoints \(\mathscr {W} \subset V\) (the VNFs). In particular, we consider the practically relevant but rarely studied case of bidirected networks. The objective is to find a (shortest) route from s to t such that all waypoints are visited. We show that the problem features interesting connections to classic combinatorial problems, present different algorithms, and derive hardness results.

Notes

Acknowledgements

Klaus-Tycho Foerster is supported by VILLUM FONDEN project ReNet and Mahmoud Parham by AAU’s PreLytics project.

References

  1. 1.
    Amiri, S.A., Foerster, K.-T., Jacob, R., Schmid, S.: Charting the Complexity Landscape of Waypoint Routing. arXiv preprint arXiv:1705.00055 (2017)
  2. 2.
    Amiri, S.A., Foerster, K.-T., Schmid, S.: Walking through waypoints. arXiv preprint arXiv:1708.09827 (2017)
  3. 3.
    Archer, A., Bateni, M.H., Hajiaghayi, M.T., Karloff, H.J.: Improved approximation algorithms for prize-collecting steiner tree and TSP. SIAM J. Comput. 40(2), 309–332 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Arora, S., Grigni, M., Karger, D.R., Klein, P.N., Woloszyn, A.: A polynomial-time approximation scheme for weighted planar graph TSP. In: Proceedings of SODA (1998)Google Scholar
  5. 5.
    Bansal, N., Lee, K.-W., Nagarajan, V., Zafer, M.: Minimum congestion mapping in a cloud. In: Proceedings of PODC (2011)Google Scholar
  6. 6.
    Bellman, R.: Dynamic programming treatment of the travelling salesman problem. J. ACM 9(1), 61–63 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Björklund, A., Husfeld, T., Taslaman, N.: Shortest cycle through specified elements. In: Proceedings of SODA (2012)Google Scholar
  8. 8.
    Björklund, A., Husfeldt, T.: Shortest two disjoint paths in polynomial time. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 211–222. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-43948-7_18 Google Scholar
  9. 9.
    Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: Steiner tree approximation via iterative randomized rounding. J. ACM 60(1), 6:1–6:33 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chanas, P.: Reseaux ATM: conception et optimisation. Ph.D. thesis, University of Grenoble (1998)Google Scholar
  11. 11.
    Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report 388, Graduate School of Industrial Administration, Carnegie Mellon University (1976)Google Scholar
  12. 12.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)zbMATHGoogle Scholar
  13. 13.
    Edmonds, J., Johnson, E.: Matching: a well-solved class of linear programs. In: Combinatorial Structures and their Applications: Proceedings of the Calgary Symposium, pp. 88–92. Gordon and Breach, New York (1970)Google Scholar
  14. 14.
    ETSI: Network functions virtualisation - introductory white paper. White Paper, October 2013Google Scholar
  15. 15.
    Even, G., Medina, M., Patt-Shamir, B.: On-line path computation and function placement in SDNs. In: Bonakdarpour, B., Petit, F. (eds.) SSS 2016. LNCS, vol. 10083, pp. 131–147. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49259-9_11 CrossRefGoogle Scholar
  16. 16.
    Even, G., Rost, M., Schmid, S.: An approximation algorithm for path computation and function placement in SDNs. In: Suomela, J. (ed.) SIROCCO 2016. LNCS, vol. 9988, pp. 374–390. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-48314-6_24 CrossRefGoogle Scholar
  17. 17.
    Fortune, S., Hopcroft, J.E., Wyllie, J.: The directed subgraph homeomorphism problem. Theor. Comput. Sci. 10, 111–121 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)zbMATHGoogle Scholar
  19. 19.
    Hartert, R., Vissicchio, S., Schaus, P., Bonaventure, O., Filsfils, C., Telkamp, T., Francois, P.: A declarative and expressive approach to control forwarding paths in carrier-grade networks. In: Proceedings of SIGCOMM (2015)Google Scholar
  20. 20.
    Held, M., Karp, R.M.: The traveling-salesman problem and minimumspanning trees: Part II. Math. Program. 1(1), 6–25 (1971)CrossRefzbMATHGoogle Scholar
  21. 21.
    Sherry, J., et al.: Making middleboxes someone else’s problem: network processing as a cloud service. In: Proceedings of ACM SIGCOMM (2012)Google Scholar
  22. 22.
    Jarry, A., Pérennes, S.: Disjoint paths in symmetric digraphs. Discrete Appl. Math. 157(1), 90–97 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Jarry, A.: Multiflows in symmetric digraphs. Discrete Appl. Math. 160(15), 2208–2220 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Karpinski, M., Lampis, M., Schmied, R.: New inapproximability bounds for TSP. J. Comput. Syst. Sci. 81(8), 1665–1677 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kawarabayashi, K., Kobayashi, Y., Reed, B.A.: The disjoint paths problem in quadratic time. J. Comb. Theor. Ser. B 102(2), 424–435 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Khuller, S., Mitchell, S.G., Vazirani, V.V.: Processor efficient parallel algorithms for the two disjoint paths problem and for finding a kuratowski homeomorph. SIAM J. Comput. 21(3), 486–506 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Khuller, S., Schieber, B.: Efficient parallel algorithms for testing k-connectivity and finding disjoint s-t paths in graphs. SIAM J. Comput. 20(2), 352–375 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Klein, P.N.: A subset spanner for planar graphs, with application to subset TSP. In: Proceedings of STOC (2006)Google Scholar
  29. 29.
    Klein, P.N., Marx, D.: A subexponential parameterized algorithm for subset TSP on planar graphs. In: Proceedings of SODA (2014)Google Scholar
  30. 30.
    Lukovszki, T., Schmid, S.: Online admission control and embedding of service chains. In: Scheideler, C. (ed.) Structural Information and Communication Complexity. LNCS, vol. 9439, pp. 104–118. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25258-2_8 CrossRefGoogle Scholar
  31. 31.
    Napper, J., Haeffner, W., Stiemerling, M., Lopez, D.R., Uttaro, J.: Service Function Chaining Use Cases in Mobile Networks. Internet-draft, IETF (2016)Google Scholar
  32. 32.
    Naves, G., Sebö, A.: Multiflow feasibility: an annotated tableau. In: Cook, W., Lovász, L., Vygen. J. (eds.) Research Trends in Combinatorial Optimization, pp. 261–283. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-540-76796-1_12
  33. 33.
    Sköldström, P., et al.: Towards unified programmability of cloud and carrier infrastructure. In: Proceedings of EWSDN (2014)Google Scholar
  34. 34.
    Soulé, R., et al.: Merlin: a language for provisioning network resources. In: Proceedings of ACM CoNEXT (2014)Google Scholar
  35. 35.
    Robertson, N., Seymour, P.D.: Graph minors .XIII. The disjoint paths problem. J. Comb. Theor. Ser. B 63(1), 65–110 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Robins, G., Zelikovsky, A.: Tighter bounds for graph steiner tree approximation. SIAM J. Discrete Math. 19(1), 122–134 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Saltzer, J.H., Reed, D.P., Clark, D.D.: End-to-end arguments in system design. ACM Trans. Comput. Syst. (TOCS) 2(4), 277–288 (1984)CrossRefGoogle Scholar
  38. 38.
    Sebö, A., van Zuylen, A.: The salesman’s improved paths: A 3/2+1/34 approximation. In: Proceedings of FOCS (2016)Google Scholar
  39. 39.
    Vachani, R., Shulman, A., Kubat, P., Ward, J.: Multicommodity flows in ring networks. INFORMS J. Comput. 8(3), 235–242 (1996)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Aalborg UniversityAalborgDenmark

Personalised recommendations